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Abstract: Outliers often occur during data collection, which could impact the result seriously and
lead to a large inference error; therefore, it is important to detect outliers before data analysis. Gamma
distribution is a popular distribution in statistics; this paper proposes a method for detecting multiple
upper outliers from gamma (m, θ). For computing the critical value of the test statistic in our method,
we derive the density function for the case of a single outlier and design two algorithms based on the
Monte Carlo and the kernel density estimation for the case of multiple upper outliers. A simulation
study shows that the test statistic proposed in this paper outperforms some common test statistics.
Finally, we propose an improved testing method to reduce the impact of the swamping effect, which
is demonstrated by real data analyses.
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1. Introduction

The presence of outliers in the data may have an appreciable impact on the data
analysis, which often leads to erroneous conclusions, and in turn results in severe decision-
making mistakes. Therefore, it is necessary to detect outliers before statistical analysis.
On the other hand, outlier detection has a wide range of applications in the prevention of
financial fraud, disease diagnosis, and judgment of the truth of military information, etc.

Refs. [1,2] define outliers as those observations which are surprisingly far away from
the main group. In a one dimensional situation, if the observations are arranged in an
ascending order of magnitude, there will be only three types of outlier detection problems:
(i) only upper outliers; (ii) only lower outliers; and (iii) both upper and lower outliers.

The commonly used methods of dealing with outliers include the detection of outliers
and robust statistical methods. Robust methods aim to analyze data while retain outliers
and minimize the deviation of analytical results from theoretical results. The detection of
outliers is to identify outliers in the sample by using a reasonable statistical procedure and
then analyzing the remaining observations. In this paper, we focus on this method.

In the field of statistics, there are many results on the detection of outliers, and many ef-
fective methods have been proposed. These methods include descriptive statistics, machine
learning, and hypothesis testing.

Descriptive statistics is intuitive and contains no computational burden. Commonly
used methods include Box-plot, Hampel rule, etc. Box-plot needs to compute the 3/4
quantile and 1/4 quantile of the sample, Q3 and Q1. Denote IQR = Q3 − Q1 as the
interquartile range, then the observations are located in the interval of [Q1 − 1.5IQR, Q3 +
1.5IQR] in the plot are observed as clean observations, and other observations are tested as
outliers. According to [3], a data point is identified as an outlier if the distance between it
and the sample median exceeds 4.5 times MAD, where MAD(X) = med|X−med(X)|.

Machine learning mainly trains the sample to detect outliers according to the data char-
acteristics, combined with mathematical models and statistical principles. Some common
methods include one-class support vector machines (one-class SVM), minimum spanning
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tree (MST), etc. One-class SVM usually trains a minimal, ellipsoid which contains all
normal observations from historical data or other clean data. Then, the observations that
fall outside the ellipsoid are treated as outliers; see [4]. MST algorithm defines the distance
between points as Euclidean distance, considers the points as nodes, and finds a path
connecting each node with the smallest sum of distances. Then, based on the given criteria,
the sample is divided into different classes. The largest set is treated as inlying data, while
the rest is treated as outliers; see [5].

Hypothesis testing is a basic method for outlier detection. By setting appropriate
null and alternative hypotheses and constructing test statistics with certain properties,
the hypothesis testing method can detect whether there are outliers in the sample with the
given significance level.

In a univariate sample, and unlike the limitations of the exponential distribution,
observations from gamma distribution are more extensive and easier to collect. This paper
studies the multiple outlier detection under gamma distribution, a parameter θ slippages
model. Since the 1950s, there has been many results about outlier detection based on the
hypothesis testing method, but most of them aim to detect a single outlier or outliers in
a normal distribution. In the 1970s, outlier detection under more general distributions
such as exponential, Pareto, and uniform distributions received much attention. Multiple
outlierdetection has recently drawn considerable attention in practice owing to the devel-
opment of science and technology and the diversification of data collection methods. We
briefly introduce three commonly used statistics, which are suitable for detecting multiple
upper outliers in the gamma distribution.

Dixon’s statistic proposed in [6] is based on the idea that the dispersion of the suspect
observations accounts for a large proportion of the sample dispersion. This method is
further extended in [7–9], where [8] proposes the following statistic

Dk =
X(n) − X(n−k)

X(n) − X(1)
. (1)

With the given significance level α, X(n−k+1), · · · , X(n) are identified as outliers if
Dk > dk(α), where dk(α) is the critical value of Dk. Later, another Dixon type statistic for
detecting outliers in a gamma distribution is proposed in [10,11], and the statistic is

Lk =
X(n) − X(n−k)

X(n)
. (2)

Ref. [10] gives the critical value lk(α) for the given significance level α, X(n−k+1), · · · ,
X(n) are regarded as outliers if Lk < lk(α). The third test statistic is Nk by [10,11]:

Nk =
X(n−k) − X(1)

∑n
j=n−k+1(X(j) − X(1))

. (3)

Ref. [10] also obtains the corresponding critical value nk(α) for the given significance
level α. X(n−k+1), · · · , X(n) are regarded as outliers if Nk < nk(α). The fourth test statistic
is a “gap-test” ([12]), which is given by

Zk =
X(n) − X(n−k)

∑n
j=1 X(j)

. (4)

Ref. [12] provides the critical value zk(α) for the significance level α, and X(n−k+1),
· · · , X(n) are identified as outliers if Zk > zk(α). The fifth test statistic is proposed in [13],
which is given by

Vk =
∑k

j=1(X(n−k+j) − X(n−k))

∑n
j=2(X(j) − X(1))

. (5)
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Ref. [13] shows that the distribution of Vk and the critical value vk(α) can be obtained
for the given significance level α. Thus, X(n−k+1), · · · , X(n) are regarded as outliers if
Vk > vk(α).

The remainder of this article is organized as follows. In Section 2, we propose a test
statistic to detect outliers in a gamma sample, and the density function of the proposed
test statistic is derived. In order to obtain the critical values, a Monte Carlo procedure
and a kernel density estimation procedure are proposed. In Section 3, the simulation
results demonstrate that the proposed Tk test statistic is better than others. Furthermore,
an improved Tk method is suggested, which can eliminate the swamping effect in multiple
outliers detection in Section 4. A real data analysis is performed in Section 5. Section 6 is
the conclusion. All proofs of theoretical results are presented in Appendix A, and the data
of empirical applications is contained in Appendix B.

2. Model Framework and Methodology for Detecting Outliers

In this section, we propose a testing method to detect upper outliers from a gamma
distribution. Both single and multiple outliers are considered. We will derive the distribu-
tion of the test statistic Tk for single upper outlier detection, and design two methods—the
Monte Carlo method and the kernel density method—to calculate the critical value of Tk
for multiple outliers.

2.1. Model Framework

Assume the null distribution is gamma distribution, gamma (m, θ), with the density
function given by

f (x|m, θ) =
θm

Γ(m)
xm−1e−θx, x > 0, (6)

where m and θ are unknown, m, θ > 0. The null hypothesis is

H : X1, · · · , Xn ∼ f (x|m, θ).

Then, the density function in the alternative hypothesis is

f (x|m, θ, λ) =
(λθ)m

Γ(m)
xm−1e−λθx, x > 0, 0 < λ ≤ 1, (7)

where λ denotes the contaminant factor. The slippage alternative hypothesis is

H̄ : n− k observations ∼ f (x|m, θ), and k observations ∼ f (x|m, θ, λ).

Sorting X1,· · · , Xn from small to large, we obtain the sample S = X(1), · · · , X(n), where
X(j) corresponds to the jth observation in S. When k = 1, X(n)is the suspicious point, we
propose the test statistic T(n) to detect an outlier in S,

T(n) =
X(n)

X̄
. (8)

For a given significance level α, letting t1(α) be the critical value, and X(n) is detected
as an outlier if T(n) > t1(α). When k > 1, we propose the following test statistic to detect
multiple outliers,

Tk =
∑n

j=n−k+1 X(j)

X̄
. (9)

For a given significance level α, if we let tk(α) be the critical value, X(n−k+1),· · · , X(n)
are detected as outliers if Tk > tk(α).
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Theorem 1. Tk is a test statistic that is derived from the likelihood ratio principle.

Proof of Theorem 1. See Appendix A.1.

2.2. Detecting Single Outlier

T(n) can be used for testing a single upper outlier for the gamma sample. To obtain the
critical value of the test, we derive the distribution of T(n) under the null model, as follows.

Denote Tj = Tn,j =
Xj
X̄ and T(j) = Tn,(j) =

X(j)
X̄ . Note that X1, X2, · · · , Xn are

independent, so
Xj

∑n
j=1 Xj

follows beta (m, (n− 1)m) under the null model. Let a = m and

b = (n− 1)m, for any j, the density function of
Xj

∑n
i=1 Xj

is

βa,b(u) = {Γ(a + b)/Γ(a)Γ(b)}ua−1(1− u)b−1, 0 < u < 1. (10)

As Tj = Tn,j =
Xj
X̄ = n

Xj

∑n
i=1 Xi

, the density function of Tj is given by

βa,b(v) =
{Γ(a + b)/Γ(a)Γ(b)}va−1(n− v)b−1

na+b−1 , 1 < v < n. (11)

It can be shown that

Lemma 1. Assume that X1,· · · ,Xn−1,Xn are independent identically from gamma (m,θ), then
max
k 6=n

Xk

∑n−1
j=1 Xj

and Xn
∑n−1

j=1 Xj
are independent.

Proof of Lemma 1. See Appendix A.1.

Theorem 2. If X1,X2,· · · ,Xn−1,Xn are independent from gamma (m,θ), then the density function

of T =
X(n)

X̄ is

nβm,(n−1)m(v)An−1[(n− 1)
v

n− v
], 1 < v < n, (12)

where An(v) is the cumulative distribution function (CDF) of Tn,(n).

Proof of Theorem 2. See Appendix A.1.

The density function of T(n) =
X(n)

X̄ under the null model is an iterative function and
the critical value of T(n) can be obtained by Equation (12).

2.3. Detecting Multiple Outliers

Tk with k > 1 can be used to detect outliers in the gamma sample if there exist multiple
outliers. However, deriving the distribution of Tk is a difficult task. In this case, to obtain
the critical value of the test, we propose two methods, the Monte Carlo method and the
kernel density estimation method.

2.3.1. Monte Carlo Method

First, note that the distribution of X(j)/X̄ is unrelated to θ under the null model. Based
on this property, the Monte Carlo method for computing the critical value of the Tk test is
given below.

Parameter m can be obtained by the Newton-Rapson algorithm which is based on
the sample or estimated by other samples, empirical methods, and so on. We consider the
outliers from a slippage model in which the parameter θ has been shifted to λθ, with the
parameter m being fixed, where 0 < λ ≤ 1 is the contamination factor.

The idea of the Monte Carlo method is generating n samples, and TK can be obtained
from each sample. Denote SM as the set that consists of all Tk. Then, based on the law of
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large numbers, we use the 1− α quantile of SM as the estimate of tk(α). The pseudocode of
the Monte Carlo method is given by Algorithm 1.

Algorithm 1 Monte Carlo method

Input: Parameters
n: sample size;
k: number of suspicious observations;
α: the significance level, say, α = 0.05;
u: number of samples, say, u = 5000.

Output: tk(α).
for j in 1 : u do

generate n observations from gamma(m, 1);

Tk,j =
∑n

i=n−k+1 X(j,i)
X̄j

;

end for;
get SM = {Tk,1, · · · , Tk,u};
tk(α)← (1− α) quantile of SM.

Using the above Monte Carlo method to compute the critical values of the Tk test
statistic for different n, k, and m = 5, the results are summarized in Table 1.

Table 1. The critical values of Tk in the case of m = 5 and significance level α = 0.05.

k n 100 120 150 200

10 20.85 21.43 22.15 23.08
20 35.78 37.10 38.65 40.79
30 48.49 50.54 53.06 56.19
40 59.50 62.49 66.06 70.36
50 69.29 73.23 77.91 80.50

2.3.2. Kernel Density Estimation Method

This method aims to use a large sample of Tk to approach its density function, and the
estimated function is denoted as f (x). Then, with the significance level α, we compute
tk(α) from ∫ +∞

tk(α)
f (x)dx = α. (13)

Using a Gaussian kernel function, we have

K(
x− xj

h
) =

1√
2π

e−
(x−xj)

2

2h2 , (14)

where xj = Tk,[j] and h is the bandwidth. Therefore, the estimated density function of Tk is

f (x) =
1

uh

u

∑
j=1

1√
2π

e−
(x−xj)

2

2h2 . (15)

The pseudocode of the kernel density estimation method is given by Algorithm 2.
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Algorithm 2 Kernel density estimation method

Input: Parameters
n: sample size;
k: number of suspicious observations;
α: the significance level, say, α = 0.05;
u: number of samples, say, u = 5000.

Output: tk(α).
for j in 1 : u do

generate n observations from gamma(m, 1);

Tk,j =
∑n

i=n−k+1 X(j,i)
X̄j

;

end for;
get SM = {Tk,1, · · · , Tk,u};
compute the bandwidth of SM;

choose Gaussian kernel function, K(
x−xj

h ) = 1√
2π

e−
(x−xj)

2

2h2 , and the estimated density

function of Tk is f (x) =
1

uh ∑u
j=1

1√
2π

e−
(x−xj)

2

2h2 ;

tk(α)← root of
∫ +∞

tk(α)
f (x)dx− α = 0.

Table 2 includes critical values of the Tk test statistic for different n and k with m = 5
and α = 0.05, which are calculated by the kernel density algorithm.

Table 2. The critical values of Tk in the case of m = 5 and significance level α = 0.05.

k n 100 120 150 200

10 20.81 21.44 22.12 23.09
20 35.79 37.12 38.79 40.81
30 48.53 50.61 53.14 56.28
40 59.52 62.57 66.18 70.44
50 69.29 73.26 77.98 80.51

After comparing a large number of simulation results of the Monte Carlo method
and the kernel density estimation method, we find the difference of results between these
two methods is very small. Therefore, which method is chosen depends on your personal
preference.

More generally, Algorithms 1 and 2 contribute two feasible methods to calculate
the critical values of any test statistics for the given significance level, sample size n,
and presupposed k.

3. Simulation Study

In this section, we evaluate, by a simulation study, the performance of the proposed
test statistic Tk and compare it with the commonly used methods including Dk, Lk, Nk, Zk,
and Vk given in Section 1.

3.1. Simulation Setting

To evaluate the performance of a test statistic in the outlier detection, we consider
two cases with and without outliers. For the former, a test statistic can be evaluated by
computing the power when there exist k outliers in the gamma (m, θ), and the probability
of its power is replaced by the frequency of identifying outliers correctly; for the latter,
a test statistic can be evaluated by counting the number of times that inlying observations
are misjudged as outliers, which is called “false alarm”. A test statistic is better if it has
higher power and lower “false alarm”.
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To use the similar simulation setting as in [10,12,13], we transform the λ and θ in
Equations (6) and (7) to 1

λ and 1
θ , respectively.

For computing the power, we generate n observations from Equation (6) and sort these
points from small to large. X(n−k+1), · · · , X(n) are replaced by λX(n−k+1), · · · , λX(n), which
has the same effect as producing k upper outliers from Equation (7). Where k = 2, 5, λ in
[1:2] (0.055), n = 20 and m = 5. To measure the “false alarm”, denote ko as the number of
outliers in the k largest observations. When k = 2 (5), we have ko = 1 (2). Generate n− ko
observations from Equation (6), and generate ko from Equation (7). Then, detect the largest
k observations by using the different test statistics. These two cases with significance levels
α = 0.01 and 0.05. Our simulation study is carried out based on 2000 replications.

3.2. Results

For the case of outliers existing, the simulation results on the power of six test statistics
are shown in Figures 1 and 2. It can be observed from Figure 1 that when m = 5, k = 2 and
α = 0.01, our test statistic Tk has a higher power than the other five test statistics for the
values of λ smaller than 1.650; and for larger λ, Tk is worse than Nk and Vk but better than
Zk, Dk, and Lk. For α = 0.05, Tk is worse than Nk and Vk but better than Zk, Dk, and Lk.
It is clear from Figure 2 that when m = 5 and k = 5, Tk has the highest outlier detection
capability for α = 0.01; and if α = 0.05, Tk has the highest power for almost all the λ values.

Figure 1. Power of test statistics for m = 5, k = 2, and n = 20.
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Figure 2. Power of test statistics for m = 5, k = 5, and n = 20.

For the case of the k largest observations consisting of contaminants and some good
observations, the simulation results on the swamping effect of six test statistics are shown in
Figures 3 and 4. It can be observed from Figure 3 that for ko = 1, with the significance level
of 0.01, Tk is better than Zk and Dk but worse than Nk, Vk, and Lk. For α = 0.05, the “false
alarm” of Tk is worse than that of Lk, but better than those of Zk, Nk, Dk, and Vk. It is clear
that the results of Figure 3 with ko = 1 and Figure 4 with ko = 2 are similar when α = 0.01.
For α = 0.05, Figure 4 shows that Tk is worse than Nk and Vk but better than Zk, Dk, and Lk.
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Figure 3. False alarm of statistics for m = 5, k = 2, ko = 1, and n = 20.
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Figure 4. False alarm of statistics for m = 5, k = 5, ko = 2, and n = 20.

In summary, the simulation results show that Tk has the highest power and relatively
lower “false alarm” than Zk, Dk and Lk for α = 0.05 and k = 5. With k = 5 and α = 0.01, Tk
has the highest power than other test statistics, but the “false alarm” of Tk is worse than
those of Nk, Vk and LK. Therefore, with large m and k, Tk is generally better than Zk, Nk,
Dk, Vk, and Lk for multiple outlierdetection.

4. Modified Tk Test-ITK

In practice, almost all test statistics used to detect multiple outliers have the swamping
effect. This phenomenon happens because large outliers may cause the sum of multiple
observations to be too large in the block test. To reduce or eliminate the impact of the
swamping effect, we suggest a modified Tk test, ITK, which retains the high probabilities of
outliers detecting and low error probabilities when there is no outlier in the gamma sample.
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Note that for multiple outlier detection, some inlying observations may be judged
as outliers falsely caused by improper k. For example, consider a sample consisting of
0.30, 0.62, 0.72, 0.80, 1.13, 1.42, 1.45, 2.30, 14.86, and 22.01, and use T3 to test X(10) = 22.01,

X(9) = 14.86, X(8) = 2.30. Clearly, T3 =
X(10)+X(9)+X(8)

X̄ = 8.08, and the critical value of T3,
by using Algorithm 1 in Section 2.3.1, is tk(0.05) = 6.43. Therefore, T3 > tk(0.05), and X(10),
X(9), X(8) are outliers in the sample. However, in fact, X(8) is a genuineobservation from
the inlying cluster. X(8) is detected as an outlier because X(10) and X(9) compared with the
inlying sample are too large, causing the sum of X(10), X(9) ,X(8) beyond the bound range,
i.e., swamping effect. However, this negative impact will be eliminated if we take k = 2.

To deal with the swamping effect, a method for choosing a reasonable k should be
given. Thus, our modified test includes two stages: (1) pick a reasonable k, and use the Tk
test to detect k upper observations; (2) use stepwise forward testing for the remainingobser-
vations or stepwise backward testing for the “outliers” sample from the first stage.

4.1. Estimation of k

From [14], the number of outliers should be less than n/2. Later, [1] put forward a
point that the number of outliers is usually less than

√
n if the sample is collected properly.

Here, we take
k = k̂ = [

√
n], (16)

where [
√

n] is the greatest integer less than or equal to
√

n.

4.2. The Improvement of the Tk Test-ITK

Based on Section 4.1, we propose an improved Tk test procedure, as follows:
Step 1. For the significance level α, X(n−k+1), · · · , X(n) are judged as outliers prelim-

inarily, which forms a preliminary outliers sample, if Tk > tk(α); otherwise, goto Step 5.
The remaining observations constitute the preliminary inlying group, S

′
.

Step 2 (step forward test). Using step forward test to detect whether S
′

includes

any outliers. For α = 0.05, T[−k],1 =
X(n−k)
X̄[−k]

, and X(n−k) is an outlier if T[−k],1 > t[−k],1(α);

otherwise, goto Step 4.
Step 3. Repeat the test process in Step 2 until no outlier can be detected in S

′
. If X(j) is

the smallest outlier in S
′
, then X(j), · · · , X(n) are outliers in the data and stop the procedure.

Step 4 (step backward test). After the step forward test has stopped, use the step
backward test to check the preliminary outliers sample in Step 1. For the significance

level α = 0.05, if T[−k+1],1 =
X(n−k+1)

X̄[−k+1]
> t[−k+1],1(α), then the step backward test ends;

otherwise, use the step backward test for detecting X(n−k+2). Repeat this step until an
outlier is detected. If X(n) is not judged as an outlier, then there is no outlier in the sample,
the sample is inlying data.

Step 5. Let k̂new = [ k̂
2 ], and substitute k = k̂ = k̂new to Step 1. If k̂new = 0, there is no

outlier in the sample, and the test procedure ends.

5. Empirical Applications

In this section, we apply the ITK test method to two data sets: Alcohol-related mortality
rates and artificial scout position data, and compare it with the other six test statistics of Tk,
Dk, Nk, Zk, Vk, and Lk.

5.1. Alcohol-Related Mortality Rates in Selected Countries in 2000

The dataset (see Appendix B) is selected from Office for National Statistics (ONS).
The Kolmogorov-Smirnov test indicates that this data follows the gamma distribution.

Here, n = 100 and so k̂ = 10. We obtain m = 1.2 by using the Newton-Rapson

algorithm. From Appendix B, it is observed that T10 =
∑100

j=91 X(j)

X̄ = 117.65
2.47 = 47.70. Further,

we compute the critical value of T10 by using Algorithm 1 in Section 2.3.1, and obtain
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t10(0.05) = 21.99. Obviously, T10 > t10(0.05), and hence X(91), X(92), · · · , X(100) are de-
tected as outliers preliminarily.

Then, we use the step forward test for the remaining sample. It is clear that T(90) =
X(90)
X̄[−10]

= 6.17
1.43 = 4.31 < t[−10],1(0.05) = 6.45. Thus, X(90) = 6.17 is a normal observation.

We now use the step backward test for X(91), X(92), · · · , X(100). It is readily observed

that X(91) = 10.17, T[−9],1 =
X(91)
X̄[−9]

= 10.17
1.53 = 6.65, and in the 5% significance level, T[−9],1 =

6.55. As T[−9],1 > t[−9],1(0.05), X(91), X(92), · · · , X(100) are detected as upper outliers.
On the other hand, we utilize the Tk, Dk, Nk, Zk, Vk, and Lk test statistics to detect

outliers, and the results are shown in Table 3.

Table 3. The outlier detection results of alcohol-related mortality rates by using various tests.

Test Statistic Number of Identified
Observations

Number of Potentially
Misjudged Observations

ITK 10 0
Tk 10 0
Dk 0 0
Nk 10 0
Zk 0 0
Vk 10 0
Lk 0 0

As we can observe from Table 3, ITK, Tk, Nk, and Vk can identify outliers correctly
without misjudgment. This phenomenon happens because k is chosen reasonably. We can
also observe that Dk, Zk, and Lk have bad performance in multiple upper outlier detection.

Furthermore, the result from Table 3 shows that Ireland, France, Austria, Slovenia, Por-
tugal, Denmark, the United Kingdom of Great Britain and Northern Ireland, the Republic
of Korea, the Russian Federation, and Australia have higher alcohol-related mortality rates,
which means that these countries need to pay more attention to alcohol-related mortality.

5.2. Artificial Scout Position Data

In the application of military information, the gamma model is usually used to describe
the position of some objects. Suppose a military scene, in a mission, 20 scouts reconnoiter a
certain area, and their location components are characterized by Xj, j = 1, · · · , 20, and the
larger Xj, the further they are away from the landing site. If Xj deviates from the main
group, this indicates that the ith soldier is separated from the troops and may not be able to
obtain support in time in case of an emergency. Therefore, it is necessary to pay attention
to this movement.

In our setting, the basic model is gamma (3,5) and the alternative model is gamma
(3,10). The initial data are outlined in Appendix B.

Here, m = 3 is known. The sample size is 20, thus k̂ = [
√

n] = [
√

20] = 4. From

Appendix B, it is observed that T4 =
∑20

j=17 X(j)

X̄ = 0.91+2.90+3.32+3.44
0.97 = 10.89. With the

significance level of 0.05, we utilize the Monte Carlo method to calculate the critical value
for T4, and we obtain t4(0.05) = 8.71. As T4 > t4(0.05), X(17), X(18), X(19) and X(20) are
placed into the initial outlier group.

Furthermore, we continue to test the remained sample and carry out the step forward

test for X(16) = 0.88. Noting that t[−4],1(0.05) = 3.09 > T[−4],1 =
X(16)
X̄[−4]

= 0.88
0.55 = 1.59,

X(16) = 0.88 is not an outlier.
Presently, we use step backward test for X(17) = 0.91, X(18) = 2.90, X(19) = 3.32,

X(20) = 3.44. It is clear that T[−3],1 =
X(17)

¯X[−3]
= 0.91

0.57 = 1.60, and with the significance level of

0.05, t[−3],1(0.05) = 3.14. Noting that T[−3],1 < t[−3],1(0.05), X(17) = 0.91 is not an outlier.
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Moreover, T[−2],1 =
X(18)

¯X[−2]
= 2.90

0.70 = 4.13 > t[−2],1(0.05) = 3.18, the test procedure ends.

Therefore, X(18) = 2.90, X(19) = 3.32 and X(20) = 3.44 are outliers in the sample.
Meanwhile, we utilize the Tk, Dk, Nk, Zk, Vk, and Lk test statistics to detect outliers,

and the results are shown in Table 4.

Table 4. The outlier detection results of artificial scout position data.

Test Statistic Number of Identified
Observations

Number of Misjudged
Observations

ITK 3 0
Tk 4 1
Dk 4 1
Nk 4 1
Zk 4 1
Vk 4 1
Lk 0 0

It can be observed from Table 4 that the ITK method performs better than the other
five methods (the Tk, Dk, Nk, Zk, Vk, and Lk test statistics) because it can not only detect all
outliers in the sample, but also has the lowest misjudged probabilities.

Further, from the result of the ITK method, we can obtain information that the IDs
18, 19, and 20 seem to be far away from the landing site. This means that they would be
endangered in case of an emergency.

6. Concluding Remarks

It can be observed from the simulation that with the increase in k and n values, com-
pared with other test statistics, our test statistic Tk has a higher power and relatively lower
“false alarm” on outlier detection, especially for a lower significance level. However, the
swamping effect still exists for Tk, and this phenomenon will cause the loss of information.
Therefore, to reduce the impact of swamping effect, we design the ITK test. From the outlier
detection results of the two real data analyses, the ITK test has the same high power as the
Tk test statistic and lower error probabilities than the other six test statistics (Tk, Zk, Nk, Dk,
Vk, and Lk). In conclusion, compared with other test statistics, ITK has the highest detection
capability for outliers and the lowest “false alarm”. Thus, the ITK method is recommended
to be used to identify multiple outliers in a sample.

In this paper, we design two algorithms based on the Monte Carlo and the kernel
density estimation to obtain the critical values of Tk. How to derive the exact critical
value of Tk is an interesting problem. Further, in the case of k being unknown, we take
a conservative estimation of k = k̂ = [

√
n]. Thus, it is worth studying the problem of

choosing a more appropriate value of k in our ITK method. This article discusses only the
case of multiple upper outliers existing in a gamma sample. Noting that lower outliers or
both upper and lower outliers may exist in practice, it is necessary to extend our outlier
detection methods to these situations. In addition, the masking effect with our methods
is not discussed in this paper, which remains our future research. How to extend our
approaches to other distributions is also an important topic.
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Appendix A

Appendix A.1. Lemma 1 and Its Proof

Proof of Lemma 1. For any n >k (k 6= 0), we have
max
k 6=n

Xk

∑n−1
j=1 Xj

= max( X1
∑n−1

j=1 Xj
, · · · , Xn−1

∑n−1
j=1 Xj

).

Thus,
max
k 6=n

Xk

∑n−1
j=1 Xj

and Xn
∑n−1

j=1 Xj
are independent if ( X1

∑n−1
j=1 Xj

, · · · , Xn−1

∑n−1
j=1 Xj

) and Xn
∑n−1

j=1 Xj
are inde-

pendent. Note that Xn−1

∑n−1
j=1 Xj

= 1 − ( X1
∑n−1

j=1 Xj
+ · · · + Xn−2

∑n−1
j=1 Xj

), so
max
k 6=n

Xk

∑n−1
j=1 Xj

and Xn
∑n−1

j=1 Xj
are

independent if ( X1
∑n−1

j=1 Xj
, · · · , Xn−2

∑n−1
j=1 Xj

) is independent of Xn
∑n−1

j=1 Xj
. Observe that X1, · · · , Xn are

independent and from gamma (m, θ), so the joint density of (X1, · · · , Xn) is

f (x1, · · · , xn) =
1

Γn(m)θnm e−
∑n

j=1 xj
θ

n

∏
j=1

xj
m−1. (A1)

Similar to [15], let V1 = X1
∑n−1

j=1 Xj
, · · · , Vn−2 = Xn−2

∑n−1
j=1 Xj

, Vn−1 = Xn
∑n−1

j=1 Xj
, then the joint

density of (V1, · · · , Vn−2, Vn−1) is

f (v1, · · · , vn−2, vn−1) =
Γ(nm)

Γn(m)θnm [v1 · · · vn−2(1− (v1 + · · ·+ vn−2))]
m−1vm−1

n−1

× (
θ

1 + vn−1
)nm, 0 < v1, · · · , vn−2 < 1, 0 <

n−2

∑
j=1

vj < 1, vn−1 > 0. (A2)

It can be observed that the marginal densities of (V1, . . . , Vn−2) and Vn−1 are given by

f1(v1, · · · , vn−2) =
Γ((n− 1)m)

Γn−1(m)
[(v1 · · · vn−2)(1− (v1 + · · ·+ vn−2))]

m−1,

0 < v1, · · · , vn−2 < 1, 0 <
n−2

∑
j=1

vj < 1, (A3)

and

f2(vn−1) =
Γ(nm)

Γ((n− 1)m)Γ(m)θnm vm−1
n−1 (

θ

1 + vn−1
)nm, vn−1 > 0, (A4)

respectively. Clearly, f (v1, · · · , vn−2, vn−1) = f1(v1, · · · , vn−2) f2(vn−1), so ( X1
∑n−1

j=1 Xj
, · · · ,

Xn−2

∑n−1
j=1 Xj

) is independent of Xn
∑n−1

j=1 Xj
. Therefore, Lemma 1 is proved.

Appendix A.2. Proofs of Theorems

Proof of Theorem 1. Consider the null distribution defined by Equation (6), and distri-
bution of the alternative model defined by Equation (7). The proof for Theorem 1 is an
extension of that in [1], which discusses the single outlier detection in the exponential
distribution. Suppose there are n observations, denoted by X1, X2, · · · , Xn, especially, Xj
(j = n− k + 1, · · · , n) is an observation from the sample, which consists of the k largest
points. Therefore, the alternative hypothesis is

X1, X2, · · · , Xn−k ∼ f (x|m, θ);
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Xn−k+1, Xn−k+2, · · · , Xn ∼ f (x|m, θ, λ). (A5)

Denoting Tk =
∑n

j=n−k+1 X(j)

X̄ and T =
∑n

j=n−k+1 Xj

X̄ , we first prove that the test statistic T
is an MLR test statistic. Noting that under the H, {X1, · · · , Xn} is a random sample from (6),
the likelihood function is

LH(m, θ|x) =
n

∏
j=1

f (m, θ|xj)

=
n

∏
j=1

θm

Γ(m)
· xm−1

j · e−θxj

=
θnm

Γn(m)
· (

n

∏
j=1

xm−1
j ) · e−nθx̄. (A6)

Denote the associated log likelihood function as ln LH(m, θ|x) = mn ln θ − n ln Γ(m) +

(m− 1)∑n
j=1 ln xj− nθx̄, and let ∂ ln LH(m,θ|x)

∂m = −n Γ
′
(m)

Γ(m)
+ n ln θ + ∑n

j=1 ln xj = 0, ∂ ln LH(m,θ|x)
∂θ

= nm
θ − nx̄ = 0, then we obtain the maximum likelihood estimates of m and θ, denoted by

m̂ and θ̂, i.e.,
θ̂ =

m
x̄

, (A7)

and m̂ satisfies −n Γ
′
(m)

Γ(m)
+ n ln m− n ln x̄ + ∑n

j=1 ln xj = 0; here, there is no explicit form
solution for m̂. The numerical value of m̂ can be obtained by Newton-Raphson algo-
rithm or extra-sample information. Therefore, if m is known, and we substitue θ̂ = m

x̄ to
ln LH(m, θ|x), then

ln LH(m, θ̂|x) = −n ln Γ(m)− nm ln x̄ + nm ln m + (m− 1)
n

∑
j=1

ln xj − nm. (A8)

Similarly, under the alternative hypothesis H̄, we have

ln LH̄(m, θ̂, λ̂|x) =− n ln Γ(m) + nm ln (n− k) + nm ln m− nm ln (nx̄−∑n
j=n−k+1 xj)

− nm + km ln k− km ln (n− k) + km ln (
nx̄−∑n

j=n−k+1 xj

∑n
j=n−k+1 xj

)

+ (m− 1)
n

∑
j=1

ln xj. (A9)

Therefore, reject H if LH̄(m,θ̂,λ̂|x)
LH(m,θ̂|x) ≥ c, i.e., Xn−k+1, · · · , Xn are outliers if ln LH̄(m, θ̂, λ̂|x)−

ln LH(m, θ̂|x) ≥ ln c. Thus, we consider

ln LH̄(m, θ̂, λ̂|x)− ln LH(m, θ̂|x) = nm ln
n− k
n− T

+ km ln (
k

n− k
(

n− T
T

)), T > k. (A10)

where T =
∑n

j=n−k+1 Xj

X̄ . Obviously, the derivative of Equation (A10) with respect to T is

f (T) =
nm

n− T
− nkm

(n− T)T
. (A11)

It is clear that f (T) > 0 for T > k, and ln LH̄(m, θ̂, λ̂|x) − ln LH(m, θ̂|x) about T is

monotone increasing. Thus, T =
∑n

j=n−k+1 Xj

X̄ is an MLR test statistic; see [1,16,17].
In practice, it is too difficult to assure Xj is not only the jth observation but also an

observation from the k largest observations. Therefore, to extend the T test statistic for
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the ordering the samples’ situation, the multiple decision procedures will be used here.
The null hypothesis remains unchanged, and the ith alternative hypothesis is

H̄i :Xi1, · · · , Xi,n−k from f (x|m, θ);

Xi,n−k+1, · · · , Xi,n from f (x|m, θ, λ). (A12)

The number of such alternative hypotheses is (n
k ), and

ln LH̄i
(m, θ̂, λ̂|x)− ln LH(m, θ̂|x) = nm ln

n− k
n− Ti

+ km ln (
k

n− k
(

n− Ti
Ti

)), Ti > k, (A13)

where Ti =
∑n

j=n−k+1 Xi,j

X̄i
with X̄i =

∑n
j=1 Xi,j

n . Subject to a probability of correct adoption of
the null hypothesis H, the decision criterion is that of maximizing the power of adopting
the correct H̄i. In the present situation of a gamma model, the multiple decision procedures
lead to adopting H̄i if Ti is maximized and is sufficiently large. Because all observations are
one-dimensional, outliers only exist at the upper end, and so the appropriate test statistic is

Tk =
∑n

j=n−k+1 X(j)

X̄
. (A14)

Theorem 1 is proved.

Proof of Theorem 2. Similar to [18], denote an(v) and An(v) as the density function and
the cumulative distribution function (CDF) of Tn,(n), respectively, and we have

an(v) = lim
dv→0

P(Tn,(n) ∈ (v, v + dv))
dv

. (A15)

Denote Ω =
⋃n

j=1{Tn,(n) = Tn,j}, so

P(Tn,(n) ∈ (v, v + dv)) = P({Tn,(n) ∈ (v, v + dv)}
⋂
{

n⋃
j=1

{Tn,(n) = Tn,j})

= P(
n⋃

j=1

(Tn,j ∈ (v, v + dv), Tn,(n) = Tn,j)). (A16)

Note that {Tn,j ∈ (v, v + dv), Tn,(n) = Tn,j} is incompatible with {Tn,i ∈ (v, v +
dv), Tn,(n) = Tn,i}, for any i 6= j, thus, by the additivity of probability measures,

P(
n⋃

j=1

(Tn,j ∈ (v, v + dv), Tn,(n) = Tn,j))

=
n

∑
j=1

P(Tn,j ∈ (v, v + dv), Tn,(n) = Tn,j)

= nP(Tn,j ∈ (v, v + dv), Tn,(n) = Tn,j)

= nP(Tn,n ∈ (v, v + dv), Tn,(n) = Tn,n)

= nP(Tn,n ∈ (v, v + dv), max
k 6=n

Xk < Xn)

= nP(Tn,n ∈ (v, v + dv), max
k 6=n

Xk
X̄[−n]

<
Xn

X̄[−n]
), (A17)
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where X̄[−n] =
1

n−1 ∑n−1
j=1 Xj. Note that

Tn,n =
Xn

X̄

=n
(n− 1) Xn

∑n
j=1 Xj−Xn

(n− 1)(1 + Xn
∑n

j=1 Xj−Xn
)

=n

Xn
X̄[−n]

(n− 1) + Xn
X̄[−n]

. (A18)

Since X1,· · · , Xn are independent and from gamma (m, θ), Xk
∑n−1

j=1 Xj
follows beta (m, (n−

2)m). Therefore,

(A17) =nP(Tn,n ∈ (v, v + dv), Tn−1,(n−1) <
Xn

X̄[−n]
)

=nP(Tn,n ∈ (v, v + dv), Tn−1,(n−1) < (n− 1)
Tn,n

n− Tn,n
)

=nP(Tn,n ∈ (v, v + dv))P(Tn−1,(n−1) < (n− 1)
Tn,n

n− Tn,n
|Tn,n ∈ (v, v + dv)). (A19)

Because Tn−1,n = n Xn
∑n−1

j=1 Xj
and Tn−1,(n−1) = n

max
k 6=n

Xk

∑n−1
j=1 Xj

are independent, we obtain

an(v) = lim
dv→0
{n P(Tn,n ∈ (v, v + dv))

dv
P(Tn−1,(n−1) < (n− 1)

Tn,n

n− Tn,n
|Tn,n ∈ (v, v + dv))}

= nβm,(n−1)m(v)An−1[(n− 1)
v

n− v
], 1 < v < n. (A20)

Theorem 2 is proved.

Appendix B

The appendix lists the alcohol-related mortality rates in selected countries in 2000 and
artificial scout position data.

Table A1. Alcohol-related mortality rates in selected countries in 2000.

Country Mortality

Afghanistan 0.01
Algeria 0.25
Angola 1.85
Armenia 2.90
Australia 10.17
Austria 13.2
Azerbaijan 0.65
Bahrain 2.15
Bangladesh 0.01
Benin 1.34
Bhutan 0.17
Bolivia (Plurinational State of) 2.32
Brunei Darussalam 0.37
Cambodia 1.51
Central African Republic 1.51
Chad 0.25
Colombia 4.66
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Table A1. Cont.

Country Mortality

Comoros 0.09
Congo 2.26
Democratic Republic of the Congo 1.98
Denmark 11.69
Djibouti 1.34
Egypt 0.14
El Salvador 2.79
Eritrea 0.83
Estonia 0.01
Ethiopia 0.88
Fi Ji 2.05
France 13.63
Gambia 2.18
Ghana 1.60
Guatemala 2.63
Guinea 0.17
Guinea-Bissau 2.84
Honduras 2.61
Iceland 6.17
India 0.93
Indonesia 0.06
Iran 0.01
Iraq 0.20
Ireland 14.07
Israel 2.53
Jordan 0.49
Kenya 1.51
Kiribati 0.46
Kuwait 0.01
Kyrgyzstan 2.13
Lebanon 2.26
Libya 0.01
Madagascar 1.16
Malawi 1.18
Malaysia 0.54
Maldives 1.83
Mali 0.47
Mauritania 0.03
Mexico 4.99
Micronesia (Federated States of) 2.23
Mongolia 2.79
Montenegro 0.01
Morocco 0.45
Mozambique 1.14
Myanmar 0.35
Nepal 0.08
Niger 0.1
Oman 0.38
Pakistan 0.02
Papua New Guinea 0.73
Portugal 11.89
Qatar 0.5
Republic of Korea 10.33
Russian Federation 10.18
Samoa 3
Saudi Arabia 0.05
Senegal 0.29
Singapore 2.03
Slovenia 11.9
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Table A1. Cont.

Country Mortality

Solomon Islands 0.71
Somalia 0.01
Sri Lanka 1.45
Sudan 1.76
Syrian Arab Republic 1.41
Tajikistann 0.37
The former Yugoslav republic of Macedonia 2.86
Timor-Leste 0.5
Togo 1.1
Tonga 1.24
Tunisia 1.21
Turkey 1.54
Turkmenistan 2.9
United Arab Emirates 1.64
United Kingdom of Great Britain and Northern
Ireland 10.59

Uzbekistan 1.6
Vanuatu 1.21
Viet Nam 1.6
Yemen 0.07
Zambia 2.62
Zimbabwe 1.68

Table A2. Artificial scout position data.

Soldier’s ID Position

1 0.88
2 2.90
3 0.21
4 0.47
5 3.44
6 0.48
7 0.83
8 3.32
9 0.58
10 0.35
11 0.31
12 0.53
13 0.91
14 0.65
15 0.70
16 0.80
17 0.52
18 0.13
19 0.55
20 0.85
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