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Abstract: In contemporary times, science-based technologies are needed for launching innovative
products and services in the market. As technology-based management strategies are gaining
importance, associated patents need to be comprehensively studied. Previous studies have proposed
predictive models based on patent factors. However, technology-based management strategies can
influence the growth and decline of firms. Thus, this study aims to estimate uncertainties of the factors
that are frequently used in technology-based studies. Furthermore, the importance of the factors
may fluctuate over time. Therefore, we propose a Bayesian neural network model based on Flipout
and four research hypotheses to evaluate the validity of our method. The proposed method not only
estimates the uncertainties of the factors, but also predicts the future value of technologies. Our
contribution is to (i) provide a tractable Bayesian neural network applicable to big data, (ii) discover
factors that affect the value of technology, and (iii) present empirical evidence for the timeliness and
objectivity of technology evaluation. In our experiments, 3781 healthcare-related cases of patents
were used, and we found that the proposed hypotheses were all statistically significant. Therefore, we
believe that reliable and stable technology-based management strategies can be established through
our method.
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1. Introduction

Kaufmann and Tödtling (2001) emphasized that firms should develop scientific tech-
nologies to launch innovative products in the market [1]. At present, firms are actively
reflecting technologies in their management plans. They employ technologies to (i) pinpoint
their strengths [2–4], (ii) compare them with those of competitors [5–7], and (iii) develop
new business models [8,9]. Furthermore, firms create intellectual property (IP) from their
management activities based on their technology, which comprises the IP research and
development (IP-R&D) of firms.

Generally, IP-R&D employs patents, which are typical IPs. Firms can claim their
rights to specific technologies, such as patents. Thus, firms proactively use patents for
prior arts, prediction of emerging technology, and technology evaluations. These patents
explain (i) how novel technology is, (ii) how advanced technology is compared to prior art,
and (iii) how technology contributes to industrial development. Patents can also explain
the features of technologies such as originality, marketability, and scope of rights using
various factors.

Patents include citations, family patents, and claims. Citations refer to the number
of cited papers of prior art or cited information by other patents. The originality of
technology can be measured based on the citations of the patent [10–12]. As firms want
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their technologies to be widely used, they register patent families in a number of nations.
Therefore, patent families can be used as factors to estimate the marketability of the
technology [13]. Claims refer to the scope of rights of the technology. The higher the
number of claims is, the wider the scope of rights to protect the patent [14,15].

IP-R&D using patent factors has been studied in various forms. Firms have several
IP-R&D strategies that can be used to develop innovative products and services. First,
firms can reduce the cost of R&D through technology trade or transfer [16,17]. Second,
the prediction of vacant technology can help the discovery of new business models for
firms [18]. Third, firms can predict emerging technology to invest in their limited budgets
efficiently and intensively [19]. Finally, technology evaluation can be used in the planning of
various IP-R&D activities such as the prediction of technology transfer, vacant technology,
and emerging technology [20,21].

IP-R&D can also help predict the future of technology through various factors of
patents. These advantages act as a sufficient condition for industry, academia, and even
the government to select IP-R&D. However, we need to consider the uncertainty of patent
factors to establish more complete IP-R&D strategies. This is because the basis of IP-R&D
is trust in factors that explain the features of technology.

The purpose of this study is to estimate the uncertainty of various patent factors used
in IP-R&D. In particular, we focus on technology evaluation for the following reasons.

• Technology evaluation that can predict technology excellence is a bridge that connects
various types of IP-R&D and firms.

• The technology value may fluctuate depending on the time of evaluation.
• The uncertainty of technology value can be actively reflected in the management and

investment of firms.

Thus, we estimate the uncertainty of factors used in technology evaluation in order
to (i) help firms make the right decisions, (ii) support timely R&D, and (iii) contribute
towards minimizing losses. To achieve this, this study proposes a Bayesian neural network
(BNN) model for technology evaluation. The proposed methodology not only estimates
the uncertainty of evaluation factors but also predicts the patent value.

The contributions of the proposed methodology are as follows:

• Jun (2022) and Uhm and Jun (2022) pointed out the intractable limitations of the
Bayesian approach as the volume of big data gradually increased [22,23]. To improve
these limitations, we applied Flipout as a tractable and appropriate approach to big
data. Flipout helped BNN learn each layer independently.

• Lee and Park (2022) emphasized that identifying factors influencing IP-R&D can
prevent the absence of validity in patent analysis [24]. Thus, we measured the influence
on the technology value for each evaluation factor. To this end, the difference between
the mean and variance of the value according to the factor was statistically tested.

• Choi et al. (2023) argued that for sustainable growth in an uncertain business envi-
ronment, it is necessary to cope with the rapidly changing flow of technology [25].
Therefore, we measured the uncertainty of technology evaluation over time. In addi-
tion, we verified the trend and presented empirical evidence for the timeliness and
objectivity of technology evaluation.

The rest of the paper is structured as follows. Sections 2 and 3 explain the previous
studies on technology evaluation and the background of the Bayesian neural network,
respectively. Section 4 proposes a method for estimating technology evaluation factors.
Section 5 describes an experiment to demonstrate the applicability of our method. Finally,
Section 6 discusses several limitations of our study, and Section 7 presents suggestions for
future studies.

2. Related Works

In the past, technology evaluations were conducted based on the opinions of technol-
ogy experts. However, as patent data increase and computing power improves, a large
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number of studies on social network analysis or the use of machine learning and deep
learning have been conducted.

Previously, technology evaluation has been conducted via the expert-based Delphi
method [26,27]. However, such methodologies potentially produced biased evaluations
depending on the opinion of individual experts. Furthermore, they did not reflect various
factors included in patents and could not predict the future technology value. To overcome
these limitations, Galbraith et al. (2006) proposed a combination of technology evalua-
tion factors and an expert-based method [28]. Furthermore, Akoka and Comyn-Wattiau
(2017) pointed out the risk of evaluation of new technologies and stressed the need for
a methodology that can reflect this risk [29]. Sa et al. (2022) suggested a Delphi-based
methodology, noting that the opinions of experts and academics are important to capturing
and evaluating the value of technology [30].

Patents cite prior art to protect rights and technological progress. Owing to this char-
acteristic, several researchers analyzed patents using a form of a social network. Kim
et al. (2015) used connected patent information in a network to evaluate the excellence of
technology [31]. Choi et al. (2015) and Kumari et al. (2021) predicted potential opportu-
nities for commercialization by discovering hidden knowledge of technology through a
combination of machine learning and social networks [32,33]. Lai et al. (2023) proposed a
methodology using main path analysis to predict the potential impact on the development
of technology [34]. They extracted the contributions of patents and linked them together
to trace the technology trajectory. As a result, they were able to discover the trends in
which technology has developed, and among them, they found technologies with high
value. In contrast to the Delphi-based method, they proposed a data-based model, thereby
contributing towards ensuring the objectivity of evaluation.

Yang et al. (2012) stated that the patent value was determined by factors such as
citations and claims [35]. They aimed to secure the objectivity of evaluation by estimating
the royalty rate of technology. Trappey et al. (2012) mentioned the need for selecting only
the main information among various evaluation factors [36]. Through the proposed method,
they can predict the future value of technology using a deep neural network, which was
trained with the selected main factors. Trappey et al. (2019) and Ko et al. (2019) noted that
patents were transferable assets having innate economic and technological value [37,38].
In this regard, Chung et al. (2020), Lee et al. (2022), and Huang et al. (2022) proposed an
evaluation model based on machine learning and deep learning to extract various values of
patents [39–41]. Nonetheless, their methods cannot estimate the uncertainty of evaluations.

Table 1 presents the comparison results of previous studies on technology evaluation
based on features. Expert-based approaches lack the objectivity of evaluation. Social net-
work analysis-based approaches could mitigate the limitations of expert-based approaches.
However, they could not predict the value of future technology. Machine learning- and
deep learning-based approaches can overcome the drawbacks of existing approaches. How-
ever, they cannot measure the uncertainty of technology evaluations. In this paper, our
contributions are (i) to ensure the objectivity of technology evaluation, (ii) to predict the
future technology value, and (iii) to measure the uncertainty to building effective IP-R&D.

Table 1. Comparison of previous studies on technology evaluation.

Approaches Related Works Objectivity Prediction Uncertainty

Expert-
based [26–30] – – –

SNA-
Based 1 [31–34]

√
– –

ML and DL
Based 2 [35–41]

√ √
–

BNN-
based Our method

√ √ √

1 Social Network Analysis-based approaches. 2 Machine and Deep Learning-based approaches.
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3. Background

An artificial neural network is a predictive model that simulates the actions of neurons,
which are found in the human brain. A neural network-based model broadly consists of
three layers. Features of the observed values enter the input layer. Then, data inputted to
an input layer are converted to predicted values after passing through hidden and output
layers. Let us assume that N pieces of data that enter a neural network are D ∼ {xi, yi}N

i=1.
Then, the neural network learns a fixed weight W that connects layers from D.

In the past, neural networks have suffered from (i) incomplete learning in nonlinear
separable space, (ii) vanishing gradient as the network deepens, and (iii) overfitting of
the training dataset. Nonetheless, a neural network is currently one of the most popular
predictive models and is used in Lecun’s (1988) back propagation (BP) algorithm [42],
Nair and Hinton’s (2010) rectified linear units (ReLU) [43], and Srivastava et al. (2014)’s
dropout [44]. The deep neural network (DNN) architecture has attracted attention not only
because of its use of BP, ReLU, and dropout but also its data quality and computer power
development. DNN is built by having deep hidden layers that are present between the
input and output layers. Furthermore, the application range of DNN has gradually become
wider as it uses various layers such as convolutional or recurrent layers. Figure 1a shows
the simple DNN architecture. DNN predicts a data label with the fixed weight W that is
learned using a training dataset.
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Figure 1. Comparison of deep neural network and Bayesian neural network. (a) a deep neural
network is a constant with a fixed weight connecting each layer; (b) in a Bayesian neural network,
the weight connecting each layer is a probability distribution.

Here, let us assume that neural network f used in an autonomous driving system
determines “stop” and “go” based on the front image. In this example, the neural network
learns as it receives a large number of images as input data x. A modern DNN can
learn without overfitting the training dataset while eliminating the vanishing gradient
for nonlinear separable spaces using BP, ReLU, and dropout. Let us assume that random
images are inputted into the learned DNN. Then, f (x, W), which is a predictive value of
the DNN, is either “go” and “stop”. That is, a fixed weight-based DNN has a tendency to
be overconfident in the training dataset.

DNN is used in areas that are closely associated with human life such as autonomous
driving and healthcare. However, given the potential for accidents due to overconfident
DNNs of the training dataset, an alternative is now needed. BNN, which handles a weight
W that connects layers as random variables is one of the alternatives of DNN [45–48].
Figure 1b shows the BNN architecture. The most crucial difference between DNN and BNN
is the viewpoint of weight W. In contrast with DNN that uses a fixed weight, weight W is
assumed as a random variable of qθ in BNN. Thus, BNN estimates a probability distribution
qθ with Bayes’ theorem. However, because the operation of posterior in Bayes’ theorem is
intractable, it is difficult for BNN training to converge. To overcome this, various tractable
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mechanisms were proposed such as Wan et al. (2013)’s DropConnect [49] including dropout
and Kingma et al. (2015)’s reparameterization trick [50,51].

BNN predicts a sample label using various weights W that are extracted from qθ . That
is, BNN cannot measure the uncertainty of the prediction. Thus, BNN helps the analyzer
to make the right decision by increasing the uncertainty of prediction if an unseen case
emerges in a training dataset. Wen et al. (2018) introduced Flipout, pointing out that
the existing BNN is difficult to learn as the variance of the gradient is high because all
training samples in the mini-batch share the same perturbation [52]. Let us assume that
there is a weight W = W + ∆W that follows qθ where W and ∆W refer to mean weights
and stochastic perturbation, respectively. Let us also assume ˆ∆W ∼ qθ . Then, Flipout
ensures the decreasing variance of gradient estimates. Under the training sample x, one
entry Gx of stochastic gradient ∇θL

(
y, f

(
x, W, ∆W

))
can be expressed in Equation (1):

∂

∂θi
L
(
y, f

(
x, W, ∆W

))
, (1)

where Gx is a random variable that depends on x and ∆W.
Let us assume that GB is a gradient averaged over a size of mini-batch M. Then, by

using the law of total variance, GB can be decomposed into the variance of the exact mini-
batch gradients and the estimation variance for a fixed mini-batch (see Equations (2)–(4)).

α = Varx(E∆W [Gx|x]) +Ex[Var∆W(Gx|x)], (2)

β = Ex,x, ˆ∆W
[
Cov∆W

(
Gx,Gx′

∣∣x, x′, ˆ∆W
)]

, (3)

In Equation (2), α refers to the variance of the gradients on individual samples. In
Equation (3), β refers to the covariance of the estimation of stochastic perturbation ∆W. As
Flipout aims to remove perturbation that is shared in the mini-batch samples, β is removed.

γ = Ex,x′
[
Cov ˆ∆W

(
E∆W

[
Gx
∣∣x, ˆ∆W

]
, E∆W

[
Gx′
∣∣x′, ˆ∆W

]∣∣x, x′
)]

, (4)

γ in Equation (4) refers to the term of covariance in ˆ∆W. Thus, Flipout trains each
layer independently by decreasing α and γ.

4. Proposed Method

This study focuses on estimating the uncertainty of factors that are used to evaluate
technologies. Let us assume that factors xi and value yi of N technologies follow data
distribution D ∼ {xi, yi}N

i=1. Let us also assume that the value of technology that is
classified with the binary class is yi = {0, 1}. When the value of technology is high, yi is 1.
Then, BNN f evaluates the technology through input x and weights W. Here, if probability
P( f (x, W) = k) is larger than the threshold c, the sample is classified to k and vice versa
(k is 0 or 1). The estimator of uncertainty about input x whose true label is k is presented in
Equation (5):

uk = P( f (x, W|y = k) 6= k), (5)

where f (x, W|y = k) refers to the predicted label of the sample whose true label is k.
This study assumes four research hypotheses. First, the distribution of evaluation

factors will differ depending on the technological value. This hypothesis implies that
factors can classify technologies clearly according to their value. Second, the BNN’s layer
will follow a specific distribution. We assume a layer’s distribution when learning a BNN
through the proposed method. If the learning of BNN is adequate, the layer would be
approximated to the assumed distribution. Third, the performance of BNN will be better
than other classifiers. This study estimates the uncertainty of evaluation factors through
BNN. Thus, a BNN whose performance is better than other predictive models would
increase the reliability of estimation. Finally, the uncertainty of technology whose value
is evaluated as excellent will be higher for more recent technology is more recent. The
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adequate evaluation of technology requires timeliness and objectivity more than immediacy.
Furthermore, evaluation factors may be affected by the time flow. Thus, we assume that
the uncertainty of technology, which has been evaluated as excellent in recent years, would
be high.

Hypothesis 1. The quantitative factors of patents have different distributions depending on the
technology’s value.

The proposed methodology aims to predict technology’s value using quantitative
factors and estimate the uncertainty of the factors. Generally, factors such as “number of
forward citations” and “number of family patents” are used to evaluate technologies.

The average of the p-th factor x(p)
i,y=k for the i-th sample whose label is k is presented

in Equation (6):

µ̂p,y=k =
1

Nk
∑N

i=1 x(p)
i,y=k, (6)

where Nk refers to the sample size where y is k.
Equation (7) presents the variance of each factor depending on the technology’s value.

σ̂2
p,y=k =

1
Nk − 1 ∑N

i=1

(
x(p)

i,y=k − µ̂p,y=k

)2
, (7)

Thus, Hypothesis 1 means that the difference between µ̂p,y=k and σ̂2
p,y=k according to

y is statistically significant. Thus, the null hypotheses we assume are as follows:

H0 : µ̂p,y=0 ≥ µ̂p,y=1, (8)

H0 : σ̂2
p,y=0 = σ̂2

p,y=1, (9)

where the equality and inequality signs of the alternative hypotheses are defined as the
opposite to those of the null hypotheses.

Equation (8) is rejected if the factor of a patent whose technology’s value is high is
larger than that whose technology’s value is low. Equation (9) means there is no difference
in the deviation of the distribution depending on the technology’s value by comparing the
deviation of the factor.

Hypothesis 2. The layers of the Bayesian neural network follow a specific probability distribution.

The proposed methodology predicts the technology’s value using a BNN. This study
assumes that the weight W of the layer in the BNN follows the standard normal distribution.
Let us assume that random variable Z conditioned on Z: Z ∼ N(0, 1). Then, Hypothesis 2
assumes Equation (10).

H0 : W ≈ Z, (10)

where the alternative hypothesis for Hypothesis 2 is that weight W does not fall within the
standard normal distribution.

When Equation (10) cannot be rejected, the mean and variance of W will be approxi-
mated to 0 and 1, respectively. Their skewness and kurtosis are also close to 0.

Hypothesis 3. The Bayesian neural network has higher prediction performance than other models.

Hypothesis 3 assumes that the performance of BNN would be higher than that of
other classifiers. BNN can measure a loss of samples T times through the layer distribution.
Thus, the loss of BNN is calculated by Equation (11).

L = E(x, y)∼D, W∼qθ

[
1
T ∑T

t=1 L( f (x, W), y)(t)
]

, (11)



Axioms 2023, 12, 145 7 of 18

where qθ and L( f (x, W), y)(t) refer to the distribution of W and the t-th measured loss of
the sample.

Here, let L̃ be the loss of a predictive model other than BNN. Then, the null hypothesis
for Hypothesis 3 is Equation (12).

H0 : L̃ ≤ L, (12)

where the alternative hypothesis for Hypothesis 3 is that L̃ is less than L.
By rejecting Equation (12), we can ensure that the reliability of the estimation of

uncertainty and the BNN performance is better than other predictive models.

Hypothesis 4. The uncertainty in highly valued technology increases over time.

Technology value is determined by marketability, originality, and scope of rights.
However, these factors may be evaluated differently depending on the time when tech-
nology development is completed. For example, the number of forward citations tends to
be smaller for patents that are more recently registered. Furthermore, technologies that
were developed in the past may attract attention a decade later. Thus, we assume that
the uncertainty of technology evaluation would fluctuate depending on the timeliness
and objectivity of the technology. Then, the null hypothesis for Hypothesis 4 is given
by Equation (13).

H0 : No trend exists in uncertainty o f technology evaluation, (13)

According to Hypothesis 4, the uncertainty of technology value that is evaluated
more recently is higher than those that are not recent. In general, existing IP-R&D did not
consider when the technology value is evaluated. However, the technology evaluation
of recently registered patents would fluctuate more. Thus, it is essential to establish an
IP-R&D strategy according to the time of technology evaluation.

Our study aims to estimate the uncertainty when evaluating a technology using factors
that contain technology features. BNN has an advantage in that it can predict technology
value several times for the same sample as it learns a distribution of weights. Using this,
we estimate the uncertainty of the factors. Let us assume GB, the gradient averaged over a
mini-batch M, as the random variable obtained in the learning process. When B is {xm}M

m=1,
GB is given by Equation (14).

GB =
1
M ∑M

m=1 G(xm, ∆Wm), (14)

where G(x, ∆W) denotes the gradient under the perturbation ∆W for Sample x [52].

Var(GB) =
1
M

α +
M− 1

M
γ, (15)

Flipout helps the layer distribution of each factor to be independent of each other. To
achieve this, the proposed method aims to reduce the expected variance estimation α of
individual data points and covariance γ of layer distribution. Equation (15) presents the
variance of GB that is calculated through Flipout in the proposed method.

5. Experimental Results

The purpose of the experiment is to study the applicability of the proposed method.
We collected a patent dataset consisting of 3781 healthcare cases. In this section, we
explain (i) the preparation process for the experiment, (ii) the statistical test on the research
hypotheses, and (iii) the feature ablation trial.



Axioms 2023, 12, 145 8 of 18

5.1. Experimental Setup

We collected 3781 patents for healthcare, which were filed in the United States Patent
and Trademark Office (USPTO). Data-based healthcare has been applied in a wide range
of areas in recent years [53]. In particular, incorrect analysis in healthcare can lead highly
risky such as the prediction of oxygen saturation [54] or clinical interpretation of somatic
mutations in cancer [55]. Thus, the evaluation of healthcare technologies must be objective
and rigorous.

Table 2 presents the evaluation factors extracted from the collected patents. The factors
from num_app to num_ipc are factors that explain the features of the patents as well as the
predictors of the predictive model. The value in the table indicates the target variable of
the patent value. The value refers to the technology value provided in the patent database,
which is classified into High (or 1) and Low (or 0). Thus, we designed a binary-class
classification model that predicts a target variable with patent predictors.

Table 2. Variables used in the proposed model.

Factors Description

num_app Number of applicants who own patent rights
num_bkw Number of backward citations
num_clm Number of claims
num_cpc Number of Cooperative Patent Classification (CPC) codes
num_doc Number of cited non-patent documents

num_famN Number of countries for family patents
num_famP Number of family patents
num_frw Number of forward citations
num_inv Number of Inventors
num_ipc Number of International Patent Classification (IPC) codes

Value High (or 1) if the value of the patent is high, and Low (or 0) otherwise

Table 3 presents the data splitting results to train the BNN. The test dataset comprises
30% of 3781 cases. The rest of the data were split into training and validation datasets in the
proportion 8:2. The BNN trained the training dataset and employed the validation dataset
to prevent overfitting. The performance of the model whose learning was completed was
measured using the test dataset.

Table 3. Results of splitting the data to train the model.

Dataset High Low Total Ratio

Raw dataset 2335 1446 3781 100%
Training dataset 1307 809 2116 56%

Validation
dataset 327 203 530 14%

Test dataset 701 434 1135 30%

The BNN architecture used in the experiment is as follows: The number of neurons
in the input layer is 10, and the number of neurons in the two hidden layers are 6 and
4. The ReLU was used as the activation function in the layer. The model was learned to
minimize a negative log loss. In the learning, 256 mini-batch sizes and 50 epochs were used.
The Kullback–Leibler divergence was employed to approximate the layer distribution.
Figure A1 in Appendix A shows the detailed architecture of BNN.

5.2. Statistical Test for Research Hypothesis

In this study, four research hypotheses were proposed in order to prove the validity of
our method. We prove the proposed hypotheses using statistical tests. The statistical tests
were conducted sequentially from Hypotheses 1 to 4. All statistical hypotheses were tested
at the 0.05 significance level.
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5.2.1. Statistical Test for Hypothesis 1

Hypothesis 1 assumes that the evaluation factors of patents would have a statistically
significant impact on the determination of technology value. Table 4 presents the statistical
test results according to the factors. For example, if we calculate the average and standard
deviation of the number of backward citations (num_bkw) for patents whose value is high,
they are 79.099 and 259.065. In contrast, the average and standard deviation of num_bkw of
patents whose value is low are 34.435 (µ̂p,y=0) and 86.937 (σ̂p,y=0).

Table 4. Results of statistical test for Hypothesis 1.

Variables
^
µp,y=0

^
µp,y=1

^
σp,y=0

^
σp,y=1

Levene * T-Test * Wilcoxon *

Statistics p-Value Statistics p-Value Statistics p-Value

num_app 1.156 1.196 0.549 0.671 4.093 0.043 −1.931 0.027 −1.157 0.124
num_bkw 34.435 79.099 86.937 259.065 49.834 <0.001 −6.337 <0.001 −13.678 <0.001
num_clm 17.839 21.694 9.391 13.818 55.854 <0.001 −9.352 <0.001 −8.824 <0.001
num_cpc 8.686 13.376 7.676 16.573 154.033 <0.001 −10.107 <0.001 −6.720 <0.001
num_doc 7.737 18.119 32.677 52.314 52.232 <0.001 −6.770 <0.001 −11.455 <0.001
num_famN 2.652 5.535 2.277 4.022 354.661 <0.001 −24.888 <0.001 −25.482 <0.001
num_famP 14.008 87.576 47.859 287.619 131.161 <0.001 −9.641 <0.001 −26.605 <0.001
num_frw 14.728 74.661 24.087 115.006 398.873 <0.001 −19.546 <0.001 −33.123 <0.001
num_inv 2.215 2.094 1.931 2.269 34.145 <0.001 1.690 > 0.500 4.631 >0.500
num_ipc 4.060 4.416 3.231 5.785 49.939 <0.001 −2.146 0.016 6.442 >0.500

* ‘Levene’ denotes the p-value of Levene’s test for homogeneity of variance. ‘T-test’ denotes the p-value of the
T-test for homogeneity of average. ‘Wilcoxon’ denotes the p-value of the Wilcoxon Rank-Sum test, a nonparametric
method for the T-test.

In the table, ‘Levene’ refers to the p-value of Levene’s test to test the equal variance
of the factors according to the value. ‘T-test’ and ‘Wilcoxon’ refer to the p-values of the
parametric and nonparametric methods to test whether the averages of the factors are equal
according to the value. At the significance level of 0.05, the num_bkw of patents whose value
is high is more than that of patents whose value is low. Thus, num_bkw can be viewed as a
statistically adequate factor that can differentiate the technology’s value of the patents. The
statistical test result of Hypothesis 1 showed that factors other than num_app, num_inv, and
num_ipc had a significant impact on determining the technology’s value of the patents.

5.2.2. Statistical Test for Hypothesis 2

Hypothesis 2 assumes that after training the BNN, the layer distribution is approxi-
mated to a normal distribution. Through this hypothesis, we can prove the adequacy of
the training. Figure 2a shows the joint probability density distribution of the layer of each
factor. Figure 2b shows the quantile–quantile plot (Q–Q plot) of the distribution of each
layer. The results showed that most distributions of the factors were approximated to a
normal distribution.
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Figure 2. Visualization of the weight distribution of a trained Bayesian neural network. (a) Joint
probability density distribution for the layers of each factor; (b) Q–Q plot of the distribution of each
factor layer and standard normal distribution.

Table 5 presents the statistical test results of Hypothesis 2. We measured the average,
standard deviation, skewness, and kurtosis of each layer’s distribution. The average and
standard deviation of the standard normal distribution are 0 and 1, and their skewness and
kurtosis are both 0. The comparison results of the basic statistics showed that the skewness
and kurtosis of num_famP were significantly different in the standard normal distribution.

Table 5. Results of statistical test for Hypothesis 2.

Variables Avg Std Skewness Kurtosis
Shapiro-Wilk *

Statistics p-Value

num_app 0.013 0.086 0.278 0.081 0.965 0.010
num_bkw −0.002 0.090 0.208 −0.676 0.980 0.133
num_clm 0.013 0.089 −0.333 0.032 0.985 0.316
num_cpc 0.010 0.090 0.389 0.985 0.986 0.369
num_doc 0.007 0.090 0.262 0.160 0.990 0.688

num_famN 0.009 0.126 0.045 0.112 0.988 0.519
num_famP −0.022 0.112 −1.410 3.056 0.905 0.000
num_frw −0.003 0.113 −0.286 0.212 0.991 0.722
num_inv 0.010 0.076 0.238 0.980 0.987 0.416
num_ipc 0.001 0.090 0.411 1.849 0.970 0.024

* ‘Statistics’ and ‘p-value’ denote the statistics and p-value, respectively, of the Shapiro–Wilk test for normality.

The Shapiro–Wilk test of the technology evaluation factors revealed that num_app,
num_famP, and num_ipc rejected the null hypothesis at the significance level of 0.05 [56].
Thus, the distribution of the layer other than that of the above three factors can be viewed
as following a normal distribution.
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5.2.3. Statistical Test for Hypothesis 3

Hypothesis 3 assumes that the performance of the BNN would be higher than that of
other predictive models. This ensures that the BNN not only estimates the uncertainty of
the evaluation but also enables accurate prediction. The experiments were conducted to
compare the performance of BNN and other predictive models. The comparison models
were logistic regression (LR), decision tree (DT), and k-nearest neighbors (KNN). The Gini
index was used to split a decision tree, and the number of neighbors used in KNN was five.

Figure 3 shows the comparison charts of (a) Accuracy, (b) Precision, (c) Recall, and
(d) F1-score, which are indicators that measure the performance of the models. BNN
calculated the prediction interval using the average and deviation, which was measured
ten times (T = 10) iteratively for the test dataset. In Accuracy, BNNs perform similarly
to LRs. However, other performance of LR shows that the model’s predictions are biased.
The F1-score is an indicator showing the performance corrected for the bias of prediction.
BNN’s F1-score is higher than other classifiers. Specifically, BNN ([0.702, 0.716]), KNN
(0.669), LR (0.668), and DT (0.655) are high in that order. The performance of BNN is up
to 109.31% higher than other classifiers. Moreover, the range of variation is very small. In
other words, BNN is (i) faster than prediction through expert evaluation, (ii) less costly, and
(iii) stable prediction is possible. Thus, BNN can be seen as an adequate predictive model
to estimate the uncertainty of the evaluation.
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Figure 3. Comparison of predictive performance by model. (a) Measuring the accuracy of the models;
(b) Precision when technology value is high (value = 1); (c) Recall when technology value is high
(value = 1); (d) F1-score when technology value is high (value = 1).

5.2.4. Statistical Test for Hypothesis 4

Figure 4a shows the visualized results of the uncertainty according to the patent
application year of patents whose value is low. BNN measured the uncertainty of patents
whose technology value was low in the past very highly and vice versa. Figure 4b shows the
uncertainty based on the application year of patents whose value is high. BNN measured
the uncertainty of patents whose technology value was high in recent years very highly.
Thus, researchers should be careful not to be overconfident regarding patents whose value
is high among the recently invented technologies.
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Figure 4. Visualization of trends in uncertainty over time. (a) Results for technologies evaluated as
‘Low’ in actual value; (b) Results for technologies evaluated as ‘High’ in actual value.

Table 6 presents the statistical test results of the uncertainty’s trend according to the
patent application year. When the value was low, the results tended to decrease statistically
significantly in the Spearman and Kendall rank correlation test. In contrast, when the
value was high, the results tended to increase in the statistical test. Thus, the uncertainty of
patents whose value was high gradually increased over time at the significance level of 0.05.

Table 6. Results of statistical test for Hypothesis 4.

Statistical Test
Spearman * Kendall *

Statistics p-Value Statistics p-Value

u0 −0.594 0.005 −0.448 0.004
u1 0.872 <0.001 0.737 <0.001

* ‘Statistics’ and ‘p-value’ denotes the statistics and p-value, respectively, of Shapiro’s test for normality.

The experimental results using the patent data of healthcare exhibited that most
factors had a significant impact on the evaluation of technology. Furthermore, the BNN’s
weight, which learned patent data, followed a normal distribution, and its performance
was better than that of other classifiers. The experiments also showed that the uncertainty
of the technology’s value of recently registered patents was higher than that of the patents
registered in the past.

5.3. Factor Ablation Trial

The purpose of the ablation study in deep learning is to observe the change in per-
formance by removing a particular factor or layer in the network. This study aimed to
measure the change in uncertainty by entering a random value to the factor in the BNN
through the factor ablation trial. First, the operation of BNN for the rest of the factors
except for the p-th factor is ignored. Then, the change in uk is observed iteratively while
increasing the value of the p-th factor from 0 to 100.

Figure 5 shows the results of the factor ablation trial. In the figure, the black line
indicates the uncertainty of evaluation according to the factor. The red line denotes the
upper bound (UB) and lower bound (LB) of fluctuating uncertainty. Through a factor
ablation trial, we measured the degree to which the uncertainty of evaluation changes as
the value of the factor increases.
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Figure 5. Results of a factor ablation trial. The black line is the average of the uncertainty, and the red
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Variables num_app, num_clm, num_doc, num_inv, and num_ipc showed an increasing
trend of uncertainty of technology evaluation as the factor increased. In contrast, the
uncertainty of evaluation decreased as num_famN, num_famP, and num_frw increased. In
addition, num_bkw and num_cpc did not show a clear trend of increase or decrease in the
uncertainty. Nevertheless, num_bkw and num_cpc had the lowest uncertainty around 60
and 90, respectively.

The results of the statistical test on the factor ablation trial are summarized in Table 7.
We tested whether the trend of the uncertainty according to the change in the factors
was increasing or decreasing using the Spearman and Kendall rank correlation test. At
the significance level of 0.05, the results showed that factors num_frw, num_famN, and
num_famP contributed to decreasing the uncertainty of evaluation.

Table 7. Results of statistical tests on factor ablation trials.

Variables
Spearman * Kendall *

Statistics p-Value Statistics p-Value

num_app 0.981 <0.001 0.897 <0.001
num_bkw 0.143 0.077 0.116 0.044
num_clm 0.728 <0.001 0.588 <0.001
num_cpc −0.047 0.321 −0.016 0.408
num_doc 0.788 <0.001 0.611 <0.001

num_famN −0.973 <0.001 −0.887 <0.001
num_famP −0.949 <0.001 −0.826 <0.001
num_frw −0.972 <0.001 −0.878 <0.001
num_inv 0.916 <0.001 0.804 <0.001
num_ipc 0.972 <0.001 0.872 <0.001

* ‘Statistics’ and ‘p-value’ means the statistics and p-value, respectively, of Shapiro’s test for normality.

The validation of the experiment is as follows:

• As a result, BNN had the highest F1-score, followed by KNN, LR, and DT. This means
that the performance has improved by up to 109.31% compared to the previous one.
Since the range of fluctuation of BNN performance is very small, the proposed method
can make stable predictions.
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• We found a trend in uncertainty over time. This means that when researchers build
IP-R&D strategies, they must consider the period when the value of the technology
was evaluated.

• Through the feature ablation trial, we found that the uncertainty of evaluation de-
creased as num_famN, num_famP, and num_frw among the factors increased. In addi-
tion, we found that num_app, num_clm, num_doc, num_inv, and num_ipc are propor-
tional to the uncertainty of evaluation.

Through experiments, we were able to discover empirical evidence for the proposed
research hypothesis. The strengths and weaknesses discovered along the way are discussed
in the remaining sections.

6. Discussion

The importance of technology has been emphasized by various firms, universities,
and research institutions in modern society. Specifically, firms search for their strengths or
competitors’ weaknesses through technologies. Patents are one of the important corner-
stones to conducting IP-R&D because they exhibit the history of technological advances as
well as predict the future vision.

Patents have been widely used to evaluate technological values in existing studies.
They employed factors such as patent citations, claims, and family patents to train predictive
models. However, as the importance of timeliness and objectivity is emphasized more than
the immediacy of technology evaluation, it is necessary to have a study on methods to
measure the uncertainty of the prediction.

The proposed method set four research hypotheses to estimate the uncertainty of
technology evaluation factors. The first hypothesis was that factors would affect the
technology value. The second hypothesis was that BNN learning would be adequate.
The third hypothesis was that the BNN performance would be higher than that of other
classifiers. The final hypothesis was that the more recent the evaluated value was, the
higher the uncertainty was.

Empirical evidence obtained from statistical tests on the hypotheses is as follows:

• Technology value is determined by originality, marketability, and the scope of rights.
• The causal relationship of technology value with the number of applicants who own

patent rights, the number of inventors, and the number of IPC codes should be
carefully interpreted.

• Nonetheless, the evaluation of technology, which is higher in the number of countries
for family patents, the number of forward citations, and the number of family patents,
can be trusted more than that of other cases.

This study proposed a method to estimate the uncertainty of technology evaluation
through Bayesian-based predictive models. Our experiments on the proposed method
were conducted by collecting healthcare patents, which were likely to have a high risk of
technology evaluation. We statistically tested four hypotheses using 3781 cases of data.
The test results of the first hypothesis confirmed that there was a statistically significant
difference in technology evaluation factors according to the patent value. More specifically,
all factors except for the number of applicants who own patent rights, the number of
inventors, and the number of IPC codes were fit to evaluate technologies.

Through the experiment results, we verified that the BNN layer, which learned
healthcare-related patents, was approximated to the statistical distribution. The perfor-
mance measurement results of technology evaluation exhibited that BNN had the highest
F1-score ([0.702, 0.716]), followed by KNN (0.669), LR (0.668), and DT (0.655). We also
verified that the uncertainty of the recently evaluated technology value was high. We dis-
covered in the feature ablation trial that the larger the values of the number of countries for
family patents (Spearman’s statistics, −0.973), the number of forward citations (Spearman’s
statistics, −0.972), and the number of family patents (Spearman’s statistics, −0.949), the
lower the uncertainty of technology evaluation. Thus, the results implied that these three
factors were the important ones to determine the technology value.
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This study estimated the uncertainty of factors used to evaluate the technology. IP-
R&D is conducted in various ways, not only through technology evaluation but also
technology transfer, vacant technology, and emerging technology. Thus, it is necessary to
measure and compare the uncertainty of the tasks used in various IP-R&D strategies in
future studies. Through this, we expect our study results to contribute to a wide range of
IP-R&D activities.

7. Conclusions

Innovative technologies can be used by firms to develop new business models. Conse-
quently, firms are interested in various IP-R&D activities such as the prediction of technol-
ogy transfer, vacant technology, and emerging technology. Conventionally, IP-R&D was
conducted through discussions between experts. However, this approach has a limitation
that the result may differ depending on the experts’ opinions. Much attention has been
paid to the data-based approach by researchers because it can overcome this limitation.

Some researchers have focused on the fact that patents can be linked to citations
and proposed a method using a social network. Other researchers have used machine
learning or deep learning to predict the future technology value. However, the afore-
mentioned approaches cannot estimate the uncertainty of modeling. Therefore, this
study proposed a method that (i) ensures IP-R&D objectivity, (ii) predicts the future, and
(iii) estimates the uncertainty.

This study has certain limitations:

• Patents are documents that describe the technology. However, we did not use
patent texts.

• We predicted patent value through BNN. We also compared the performance with
that of other classifiers. However, although our model was the best, it was not good
enough to be applied to the real world.

• More recently, various layers have been proposed as deep learning advances. However,
this was not considered.

Therefore, the future research directions we propose are as follows:

• In recent years, the study field of natural language processing has rapidly grown.
Thus, it is necessary to consider the patent text when estimating technology value in
future studies.

• Prediction performance needs to be further improved. Reliable prediction perfor-
mance helps discover new technology opportunities beyond technology evaluation in
various fields.

• We need to compare the estimation of uncertainty according to various layers in future
studies. This is because the attention-based layer suitable for the patent document
helps the model understand the technical terms of the patent [57].

We did not improve the prediction performance using various layers (e.g., convo-
lutional layer) that is used in deep learning or patent texts. Nonetheless, we proposed
various hypotheses to estimate the uncertainty of technology evaluation and verified the
empirical evidence. Thus, we expect our contribution to be helpful for IP-R&D for the next
industrial revolution.
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