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Abstract: Research in this paper aims to explore the concept of generalized exponentially (s, m)-
convex functions, and to determine some properties of these functions. In addition, we look at some
interactions between generalized exponentially (s, m)-convex functions and local fractional integrals.
The properties of the generalized new special cases of (s, m)-convex functions, s-convex functions, and
also generalized m-convex functions are impressive. We derive some inequalities of Hadamard’s type
for generalized exponentially (s, m)-convex functions, and give applications in probability density
functions and generalized special methods to attest to the applicability and efficiency of the method
under consideration.
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1. Introduction and Preliminaries

In mathematics and economics, convexity is a very important property. Many re-
searchers have developed new generalizations of convexity and also established several
properties in new generalized cases. For instance, s-convex functions of the first type were
introduced in [1] by Orlicz and the second type of s-convexity was introduced by Breckner
in [2]; then, in [3], Hudzik and Maligranda addressed some properties of these types of
s-convexity (s € (0,00]).

Definition 1. Assume that s € (0,1]. A function ¢ : [0,00) — R is called s-convex in the
second sense if

o(tn + (1= Hr) < Fo(n) + (1-1)e(n),
holds for all 11,15 € [0,00) and t € [0,1].

The next definition of m-convex function is given by Toader in [4].
Definition 2. A function ¢ : [0,1] — R, 1 > 0 is called m-convex if
o(ty +m(1—t)p) < to(ry) +m(1—t)o(1n)
holds for all 11,11 € [0,¢],m € (0,1] and t € [0,1].
The following definition of an exponentially convex function is given by Awan et al. [5].

Definition 3. A function ¢ : y — R, where y is an interval, is called an exponentially convex
function if
e(n)

expPh

0(12)

o(tn + (1 —t)p) <t exphiz’

+(1-1t)
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holds for all 11,15 € y,t € [0,1] and B € R.

In the next definition, an exponentially s-convex function is given by Mehreen and
Anwar in [6].

Definition 4. A function ¢ : 4 — R, where y is an interval, is called an exponentially s-convex
function if

e(u)
expPh
holds for all 11,15 € u,t € [0,1],s € (0,1]and B € R.

_ t)s 9(12)

S
oty + (1 —t)p) <t exphiz’

+(1

In the next definition, the (s, m)-convex function is given by Anastassiou in [7].
Definition 5. A functiono : [0,1] — R is called an (s, m)-convex function if
o(ty +m(1 —t)1p) < to(yy) +m(1—1t)°0(2),
holds for all 11,15 € [0,1], (s,m) € (0,1] x (0,1] and t € [0,1].

The following definition of an exponentially (s, 1) convex function is given by Qiang
etal. in [8].

Definition 6. A function ¢ : y — R, where y C [0, 00), is called an exponentially (s, m) convex
function in the second sense if

s @ (12)
expPi2’

o(u)

S
o(tn +m(l—t)n) <t oxpP

+m(1—t)

holds for all 11,15 € w,s,m € (0,1],¢t € [0,1] and p € R.

Scientists and engineers have been paying significant attention to fractal sets and fractal
theory. For Mandelbrot, a fractal set is one in which the Hausdorff dimension extends
beyond the topological dimension [9,10]. Using different approaches, a wide variety of
fractional calculus methods have been developed to study the properties of functions
acting on fractal space [3,11-15]. Yang in [16] systematically studied and advanced on
the analysis of local fractional integral functions in fractal spaces that include the local
fractional calculus and function monotonicity.

Assume that R” is the real numbers line in fractional space. Then, upon using the
concept of Gao-Yang-Kang in [16], one will be able to explain the definitions of the
local fractional derivative as well as integral, respectively. If /f,/5 and /5 € R* where
0 < a <1,then
1. 4 +5 eRY g5 eRY,

G+5=6+4=(+n)" =(a+n),

B4 (5+4)=(5+4)+4,

0 =51 = (n2)" = (21)",

4 (155) = (413)15,

4(5 +45) = (45) + (45),

0% =0%+1f =1f and f.1% = 1.5 = /.

Next, we provide some definitions that are relevant to the local fractional calculus on
R% which are introduced in [15,16] such as

N UL

Definition 7. A non-differentiable function ¢ : R — R* is local fractional continuous at 1y, if
Ve > 036 > 0 such that |o(1) — 0(ip)| < €6 holds Y|t — 19| < & where e, € R.
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The set of all locally fractional continuous functions on (11 — ) is denoted by Cq[11, mip).

Definition 8. Let ¢ be a local fractional continuous on (11, 13]. The local fractional integral function
0(x) having an order of w is defined by

el = (a+ 1) [" o) any

= (1"(oc—|—1))71 lim Zq(Tn)(ATn)”‘,

At—0,

with Aty = Tyy1 — Ty and AT = max A1, n = 1,2,...,m — 1, where [Ty, Tyy1], n =
0,1,...m—1,19=0<7 < - < Ty1 < Ty = Ip IS a partition on [11,13], and T is the
Gamma function given by

T(x) = / P e Pdp.
0

It was Mo and Sui who defined two types of generalized s-convex functions on fractal
sets, as stated in the next definition; see [17].

Definition 9. (i) A function ¢: Ry — R* is said to be a generalized s-convex (s € (0,1]) in
the first sense, if
o(mu + 71202) < 1e(n) +75%(2), ¢y

Vi, € Ry V1,72 > 0with o + 95 = 1.
(ii) A function o: Ry — R* is said to be a generalized s-convex (s € (0,1]) in the second sense
if (1) holds V11,12 € Ry ; V1,72 > Qwith yy + 2 = 1.

Furthermore, Mo and Sui proved, in the same paper [17], that functions which are
given in Definition 9, (ii) are non-negative.

Note that the classical s-convex functions are defined in the first (second) sense, if
&« = 1 in Definition 9; see [18].

The aforementioned study also established a variant of Dragomir and Fitzatrick’s
Hadamard'’s inequality holding for s-convex functions in the second sense.

Theorem 1. Assume that 0: Ry — R is a s-convex function in the second sense, s € (0,1]
and 11,1 € Ry, 1y < 1p. If 0 € LY([11,12]), then

s1 () 1 /‘2 PNICIRRIC)
2 Q( 2 ) T h—1Jy Q(x)dx_ s+1 ’ @)

The variation of the generalized Hadamar inequality applies to the generalized
s-convex function in the second sense in [19].

Theorem 2. Assume that 9: Ry — R% is a generalized s-convex function in the second sense
where 0 < s < land 11,1 € Ry with 11 < 1p. If 0 € LY([1, 12]), then

o (n4n) _ T@+1) @ T(sa+DM(a+1)
2( l)Q< L 2 2) < (lz—l1)“ lle Q(x) < r((s+1)a+1) ( (ll)+Q(lZ))' 3)

Making use of local fractional integrals, some researchers have looked into various
well-known integral inequalities. For example, Kilicman and Saleh [20,21] established
generalized HH inequalities for generalized s-convex functions. For generalized m-convex
functions on fractal sets with utilities, Du et al. [14] considered several inequalities. The gen-
eralized Jensen and HH inequalities for i-convex functions have also been investigated by
Vivas et al. [22]. Generalized (s, m)-convex function-related generalized Hermite-Hadamard
(HH) type inequalities have been discovered by Abdeljawad et al. [23]
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Owing to the aforementioned trend and inspired by the ongoing activities, the rest
of this paper is organized as follows: first of all, in Section 2, we define and explore the
newly introduced idea about generalized convex functions and their algebraic properties,
which is called generalized exponentially (s, m)-convex functions and denoted by GE?Im.
In addition, we establish some results regarding the interaction between generalized
exponentially (s, m)-convex functions as well as local fractional integrals. There are some
interesting properties among the generalized new special cases of (s, m)-convex functions,
s-convex functions, and also generalized m-convex functions. In Section 3, we present the
novel version of Hermite-Hadamard type inequality. Finally, we give some applications in
support of the newly introduced idea and a brief conclusion.

2. Generalized Exponentially (s, m)-Convex Functions and Associated
Algebraic Properties

We now add and introduce a new concept of a new family of convex functions that is
called generalized exponential (s, m)-convex functions on fractal space, and explore some
of their properties.

Definition 10. Assume thats € (0,1] and y C [0, 00) is an interval. A function ¢ : y —> R*
is called generalized exponentially (s, m)-convex function in the second sense if

! L
oty +m(1— 1)) < tffple) (1 - t>“5§(p§lf

holds for all 11,11 € y, m € (0,1] and 6 € R, denoted by GEZ,,.

Example 1. Assume that a function ¢ : [0,00) — R% is defined by ¢ = Inx* for s € (0,1)
Then, ¢ is generalized exponentially (s, m)-convex function in the second sense, for all § < —1, but
not a generalized s-convex function in the second sense.

Remark 1. Note that the Definition 10 generalizes and extends some generalized concepts of
convexity previously introduced in the literature. In fact, there are special cases such as:

1. Ifs =1, then we have

e(n) Q(x2)
o(ty +m(1—t)p) < t* expii +m*(1—1)" exphia’

which is called a generalized exponentially m-convex function on fractal sets.
2. Ifm=1,then
0(12)
expelz 4

s Q(tl) as
et + (1 —t)) <t exp® +(1-t)

which is called a generalized exponentially s-convex function on fractal sets.
3. Ifm=1ands =1, then

x @ (ll )
eXp911

t)zx Q(Q)

otn+(1—t)p) <t oxphi’

+(1-

which is called a generalized exponentially convex function on fractal sets.
4. Ifs=1and a =1, then we have

o(tn +m(l—t)p) <t
(S)

which is called an exponentially m-convex function.
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10.

11.

12.

Ifm=1and x =1, then

Q(ll) (1 _ t)s Q(l2>

o s
oltn+(1=Hn) <t exp?i exp?2’

which is known as an exponentially s-convex function; see [6].
Ifm=s=1anda =1, then

o(1)
expfa

) Q(lZ)

oltn + (1 —t)p) <t m/

+(1-

which is said to be an exponentially convex function; see [5].
Now, if § = 0, then

o(tn +m(1—t)n) < t%e(n) + m*(1—1)%0(12),

which is the generalized m-convex functions on fractal sets; see [14].
Similarly, if « = 1, then we have

Q([l) m(l - t)s Q(lz)

p— S _—
o(tn +m(1—t)p) <t expf oxpfz’

which is an exponential (s, m)-convex function in the second sense; see [8].
Ifm = 1and 6 = 0, then we obtain

o(tn + (1 - H) <t%e(n) + (1 -1)%e(n),

which is called a generalized s-convex (0 < s < 1) in the second sense; see [17].
Ifs=1and 6 =0, then

o(tn + (1= H)n) < t%e(un) + (1 - 1)e(n),

which is said to be generalized convex function; see [19].
Ifs=a=1and 6 =0, then

o(ty + (1 —t)ip) < to(y) +m(1 —t)o(r2),

which is called a m-convex function; see [4].
Ifa =1and 6 = 0, then we have

o(ty +m(1—t)n) <o) +m(1—1)°0(),

which is an (s, m)-convex function; see [7].

Proposition 1. Assume that s,m &€ (0,1] and, further let 01,02 : 4 — R* be a class of
GE2,,, then

1.
2.

01+ 02isa GEZ,;
n*o1isa GE2,,.

Proof. Since ¢; and ¢ are GEszrm on y and t € [0,1], we can obtain
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1.
(01 +02)(tn +m(1 —t)in) = o1t +m(1 —t)i2) + 02(tnn +m(1 —t)ia)
< s Ql(lgl,) + ma(l )as 91 (;2) g QZ(l;) + mzx(l _ t)zxs QZ(lZ)
exp 1 exp 2 exp 11 eXp912
— oS Ql(ll) + Q2<[1> +m (1 )ocs Ql(tZ) + Q2<12>
exp611 exp912
— s (Ql +QZ)([1) +mu¢(1 )as (Ql +QZ)( )
9!1 912 ’
exp exp
then g1 + 02 is a GE2,, class on .
2.

W“Ql(tll +m(1 o t)l ) < ’7 s Ql(e,? +mu¢(1 _ t)ocs Q1<12>

exp exp?2
— s (77 ng(‘l) +m® (1 )ocs (77 ng( ),
expY1 expYz

hence 77%¢1 is a class of GE2,, on p.
O

Proposition 2. Assume that Qn : 4 —> R%, is a sequence of GE?

m pointwise to a function
0: 4 — R Then, g isa GEZ,, on p.

Proof. Let iy, 1, € p, t € [0,1] and let 121} on(11) = 0(11), then
n o)

o(ty +m(1—t)p) = nhj1 on(tty +m(1—t)1n)

n—oo p l eXp Iy

11mi’l—>00 Qn(tl) 4 ma(l _ t)lxs hmn—>oo QH(LZ)

exp?a expf®
_ pas Q( ) + mzx(l N t)ocs Q([Z)
expeq eXpeQ 4

which means that ¢ is a GEszlm onu. O

Proposition 3. Assume thats,m € (0,1],if 01 : 1 — 2 is a m-convex and 9, : pp — R*
is a non-decreasing GEE,m, then gp o901 : up — R%isa GEE’m.

Proof. For 11,1, € py and t € [0, 1], we obtain

(02001)(ty +m(1 —t)ip)

02(01(ty +m(1—1t)y))
< oaftor(un) +m(1—t)e1(r))
e e e 2

+ ma(l . t)as (QZ ° Ql)([Z)
expte(lz) ’

IA

s ( Q2 ° Ql)(ll)
expe(’l(ll)

Hence, 02 0 01 isa GEZ,,. O

Theorem 3. Assume that 01,02 : 4 — R* are both non-negative and monotone increasing. If
01,02 are GE2,,, then 010, is also a GE2
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Proof. If ;1 < 1 (the case 1p < 1 is similar), then
[01(11) — 01(22)] - [02(12) — €2(11)] < 0F,
which implies
a1(1)e2(12) + 01(12)02(11) < e1(n)e2(n) + 1(2)02(22)- @)

On the other hand, for 11,1, € pand t € [0,1],

(0102)(trn +m(1—t)i2)
= 01(t +m(1 = t)a)oa(tn +m(1 —t)i)
< |pos a1 (ll) + m”‘(l N t)ocs 91(12)] [tas Qz(ll) + ma(l - t)ucs 92(12):|

- exp911 exp9‘2 expf"l eXpG‘Z

— fus a1 (ll)QZ([l) + mat“s(l _ t)as Ql(ll)QZ(lZ)
eszell expezl expezz

+mata5(1 - t)ocs a1 (;2)92(1;) + ma(l . t)lXS 01 (12)32(12>
exp¥1 exp”2 exp )

_ pus Q1 E:i)%t(lll) s (1 — pyes <Ql(ll)92(lzgl+ Q1 giz)Qz(ll))
p exp?1 exp?n

2 205 01(£2)02(12)

On using (4), we obtain

(0102)(tn +m(1 —t)12)

< f2as Ql(ll)QZ(ll) + mataS(l _ t)zxs Ql(ll)QZ(ll) + Ql([Z)QZ(lZ)
- exp2fa exp?1 expPiz

+m21x(1 . t)ers 91 (lZ)QZ(lZ)

exnglz
ttxs tﬂcs mtx(l _ t)lxs
= expell |:exp911 expG‘Z :|Q1(11)Q2(l1>
m”‘(l _ t):xs s m“(l _ t)txs
expelz |:exp911 exp6[2 Ql (LZ)QZ(lZ)
s ®(1 _ $\as
Since ! 5 m (1 3 ) < 1%, then
exp’i exp¥2
102)(ty +m(1 —t)n) < tasw-km“]_t“sw
Q Q expall eXPQLZ
s (@102)(0) g s (0102) (12)
expft expfz

Hence, 0102 is a GEE,m. O

Theorem 4. Suppose that ¢ : [0,00) —» R* is a GE2,,, such that 0 < 1 < mip < co. If
0 € Cyltn, mip], then

111;7112@(6') I mnlﬁQ(C) < (1+m*) [Q(‘l) o(r)

(mip —11)* (g —muy)* — 28T (a+1) | expts exp%}’vm €[0,1],s € (0,1].
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Proof. Since ¢ is GE2,,, forallt € [0,1] and 1,15 € y, then

L L
Q(tll + m(l — t)lz) < taseQx(plm)l + mﬂé(l _ t)zxs Q( 2)

Q(tlz + m(l — t)[l) < t"‘SM + mﬂé(l . t)zxs Q(Ll)

exp912 expell
! L
o((1 =t +mtip) < (1—¢)* ei(};’l)l + m* ei(pf,l)z,
and o) .
L I
o1z 1 — ) < 1~ 22 s 28

By adding these inequalities together, we obtain
o(try +m(1 — t)in) + oty + m(1 —t)1q)
+o((1 = )i +mtip) + o((1 — t)iz +m(1 — t)11) ©)

expgil eXpG‘Z

Now, integrating the inequality (5) with respect to f over (0,1), then

r(alm |:/Olg(tll +m(1 — b)) (dt)" +/(:Q(tlz—|—m(1 ) ()
+ [ o= mte) @+ [ o1~ m(1 = )|
(1+m*)[en) | o)
= r(ﬂé+1) |:exp}911 exp%’lZ}
Hence,

aliny ()  mulie(e) - (1+m®) [Q(ll) Q(lz)}
(mip — 1) (p—muip)® — 22T (a+1) [expfs ~ expt2 |’

O

Hermite—-Hadamard Type Inequality via Generalized Exponentially (s, m)-Convex Functions
This section describes the generalized HH-inequality of GE2,, for local fractional
integrals.

Theorem 5. Supposing that ¢ : y — R* is a GE2,,. If 0* € Cy[11, mip] for some 0 < 11 < 1,

then
208 c1 + mcy
T+ 2
2" o —0u o« —0u
S (mcz _ Cl)ﬂ( |:Cl+2mCZ ImCz eXp ! Q(ll) +% 11:142»211:2 eXp 2 Q(lz)
< 2 olc) o (a—me)®  ae() o (a—20)%
= (Cl _ ch)a(s+1) eXPGC] ey W# eXp79l1 expGCZ ey Cl#’# eprGll
[
+m2 0(c2) I (mip —c1)* 1 (D) Q(W) I (cp —1p)™s
expfez quimey G exp0n expg(%) cimey, ™ eXpTO2 ’

Vs,m € (0,1].
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Proof. Now, on using the inequality,

Q(ll +mlz> < 1{9(11) 4ot 0(12)

2 20 | expfh exp?2 |’
Substituting
2 _
1= gq +m 5 17C2,
_2-n 0
Iy = m 1+ 2C2,

then, we obtain

248 <c1+mc2> < o(> c1+m2 Tey) aQ( Tey + c2)

1‘(«x+1)g 2 exp 0(Jer+mley) exp 0(5Le1+}er)

Now, integration in this respect to 7 over (0,1) yields
2%s 1 /¢y +mey N
F(zx—i—l)/ Q( 2 )(d”)

1 1 o(% cl+m2 '7c2) .
< (dn)
I(a+1) 6(fertm?7ler)

0 exp
m* 9(227,1’761 +1c2), s
dn)
F(a + 1) 0 exp ( i C1+ Cz)
_ 1 /mCZ 2%(1y) (diy)*
) c

[(a+1) Jatre expfa(mey —cq)®

1 me on
+ ‘/C 2 Q(ll) (dll)“

T(a+41) Jatre2 expf(mey —cq)®

+

2" 9 0
= W |:c1+mcz I;‘:’ICZ exp h Q(ll) +%1! 151;::62 eXp k2 Q(lz):| .

Since g is a GEZ,, for t € [0,1], then

o(} c1 4 m? ley) aQ( Siker + 4e2)

+m
exp (2C1+Wl 7 CZ) exp ( om Cl+2C2)
1 M\ as Q(Cl> o M \as Q(CZ)
i 11
> exp ( C1)+m 2 Tc, |:(2) eXpGCl +m ( 2) expecz
m* M\as Q(CZ> o M \as Q(%)

+ - + 1 - 5 C 7

exp9(22;”7cl>+gcz [(2) expfe2 m 2) expg(m%)

similar to the previous one, integrating this respect to 17 over (0,1), we can obtain the
second inequality in (6). O
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Lemma 1 ([23]). For m € (0,1], let 0 : u° — R¥(u° is the interior of u) be a function where
k € Dy(u°) and "9 € Cyliy, muy) for 1y, 15 € p° with 1 > 1. Then,

F(a+1) 2
iy — )" {lﬁzmtz Ly, 0(u) + mtf‘;:uz H%Q(”)

1
_(2)0‘{@([1 +2mlz>+mag<l1 ern:fllz)]
_ (mip —1q)" n 2—y «
G ra+1 /"Q 2 tm——n |(dy)

() -1 Ui o
Fa+1 /11@ ( 11+m212>(d17)}

Theorem 6. For somes,m € (0,1] and p,q > 1 with % + % =1, suppose that ¢ : u° — R is

a differentiable function u° such that o) € Cq[11, mi). If [0¥)|9 is a GE2,, on p for g > 1, then

I(a+1)
(mlz—tl)”‘ i ’D’éﬂzg( >+m’1;;712 I‘lQ( )

o) e

(miy — ) [T +1) 9 [ [ 1T (s + D+ 1) o ()l
< [F(sz—l—l)} { )" l

I((s+2)a+1) expfn
af Tla+1) 1 T((s+Da+1)\ [ ()7
o <F(21x+1)_(2) r((s+2)a)+1> expezlz 1

(6)

+ (m

T+ 1 T((s+1)a)+1) 0@ ()]
( -3 r +1> %)

r2a+1) 2 ((s+2)a)

1
+

Jos L((5 + 1)) 1[0 ()7 7
[((s+2)a)+1 expf :

Proof. From Lemma 1, we obtain the next inequality

F(a+1) 2
iy — )" [lﬁz"”z Ly, 0(u) + mtf‘;;uz I%Q(”)

G fe( ) et
R e A GRS [0k

+r(al+1)/ 1 IQ(‘")( lu+ )(dn)"‘} @)

(miy —)* [ T(a+1) y
<= [F(Za—kl)}

11
L ey Nl L oy - CY A PP &
x{ m/o n ((2) WJ””( 5 ) exp9‘2 (dny)

(4 149
1w 2=70e @™ e @)
* [T((X—l—l)/o 7 (m ( 2 ) 0(-%) +(§) exp?i2 ()

exp
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Since
1 wsl((s+1a+1)

1 ! o 17 as 4
F(w—i—l)/o ()" @n)" = ) T((s+2)a+1"

and

1 F(a+1 1 4 T((s+1)a+1)

on using (8) and (9) in (7), we obtain the inequality (6). O

Corollary 1. If s = 1, then we obtain the following inequality:

F'(a+1)
(mip — 1) |72 Lo 0(u )+m‘1;’;”z I o(u)

() [e(5) o e ()

(miy — 1y)* [ I(x+1) } { l(l)mz«ﬂ) FRI
4« r2a+1) 27 T(Ba+1) expfn

<

of T(a+1) 1\“T(2a 4+ 1)\ [o® (12)]7 g
o (F(th—l—l) a <2> F(30¢—|—1)> exp92‘2 ]

L Ta+1) 1\*T(2a+1) 0@ ()7
+[m (F(2a+1) B (2) F(3a+l)> o)
1\"T2a+1) [W ()] g
+(2> I(Ba+1) exp92‘2 1 }

Corollary 2. If m = 1, then we obtain the following inequality:

T(a+1) N 1+t

G- L33 8000+ (0] J-o(*5?)
(p—0)*[T(a+1) 7 1\“T((s+1)a+1) [0 ()]
<= E {F(2a+1)] { <2) T(G+2)a+t1) expelll

(550 8
[(F -0 e

s+ 1>a+1>> |Q(“)(lz)|q1 ﬁ

expalz

1\“T((s +1)a+1) [0 (1)]7
+(2) T((s+2)a+1) expd

! o 2_77 as _
l"(:x—l—l)/o ()W =ty ~ ) T a 1

®)

©)
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Corollary 3. If s = m =1, then we obtain the following inequality:

F'(a+1)

1+
|:/142rlz I‘ZQ( )‘i‘% IfiQ(”)} _Q< 2 )

(2 —1n)*

(=) [T(a+1) 77 [ [ /1\*T(2a +1) [0 (11)]7
= 24"‘1 {F(sz—l—l)} { (2) I(Bau+1) exp91‘1
[(a+1) 1\“TQx+1)\ [0 ()7 7
+(F(20¢+1)_<2> F(3zx+l)> exp92‘2 ]

T(a+1) 1\“T(2a 4+ 1)\ [0 (11)]7
+ (F(sz—i—l) _<2) F(3a+1)) expe(lu)

L (1)Tex 1) g )]
I'Bu+1) expfe

2

Theorem 7. For somes,m € (0,1] and p,q > 1 with % + % =1, suppose that ¢ : u° — R* is
a differentiable function u° such that o*) € Cy[t1, mi]. If |0 |9 is a GE2,, on yu for q > 1, then

Tla+1)
TTle—ll)’X ‘1*”“2 I’s{l ( )+m11;’1“2 I’mg(u)

() o) o)

(mp—n)*[ T+pa) 17f[ Tlsa+1)  |o@ ()]
R )]{ 1

4 p+1a+1 I[((s+1a+1) exp
N 1\* T(sa+1) 10 (15)]7 7
o <1 - (2> F((S+1)a+1)) exp?2 (10)

. 1\ Ta+1) ) [1eWGEHI
+[m <1_<2) F((s+1)tx+1)) eXpe)(ﬂ%)
NS Tt D) @]’
Jr(2) F((s+1)a+1) exp?- ] }

Proof. From Lemma 1, we obtained the following inequality and the generalized exponen-
tially (s, m)-convex function on y for g4 > 1, then
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T(a+1) ’
iz —n)* [lﬁz’mz Ly, 0(u) + mzf;:uz Iég(u)}

_(%)lx [Q(ll +2m12> +mag([l ;nizﬂzﬂ

< (771124; )" {r(ai ; /01 n“IQ(a)<Zl1 +m2;77£2>|(d17)a
+F(“1+1) /01 7*lo™ (22;;7 h+ th) I(dﬂ)“}

S ek

[ £ (o)
(r(a1+1) /01 7" (22;1’7 h+ th) ”’(dv)“> }7]

(miy —1q)" [(pa+1) 7
<= {I’((erl)rerl)}
1

_|_

0
exp

Tsa+1) o (n))?

1 ! Ui as‘Q(a)(ll)w « 2_77 as|Q(a)(12)|q a-

2 T
1 ! o 2_77 zxs|Q(a)(m)|q Ui as'Q(Ix)(lZ)‘q o
r(oc+1) /0 (Wl ( 2 ) (;le) +(§) exp912 (dYI)

(mu—ny{ T(pa +1) }i
F((p + 1)1x + 1)

F((s+1)a+1) expfs

1
q

Ii% 1 as F(S“+1) |Q(‘x)(12)|q
o (1 s et ) et

w1 (L TGatD) ) 1 Gl
27 T((s+1a+1) expeﬁ)

1, T(sa+1) &anﬂ;}

+

+ (E)txsr((s +1a+1) expfe

Some particular cases of the last Theorem will be presented

ey

==
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Corollary 4. If s = 1, then we obtain the following inequality:

I'a+1 1 1+ mi 1+ mu
()|:/1+2mzz I%IZQ(M)‘szﬁ—mlz 111 Q( ):| (E)a |:Q< 1 > 2) —|—m‘)‘Q< 1 m 2>:|

(mlz_ll)lx 2m
< (mip — 1) [ T(a+1) T(a+1) [0 ()
- 4 (20 +1) F(2a+1) expfa
i (1— (= T(a+1) \ [ (s |’7
F2a+1)) expfe
(@) (Ly|9
+ ma<1_(l)txr(20‘+l))|g (mlzl)|
2 TEa+1)) g k)

1, T+ a) [0 ()]
+(§) I'(2a+1) exp92‘2 ] }

Corollary 5. If m = 1, then we obtain the following inequality:

T g e s o] —e(252)
L

I —1p)" { I'(pa+1) F
4 I'((p+1a+1)
1 I'(sa+1) ) 0@ (12)]7 | 7

+ (1 B (E)Mr(l +(1+s)a)) expfn

Lias  Tlsat1) Y [™(n))f
(1() F((s+1)o¢+1)) exp91‘1

T(sa+1) [0 (n))?
[((s+1)a+1) expf

+(5

I (CES) |Q(”‘)(lz)|qr}
27 T((s+1)a+1) exp- )

Corollary 6. If s = m = 1, then we obtain the following inequality:

T(a+1) -
W [zlﬂz Ile( )"‘f‘% Iﬁg(u)} _ Q( 5 )

(g —17)" I'(pa+1) 7
<SS [F((p—l—l)oc—i—l)} {

1, T+ 1)\ Je® ()]
+<1_() F(2a+1)> ex1392‘2 1

T(a+1) [ (u)]?
I'(2a+1) exps

1o T(a+1) Y\ [o™) (w)]
(1_() F(Za—i—l)) expe(lll)

1
1)“ C(a+1) o™ (2)]7 ]
27 T(2e+1) expfe '

3. Applications
3.1. Applications to Special Means

Let us consider a-type special means; see [24]. For two positive real numbers, 11, 15
where 11 < 1p
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1. the generalized arithmetic A,(11,12) = ( it )“ — l‘f;‘%.
2. La(ng, ) = [%} ke Z{-1,0} and 11,1 € Rwitha # b.

Let o(1n) = £*(0 € R,k € Z, |k| > 2); then,
1. By applying in Corollary 5, we obtain the next result:

| F'(a+1)
(o —1q)"

(g —1n)" I'(pa+1) ;
= 24“1 [F((p—l—l)oc—i—l)] {

D Teetd) \( Tk A

[k (12, Al 12)) + Ly (A1, 12), 1) | = A (1,10)

T(se+1) ( T(1+ ka) )‘Mg’(‘”"‘w
I((s+1)a+1)\T(1+ (k—1)a) exp?i

Ly T(sat1) (k) )74
+ (1 (2) F((s—l—l)tx—l—l))(F(l+(k—1)a)> expfa
L Tlat1) [ T(ka) T4
+(§) F((s+l)u¢+1)<r(l+(k—l)w)> zxps"2

2. By applying in Corollary 6, we obtain the next result:

|(1:(‘X_—t1)1 [leia(tz,A(tmz)) + L]]za(A(ll,Lz),ll)} — AR (1, 1)
2 1

< (lz _[1)“ |: r(PtX—f—l) :|!17 F(Dé-i-l) ( r(l+k0{) )qlgkl)txw

=7 4 I'((p+1)a+1) T(2a +1) \I'(1+4 (k—1)a) expf

1., T(e+1) I'(14 ka) q|[(k71)a|q i
+<1_ (5) F(2a+1)) (r(1+(k—1)a)> ZXPGlZ
1., T(a+1) T(14ka) O\
+ (1_(2) r(2a+1)><r(1+(k_1)a)> éxpell

1., T(a+1) T(1+ ka) q|[§k—1)a|q 7
D Tt <1"(1+(k—1),x)> exp?®

3.2. Inequalities for Some Special Functions
For q € (0,1), the g-digamma function wj is defined by

) 1+1
wa(t) = —In(1—¢q +lnqz T

—In(1—gq

In addition, for g > 1, the g-digamma function wy is defined by

wy(t) = —In(g—1) + nql***;%)m]
© = (i)

1
—In(g—1)+Ingit—=—-) —].
2 z; _qi(”)
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If we set o(1) = w; in Corollary 3, then we have the following inequality:

E et () - (152

(2 —11)

< () )]

1
+{(1) | (17) |7 n (1) |w“(12)|’1} q '
6 exp9(11) 3 exp912

In this work, we discussed the generalized exponential (s, 1)-convex function, a novel
concept for the generalized (s, m)-convex function. The proposed definition’s algebraic
properties were looked at. We described the innovative Hermite-Hadamard type inequality
in line with the newly proposed concept. We also developed a few theorems. The new
family of (s, m) functions can be thought of as a noteworthy expansion and refinement of
our obtained results in the new theorems. In addition, all the results of this paper hold for
s-convex, m-convex, exponentially convex, exponentially s-convex, and convex functions
by taking special cases. In particular, it results in generalized exponential (s, m)-convex
functions, which are proved in [8], being able to be obtained. Applications to unique means
were taken into account. We also came up with some fascinating and amazing similarities.
In addition, in future work, we will study Fejér—Hadamard Inequalities associated with
generalized exponential (s, m)-convex functions and new inequalities via n-polynomial
generalized exponential (s, m)-convex functions.

4. Conclusions
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