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Abstract: The drift velocity of a particle under a driving force has its roots in the theory of electrical
conduction. Although it has been studied for over 100 years, it still yields surprises. At the heart of a
particle’s drift velocity is an interplay of classical, quantum, and statistical mechanics. Irreversibility
and energy loss have been assumed as essential features of drift velocities and very little effort has
been made to isolate the aspects of particle transport that are due to elastic mechanisms alone. In
this paper, we remove energy loss and quantum mechanics to investigate the classical and statistical
factors that can produce a drift velocity using only elastic scattering. A Monte Carlo simulation is
used to model a particle in a uniform force field, subject to randomly placed scatterers. Time-, space-,
and energy-dependent scattering models, with varied ranges of scattering angles, are investigated. A
constant drift velocity is achieved with the time scattering model, which has a constant average time
between scattering events. A decreasing drift velocity is observed for space and energy-dependent
models. The arrival of a constant drift velocity has to do with a balance of momentum gained between
collisions and momentum lost after a collision.

Keywords: scattering; charge transport; drift velocity; Monte Carlo; elastic
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1. Introduction

The drift velocity of a semiconductor or metal is an experimentally measurable quan-
tity which is directly related to the transport properties of the material, such as its conduc-
tivity or mobility. If the drift velocity of a material can be predicted based on its properties,
then we can design more efficient high speed and lower power consuming devices, such as
solar cells [1], small devices [2] and two-dimensional materials [3]. From Drude to Sommer-
feld and beyond, many theories have been formulated to explain why electrons or other
charge carriers arrive at a constant drift velocity in materials. All drift velocity theories
include some form of scattering mechanism in order to counterbalance the applied electric
field and maintain the electrons at thermal equilibrium with the material [4–7]. However,
as these mechanisms have been identified and studied (phonons, impurities, other carriers,
etc.) [8], many mechanisms are implemented in an elastic way [9,10]. In fact, as scattering
models are refined, they are often done so in an elastic way, pushing inelasticity into other
ill-defined parts of the model. We could go further and claim that inelasticity in a classical
or quantum model is a measure of ignorance of physical mechanisms rather than pure
irreversibility which must be its ultimate origin.

This study investigates the possibility of achieving a constant drift velocity with only
elastic scatterers. The drift velocity phenomena is a common statistic across many appli-
cations. Monte Carlo methods in general, as in refs. [11–17], deal with similar collision
mechanisms and could benefit from a systematic study of how the drift velocity develops
in the collective motions of particles. In our experience, we are motivated specifically by
transport in semiconductors. In a classical paper on charge transport in semiconductors by
Jacoboni and Reggiani, as well as in other sources [4,9], we find many quantum mechanical
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elastic and inelastic scattering mechanisms that may or may not lead to constant drift
velocities during Monte Carlo simulations. However, in the much simpler Drude model, a
constant drift velocity develops, but with less accurate physical modeling of the scattering
mechanism. In order to prepare to investigate the possibility of achieving a constant drift
velocity with elastic scattering, we will briefly review the Drude model assumptions and
indicate how the drift velocity develops. Next, we will summarize different semiclassical
scattering mechanisms as motivation for focusing on elastic scattering as a possible inde-
pendent mechanism for providing a zero or constant drift velocity. Finally, simple models
are proposed to determine which parameters will produce a constant drift velocity with
only elastic scattering.

The classical model proposed by Drude makes several assumptions: (1) the electrons
have a relaxation time τ and the probability of scattering within a time interval dt is dt/τ,
which is taken to be independent of the electrons’ position and velocity, (2) once a scattering
event occurs, the electron’s momentum resets to a value related to the temperature of the
material—the electron is assumed to achieve thermal equilibrium with its surroundings
only through collisions—and (3) in between scattering events, the electrons respond to
external electric and magnetic fields, but otherwise have no other interactions with their
surroundings [4,5].

According to the Drude model, the arrival of a constant drift velocity is therefore
explained by a simple process where the electrons in a material, on average, only gain as
much energy as the electric field supplies in time between scattering events. The momentum
reset means that the electrons, after scattering, on average lose all energy gained since the
last scattering event and therefore all memory of past scattering events. In the Sommerfeld
model, the drift velocity corresponds to a net shift in momentum of all the electrons, defined
by the Fermi surface. When an electric field is applied to the material, the net momentum
will shift at a constant rate. Scattering with a relaxation time, τ, is again necessary in
order to counterbalance the electric field and arrive at a constant drift velocity, where the
momentum reaches a final net displacement [6]. The relaxation time corresponds to the
time during which the field acts on the carrier, and it also assumes a momentum reset after
each collision.

A semi-classical model combines quantum mechanics with the Sommerfeld and Drude
models. It treats the electrons or charge carriers as classical quasiparticles, tracking their
momenta and position ballistically [4]. The non-classical behavior is introduced in the
scattering mechanisms. Jacoboni and Reggiani [9] outline a Monte Carlo method that
utilizes this semi-classical model. The program tracks the motion of the electron and
determines when it will scatter based on the relative probabilities of the different scattering
events in a given material. The elastic or inelastic behavior of each scattering mechanism is
encoded into the equations which approximate the change in momentum of the electron
after scattering.

The scattering mechanisms in metals and semiconductors have been studied, and are
still being unraveled. These include acoustic and optical phonon, ionized impurity, impact
ionization, and carrier–carrier scattering [9]. Of these scattering mechanisms, phonon
scattering is sometimes elastic and ionized impurity scattering is always elastic, and at
sufficiently low temperatures, elastic ionized impurity scattering will dominate [4].

The ideal elastic scattering mechanism would result in the electron keeping its kinetic
energy after scattering. This study utilizes the semi-classical Monte Carlo method proposed
by Jacoboni and Reggiani, replacing the scattering mechanisms and probabilities of scattering
with simplified models. Of the different models investigated, only a model with a constant
time between scattering events will result in a constant drift velocity. Other models include a
space-dependent model, which keeps a constant distance between collisions, and an energy-
dependent model, where the rate of scattering is proportional to the kinetic energy of the
electron. For these latter models, a constant drift velocity is not achieved. In fact, the average
velocity in the direction of the applied field slows down and approaches zero.
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This paper attempts to provide a few simple models using elastic scattering that can
provide various drift velocities. The main conclusion is that, in a variety of abstracted
situations, the assumed key ingredient of inelasticity in scattering is not necessary to
provide a constant drift velocity. We focused on models that are inspired by electron
scattering in semiconductors, but are not encumbered by the complications necessary to
approach a physical reality to show that the details of the elastic scattering mechanism
itself (independent of inelastic processes) can lead to zero or non-zero drift velocities.

2. Methods

In order to investigate whether a constant drift velocity could be achieved with only
elastic scattering mechanisms, a simple semi-classical model was developed. The model
consists of a point particle accelerated by a uniform force field subject to random elastic
scattering mechanisms (scatterers). Here, we are generalizing the “electron” in traditional
drift velocity calculations to be any “particle” in an equivalent system. Elastic scattering
was implemented by assuming the particle lost no kinetic energy during a scattering event.
The acceleration~a due to the force field ~F was assumed to be constant. By analogy, the
particle could be thought of as a projectile falling in a uniform gravitational field, elastically
colliding with random stationary scatterers at a certain rate. The scattering rate was
determined by three different methods in order to pinpoint the parameters that produce a
constant drift velocity. The first method, called time-dependent scattering (TDS), chooses
a random time between each collision. The second method, space-dependent scattering
(SDS), chooses a random distance between collisions. The third method, energy-dependent
scattering (EDS), where scattering rate is dependent on the kinetic energy of the particle,
chooses the time between scattering events based on the velocity of the particle. Only 2D
models are discussed. This is because three-dimensional versions of the models have been
observed not to affect the drift velocity measurements in the case of elastic scattering.

2.1. Monte Carlo Program Outline

The structure of the program is similar to a random walk, where the position and
velocity of the particle are continually evaluated and updated. It is outlined as follows:

1. We begin with a single particle with initial conditions of motion (position and velocity).
2. At every collision, the program determines (1) the time of flight before the next

scattering event using one of the three methods above, TDS, SDS, or EDS, and (2) the
scattering angle.

3. The final position of the particle after scattering, its velocity after scattering, the time
of flight, and total running simulation time are recorded.

4. A single run will evolve a particle from its initial conditions for a given number of steps.

For statistically significant results, each program was evaluated for as many steps as
was needed to see the general trend of the particles’ motion, and repeated for enough runs
to get a smooth result upon averaging.

2.2. Models

Three different types of models are used to find the time between scattering events:
time-dependent, space-dependent, and energy-dependent scattering. Within the time-
dependent scattering model, different ranges of scattering angles are also tested (vertical
exclusion angle, symmetric exclusion angle, and directional exclusion angle). The accelera-
tion due to the external force for all models is set at~a = −10 m × s−2 ŷ. The units meters
(m) and seconds (s) are chosen arbitrarily and can be scaled without affecting the overall
trend of the results.

2.2.1. Time-Dependent Scattering (TDS)

In the time-dependent scattering (TDS) method, there are two random variables: the
time between collisions (scattering time) t and the scattering angle after collision θ. The
time between collisions was chosen to be either a constant (0.5 s), a random variate from
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an exponential distribution with a relaxation time of τ = 1 s, or a random variate from a
uniform distribution between 0–1 s. All distributions have the same average time between
scattering events: 0.5 s. In order to model varying angular dependencies on scattering rates
that would occur in hard-sphere and other physical collisions, four basic types of scattering
angle distributions were investigated:

(a) A uniform distribution between 0–2π.
(b) A vertical exclusion angle, which omitted a range of scattering angles in the−y direction.
(c) A symmetric exclusion angle, which excluded scattering angles in the positive and

negative y directions for a given range. This type of distribution does not allow
scattering in the direction of the force, nor in the opposite direction.

(d) A directional exclusion angle, which omitted a range of scattering angles in the
direction of the particle’s travel. This is most similar to hard-sphere scattering.

See Figure 1.

Uniform

(a)

θe

Vertical

(b)

θe

θe

Symmetric Vertical

(c)

θe

Directional

(d)

Figure 1. Four different models for exclusion angles. The half-angle θe is the exclusion angle. The
black arrows represent allowed scattering angles for each model. (a) The uniform distribution of
angles allows all scattering angles between 0–2π. (b) The vertical exclusion angle excludes the particle
from scattering in the direction of the force for a range given by the half angle θe. (c) The symmetric
vertical exclusion angle disallows scattering both in the direction of the force and in the opposite
direction for the same range. (d) The directional exclusion angle disallows scattering in the direction
of the particle’s motion just before a scattering event. The red arrow represents the direction of motion
before scattering.

2.2.2. Space-Dependent Scattering (SDS)

In the space-dependent scattering (SDS) method, the random variables are the distance
between scattering events and the scattering angle. The distance between collisions was
chosen to be either constant, a random variate from an exponential distribution, or a random
variate from a distribution of “nearest neighbors”. The nearest neighbor distribution (NND)
is the distribution of radial distances r from a given random point to its nearest neighbor
in a 2D random field of points. The NND was found both empirically by plotting a set of
random points and plotting a histogram of the distances between nearest neighbors in the
set and analytically using the assumptions of a Poisson point process [18]. The probability
distribution function of the NND is given by:

NND2D(r) = 2πρre−ρπr2
(1)

where r is the radial distance, and the range of the distribution is [0, ∞). The NND is
directly related to the number density ρ of scatterers. After the distance was determined,
then the time to the next collision was calculated using the usual kinematic equations.

The exponential distribution is the closest approximation to the actual distances that
a projectile would travel between collisions if it were in a 2D field of perfectly random,
circular scatterers [7]. It is given by:

f (r) = λe−λr (2)

where the average distance between scattering events is 1
λ .
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2.2.3. Energy-Dependent Scattering (EDS)

Various physical models found in refs. [9,19] have scattering rates that depend on
differing energy dependencies including ε1/2 for elastic acoustic phonon scattering and
ionized impurity scattering and ε3/2 for warped bands. In this paper, the energy-dependent
scattering (EDS) method models a scattering rate that depends on energy. The only random
variable is the scattering angle; the time between the scattering events is determined directly
from the kinetic energy of the particle. Specifically, the scattering rate γ is proportional to
the kinetic energy ε to some power n.

γ ∝ εn (3)

Since the kinetic energy is directly proportional to the squared speed v2 of the particle, the
scattering time t is directly calculated as follows:

t =
1

k(v2n)
(4)

where k is a constant. To avoid infinite times, a random nonzero initial velocity is chosen
at the start of the program. The x and y components of the initial velocity are random
numbers between (−1,1). Different values of n are tested. As n approaches zero, the time
between scattering events no longer depends on the velocity and becomes constant, so it
should reproduce the results of the TDS model.

An exponential dependence of the scattering rate on energy was also tested, where:

γ ∝ e
√

ε (5)

such that:
t = Ae−kv (6)

where A and k are constants.

2.3. Evaluation of Drift Velocity

The drift velocity is the average motion of particles in the direction of the applied
force. For example, in the case of electrons in an isotropic material, the drift velocity is
directly proportional to the current, which is the net motion of charge in the direction of the
applied electric field. If the direction of the force is in the −y direction, then the numerical
derivative of the average y position vs. time will give the net speed of the particles in the
direction of the force. For a constant drift velocity, the 〈y〉 vs. t plot is linear, and the drift
velocity is the slope of the linear fit:

〈y〉 = vdt + c (7)

In Equation (7), the constant c will depend on initial conditions. There are two ways to
find the average y position vs. time. The first way is to average the y positions of every run
at each step in the simulation. Each step corresponds to a scattering event. Then, the time
between scattering events can be averaged for every step over every run. The total time at
a given step can be found by accumulating all average times for each step up to that point.
This first method works best for the TDS model, when the average time between collisions
is relatively constant, meaning that the step number is proportional to simulation time.
The second and more exact way to find the average y position vs. time is to sample the
data using kinematics. First, the total time of each run is calculated. Next, the total time of
the shortest run is chosen as the maximum time (tstop) to sample. Third, a list of sampling
times is generated, starting from a given initial time tstart and ending at tstop. Next, the y
value of every run at each sampling time is calculated by informed interpolation, using
kinematics to deduce the position at the exact time desired. This second method is best for
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the SDS and EDS models, where the average time between collisions is highly varied and
therefore not correlated with the step number.

Other methods for calculating the drift velocity (and other estimators) have been
defined by Jacoboni and Reggiani [9]. The method for calculating an estimator for a
system that reaches a steady state differs from that used for time-dependent, or transient,
phenomena. Nevertheless, some of the steady state methods could still be applied with
the additional step of averaging over an ensemble of particles. For example, for a particle
that reaches a steady state, its drift velocity can be calculated from one trajectory with an
integral of the velocities over the entire simulation time:

~vd =
1
T

N

∑
i=1

∫ τi

0
(~v0i +~at) dt (8)

where ~vd is the drift velocity, T is the total simulation time, N is the number of steps, τi is
the time of free flight for the given step i, ~v0i is the initial velocity at that step, and~a is the
acceleration due to the external force.

For a single particle that does not reach a steady state, i.e., constantly increasing in
energy, Equation (8) will not settle at a constant value for long periods of time. If, however,
several particles are simulated, and the results of the drift velocity calculated in Equation (8)
are averaged over the entire ensemble for each step or in time bins, then the result calculated
with Equation (7) is reproduced. This method involves more averaging, and the results
will be inherently noisier than directly calculating the slope of the position vs. time plot in
the direction of the force.

To determine the precision of the results in any ensemble method, we divide the
ensemble data into five sub-ensembles, calculate the drift velocity for each, and find the
average value and standard deviation [9].

It is also worth noting two methods which will not give an accurate estimation of the
drift velocity. The first involves averaging over all y-component velocities of the ensemble
of particles just before each scattering event. The final average velocity just before scattering
is not equivalent to the drift velocity because the particles are accelerating in the force field.
Their net speed in the direction of the applied force will be slower than the final velocity
they reach just before scattering. A second method, which builds on the first, would be to
calculate the average velocity blue between scattering events:

vd =
〈vy f inal 〉+ 〈vyinitial 〉

2
(9)

This result is only true for systems where there is a constant time between scattering events.
For systems where there is a distribution of scattering times, including the Drude Model,
Equation (9) will over- or underestimate the drift velocity depending on the distribution if
one is not careful with the averaging of the initial and final velocities.

We focus on using Equation (7) for calculating the drift velocity of the TDS models
which exhibit a constant slope in the 〈y〉 vs. t plots. For SDS and EDS models, the 〈y〉 vs. t
plots are fit to power laws, and the numerical derivative are also calculated to show the
transient behavior of the drift velocity.

3. Results

A constant slope of the 〈y〉 vs. t plot indicates a constant drift velocity. This was only
observed in the time-dependent scattering model. Namely, a constant slope was observed
in the time-dependent scattering (TDS) model for the uniform scattering angle (2π range of
allowed scattering angles), as well as symmetric and directional exclusion angles. Vertical
exclusion angles did not result in a constant drift velocity for the TDS model. The space-
dependent scattering (SDS) and energy-dependent scattering (EDS) models do not exhibit
a constant drift velocity. Rather, the drift velocity approaches zero in both cases.
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3.1. Time-Dependent Scattering (TDS)

Three different distributions of times between scattering events were tested: (1) con-
stant scattering time of 0.5 s, (2) uniform distribution of scattering times between 0 − 1 s,
and (3) exponential distribution with relaxation time τ =0.5s. For comparison, the same
average time between collisions, 0.5 s, was chosen for each distribution. The constant time
model had the slowest constant drift velocity, averaging at −2.47± 0.10 m × s−1 while
the exponential distribution had the fastest constant drift velocity at −4.93± 0.05 m × s−1,
as shown in Figure 2. The average drift velocities were calculated by averaging the slopes
of 5 trials of 1000 runs each. These results are later compared to the analytical derivation in
the Theory section.

In the next sections, the uniform distribution of scattering times will be used to look at
the behavior of the drift velocity as the range of scattering angles is limited by different
exclusion angles. The first case, the uniform scattering angle, where all scattering angles
between 0–2π are equally probable is shown in Figure 3a.

-2.47 ± 0.10 m/s (-2.5 m/s)

-3.28 ± 0.06 m/s
(-3.33 m/s)

-4.93
±
0.05

m
/s

(-5
m
/s)

TDS 〈y〉 vs t Simulation results

Constant time 0.5s

Uniform Distribution 0-1s

Exponential distribution = 0.5s

Drift Velocity Theoretical Value

Constant time

Uniform Distribution

Exponential Distribution

0 20 40 60 80 100
-400

-300

-200

-100

0

time (s)

〈y
〉
(m

)

Figure 2. Average y position vs. time for constant, uniform, and exponential time distributions for the
time-dependent scattering (TDS) model. The average drift velocities and their standard deviations
for each distribution are noted next to the 〈y〉 vs. t simulation result plot lines with the theoretical
values in parentheses. The theoretical results for each are shown by the black lines.
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Figure 3. Mean y position vs. time plots for the time scattering model, where~a = −10 m × s−2

ŷ. (a) The uniform, 2π range of allowed scattering angles, has a constant drift velocity of about
−3.3 m × s−1. (b) Vertical exclusion angles, which disallow scattering in the −ŷ direction, for θe = 0,
10, 20, 45, and 90 degrees. The particles reach a constant mean y position for θe > 0. The 0◦ line refers
to no exclusion angle, which is the same as the uniform 2π distribution. (c) Symmetric exclusion
angle model, where the particle is restricted from scattering in the ±y directions for θe = 0, 10, 45
and 80 degrees. A constant drift velocity returns, and remains about the same as the uniform model
for all θe. (d) Directional exclusion angles, where scattering is disallowed in the direction of the
particles’ motion when scattering for θe = 0, 5, 20, 45 and 90 degrees. The drift velocity decreases as
θe increases.

3.1.1. Vertical Exclusion Angle

Vertical exclusion angles of 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90◦ were tested. For every
vertical exclusion angle, the slope of the 〈y〉 vs. t began to decrease and approach zero.
Therefore, no constant drift velocity was obtained with the vertical exclusion angle model.
The rate at which the velocity approaches zero depends on the vertical exclusion angle.
The smaller the exclusion angle, the slower the 〈y〉 vs. t plot approached a slope of zero.
The simulation was run for a longer time for smaller angles. At a long enough time, the 〈y〉
vs. t plot would reach a horizontal asymptote at a fixed y position. This is the maximum
average displacement of the particles in space. For the 5◦ exclusion angle, the maximum
average distance was about y = −1000 m. For 10◦ it was about y = −230 m. See Figure 3b.
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3.1.2. Symmetric Exclusion Angle

The symmetric exclusion angle model, which also prohibited up-scattering as well
as down-scattering for the same range of angles, resulted in a constant drift velocity.
Symmetric exclusion angles of 10, 45, and 80◦ were tested. The slope of the 〈y〉 vs. t plot
remained about the same for each exclusion angle: about 3.3± 0.9 m × s−1. The slopes of
the mean y position vs. time plots for the symmetric exclusion angle model were closest to
the velocity of the model with no exclusion angle. There does not seem to be a correlation
between symmetric exclusion angle and drift velocity. However, the standard deviation of
the velocity for greater exclusion angles does decrease. This is due to the fact that there is a
smaller range of angles and therefore less variation in the y component of the velocity after
scattering. See Figure 3c.

3.1.3. Directional Exclusion Angle

In the directional exclusion angle program, the constant drift velocity returned, with
different values for different ranges of angles. Directional exclusion angles of 5, 10, 20, 45,
and 90◦ were tested. As the range of allowed angles decreased, meaning as the directional
exclusion angle increased, the drift velocity decreased. See Figure 3d.

To calculate the drift velocities, five trials were completed for each exclusion angle in
every model that exhibited a constant 〈y〉 vs. t slope, for 500 runs and 1000 steps each. The
average y position vs. time was found by averaging the y position of every run at each
step. The time at each step was also calculated by averaging the total time of every run at
each step.

Figure 3 shows the average y position vs. time for selected exclusion angles in each
model: vertical, symmetric, and directional exclusion angles. Figure 4 shows the calculated
steady-state, constant drift velocities, and their standard deviations for each model and
exclusion angle. The drift velocity of the vertical exclusion angles is plotted as zero.

Figure 4. Exclusion angle (θe) vs. drift velocity (vd) for all time scattering models. The value for
“None” exclusion angle (red) is −3.3 m × s−1. The vd for vertical exclusion angles (blue) is zero. The
directional exclusion angle (orange) vd slows as θe increases. The symmetric exclusion angle (green)
vd remains about the same for all θe.

3.2. Space-Dependent Scattering (SDS)

Three different distributions were used to determine the distance between scatter-
ing events in the SDS model: constant distance (1.0 m), nearest neighbor (Equation (1),
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ρ = 0.25), and exponential (Equation (2), λ = 1). For comparison, distributions with the
same average distance of 1.0 m were chosen. The 〈y〉 vs. t plots for each distribution were
fit to a power law function:

〈y〉 = atb + c (10)

where a and b are fitting constants, and c, which corresponds to the initial position, was set
to the actual initial condition of the system y0 = 0 m. Figure 5 shows the average position
〈y〉 vs. t for each distribution and the corresponding fits.

A power law average position plot means that the drift velocity of the system of
particles decreases with time, approaching zero asymptotically. This is shown by a simple
derivative of Equation (10).

vd = abtb−1 (11)

The drift velocity vs. time was calculated by taking the derivative of the power law fit
〈y〉 vs. t functions. These were plotted and compared with numerical derivatives of the
data (see Figure 5). Taking the limit as t → ∞, the drift velocity approaches zero for all
distributions, given that b is less than 1.0. This result was predicted previously by Wolfson
et al. in their rain stick model [20], which is the periodic lattice version of the random
SDS model in this present study. The results presented here go further to exhibit the time
behavior of the transient drift velocity. The exponent b for all power law fits of the vertical
position vs. time plot is between 0.61–0.66, which is about 2/3. This corresponds to a drift
velocity that decays with time to the power −1/3.
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Figure 5. (a) The average y position vs. time (t) for the SDS models—constant distance, nearest
neighbor distribution, and exponential distribution—plotted with power law fits, shown in the
legend. The average distance for each model is the same: 1 m. Each data point is the average over
1000 runs. The constant distance and nearest neighbor distribution were run for 1000 scattering
events. The exponential distribution was run for 5000 scattering events. (b) vd vs. time shown with
numerical derivatives of the 〈y〉 vs. t data and analytic derivatives of the power law fits. (c) A log–log
scale plot of the average −y vs. time data with fits. (d) A log–log scale plot of the |vd| vs. time data
with fits. Both show the non-power law behavior at the beginning of the simulation as the particles
go from initial condition to steady state.
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To further investigate the power law fits of the vertical position vs. time plots, different
densities of the NND were tested.

Nearest Neighbor Distribution

Six different densities ρ were tested: 0.25, 0.5, 1, 10, 100, and 1000 scatterers per m2.
For each density, five trials with a minimum of 500 runs of 500 steps each were performed.
Figure 6 shows the fitting parameters a and b for the power law fits of the 〈y〉 vs. t plots
for each density. For higher densities, the a parameter drops significantly, while the b
parameter, the power, remains relatively the same: about 0.67. The a parameter was fit to
an inverse power law function. Since the a parameter decreases with ρ, the rate of decrease
in the drift velocity vs. time is slower for higher densities.

Figure 6. Fitting constants (a, b) vs. density ρ for SDS using the nearest neighbor distribution of
distances between scattering. The a constants were fit to an inverse power law function to show the
general decreasing trend as ρ increases. The b powers remain about the same for all ρ. The density
axis is log-scaled.

3.3. Energy-Dependent Scattering (EDS)

Exponential (A = 0.1 in Equation (6)), linear (k = 10, n = 1), and power law (k = 10,
n = 0.5) energy-dependent models are examined, referring to Equation (4). The 〈y〉 vs. t
plots were fit to the power law function (Equation (10)). See Figure 7a. Taking the numerical
derivative of the average y position plot and the analytic derivative of the fit, it is evident
that the drift velocity will also approach 0 for all models at long times (Figure 7b).

The power law scattering frequency dependence, where t = 1
kv2n , can be taken to the

limit of n → 0. When n = 0 the scattering rate is no longer dependent on the velocity of
the particle, and we reproduce the constant time scattering model. The 〈y〉 vs. t plot for
the power law dependence model can also be fit to a power law function: 〈y〉 = atb + c.
The constant c should be about zero for every fit, since the initial y position is zero for each
model. The exponent b and scaling constant a were plotted as a function of n.

We expect b to approach 1 as n→ 0 because the constant time scattering model has a
linear 〈y〉 vs. t plot (constant drift velocity).

The fitting exponent b is about the same for different values of k, however, the scaling
constant a is greater for lower values of k. See Figure 8.
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Figure 7. (a) Mean y position vs. time for different EDS models: exponential (blue), linear (orange),
and square root (green), with power law fits 〈y〉 = atb + c. (b) Drift velocity vd vs. time plotted
with the numerical derivative of the 〈y〉 vs. t position data (points) and the analytic derivative of the
position power law fits (lines). Both show that the drift velocity asymptotically approaches zero for
all EDS models. (c) A log–log scale plot of the average −y vs. time data with fits. (d) A log–log scale
plot of the |vd| vs. time data with fits.
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Figure 8. Fitting parameters for the 〈y〉 vs. t plot of the power law energy-dependent model, plotted
for different values of n. 〈y〉 = atb + c.

4. Theory and Discussion

In this section, we introduce the method of analytically calculating the drift velocity
by averaging over the motion of the particles. First, we compare the results of this method
to the Drude model. Second, we generalize the result for any distribution of times between
scattering events for the TDS method. Third, we analyze the results of the vertical, symmet-
ric, and directional exclusion angle models. Fourth, we examine the SDS and EDS models,
where the drift velocity goes to zero.

4.1. Drude Model Drift Velocity

In the Drude model, the only forces on the electrons are supplied by a uniform force
field and random scatterers. The balance of these two forces will be what produces a
constant drift velocity. The drift velocity for the Drude model, which assumes a constant
relaxation time τ between scattering events, has been well defined and calculated [4,5].



Axioms 2023, 12, 1076 13 of 20

The result is that the change in momentum per electron equals the external force minus an
effective force due to scattering.

d~p(t)
dt

= ~F(t)− ~p(t)
τ

(12)

Here, ~p(t) is the momentum and ~F(t) is the external force per electron. The last term
in Equation (12) is the effective force per electron due to scattering. It acts as a frictional
damping term in the equation of motion. A constant drift velocity arises when d~p(t)

dt = 0.
Plugging in ~F(t) = m~a and ~p(t) = m~v and rearranging, we arrive at:

~vdDrude
=~aτ (13)

Unlike the Drude Model, the models presented in this paper all assume elastic scatter-
ing, meaning that the particles do not lose energy during a collision. However, some elastic
scattering models do arrive at a constant drift velocity. This can be seen most clearly in the
TDS model.

There are three factors in both the Drude and TDS models that produce a constant
drift velocity:

1. A constant, uniform external force;
2. An unchanging average time between scattering events;
3. A momentum reset on average after scattering.

Every model presented in this research satisfies the first condition. The SDS and EDS
models do not satisfy the second condition and have a drift velocity which changes (and
even slows) with time. In the TDS model, the third condition is affected when the range of
scattering angles is limited with exclusion angles.

4.2. TDS Models

The TDS models are all characterized by an average constant time between collisions.
Different ranges of scattering angles are also considered, as shown in Figure 1. The TDS
model with a uniform scattering angle satisfies the three conditions above and results in a
constant drift velocity. By changing the range of exclusion angles, the average momentum
of the particles after scattering will no longer be zero in some cases. This changes the drift
velocity behavior.

4.2.1. Uniform Scattering Angle

In the uniform scattering angle TDS model (see Figure 1a), when the particle can
scatter in any direction with equal probability, the average momentum is still reset after
every collision, as in the Drude Model. If there is an average time between scattering and a
constant and uniform external force in the −y direction, then the average velocity between
scattering events in the direction of the force, 〈vy〉 f light, will be constant for all time. This
velocity represents the average motion of the particles in the direction of the force, which is
precisely the drift velocity.

vdTDS = 〈vy〉 f light (14)

The average y velocity between scattering events, i.e., during free flight, 〈vy〉 f light
is the average y displacement of the particle divided by the average time of free flight
(between scattering events):

〈vy〉 f light =
〈y〉 f light

〈t〉 f light
(15)

In general, the average value of a kinematic variable f with a probability density
function of scattering times D(t) is:

〈 f (t)〉 =
∫

f (t)D(t)dt (16)
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where the distribution is assumed to be normalized and the integral is over the range of
the distribution. The drift velocities for each distribution of scattering times, exponential,
constant and uniform, each with an average time of 0.5 s between collisions, are calculated
below.

Exponential distribution of scattering times. For the TDS model with an exponen-
tially distributed scattering time (DTDS−E(t) = 1

τ e−t/τ), the drift velocity can then be
calculated as follows:

〈y〉 f light =
∫ ∞

0
y(t)D(t) dt =

∫ ∞

0

1
2τ

at2e−t/τ dt = aτ2 (17)

〈t〉 f light =
∫ ∞

0
tD(t) dt =

∫ ∞

0

t
τ

e−t/τ dt = τ (18)

Therefore, from Equations (14) and (15), the drift velocity is:

vdTDS−E = aτ (19)

This result is consistent with the drift velocity found with the TDS Monte Carlo model
with an exponential distribution of scattering times and relaxation time τ. With an accelera-
tion = 10 m × s−2 and a relaxation time of τ = 0.5 s, then the system arrives at a constant
drift velocity of aτ = 5 m × s−1. The calculated value in Figure 2 and Section 4.2.1,−4.93±
0.05 m × s−1, which is slightly less than the analytical value. The difference could be due
to the initial conditions of the simulated model, which would bias the linear fit to have a
smaller slope.

It is worth noting that this analytical result for the TDS-exponential distribution model
is the same as the Drude Model drift velocity in Equation (13). This is to be expected
because the distribution of scattering times for the Drude model is exponential with a
relaxation time τ, as shown in Ashcroft’s problem 1 [4].

Constant time scattering. Referring to Equation (16), the distribution for the constant
time scattering model is

DTDS−C(t) = δ(t− t∗) (20)

where t∗ is the constant time between scattering events. This yields, 〈y〉 f light =
∫ ∞

0
1
2 at2δ(t−

t∗) dt = 1
2 a(t∗)2 and 〈t〉 f light = t∗. The drift velocity from Equation (15) is:

vdTDS−C = 〈vy〉 f light =
1
2

at∗ (21)

This is consistent with the result from simulation. Specifically, when the time between
events is 0.5 s, and the acceleration due to the force is 10 m × s−2, the drift velocity is
measured to be about 2.47± 0.07 m × s−1, which is within error of the analytical result of
1
2 at∗ = 2.5 m × s−1.

Uniform distribution of scattering times. For the uniform distribution of scattering
times, the probability density function is:

DTDS−U(t) =
1

tmax − tmin
(22)

for the range tmin < t < tmax. From Equation (16), where y(t) = 1
2 at2 this gives 〈y〉 =

1
6 a(tmax − tmin)

2 and 〈t〉 = 1
2 (tmax − tmin). Then, using Equation (15):

vdTDS−U = 〈vy〉 f light =
1
3

a(tmax − tmin) (23)

For a = 10 m × s−2, tmin = 0s, and tmax = 1s, the value of the drift velocity should be
3.3 m × s−1. This is consistent with the drift velocity calculated using the Monte Carlo
simulation: 3.3 ± 0.1 m × s−1.
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Even though the average time between collisions is the same for the uniform distribu-
tion and constant scattering time models, 0.5 s in each case, the drift velocity for the latter
is smaller. The difference is that in the uniform distribution model, there is a possibility for
scattering times that are longer than 0.5 s. Since the particle is accelerating, these longer
times will have more weight, contributing more to the net speed than the shorter times will
subtract from it.

With a uniform scattering angle, the average momentum is reset after scattering. There-
fore the TDS models are able to achieve a constant drift velocity even with elastic scattering.
A constant drift velocity would also occur with elastic scattering if the the momentum
lost in the y direction is completely redirected into the x direction. The redirection of the
momentum from the y to the x direction replaces the loss of kinetic energy of the particle
implied with inelastic scattering models. This is seen in the symmetric exclusion angle
model below.

4.2.2. Vertical Exclusion Angle

Once a vertical exclusion angle is introduced, as shown in Figure 1b, the average
momentum after scattering is no longer reset. Because the particle is excluded from
scattering in the direction of the force, the average momentum after collisions is in the
opposite direction of the force. The average momentum after scattering 〈p〉scat can be
calculated by averaging over all allowed scattering angles.

〈~p〉scat =

∫ (
px(θ) x̂ + py(θ) ŷ

)
dθ∫

dθ
(24)

The integral of the average momentum is evaluated over the range of allowed scatter-
ing angles: −π

2 + θe to 3π
2 − θe, where θe is the exclusion angle. The normalization integral

in the denominator is therefore 2(π − θe). Plugging in mv cos θ for px and mv sin θ for py,
we get an average momentum of:

〈~p〉scat =
mv sin θe

π − θe
ŷ (25)

This momentum depends on the incoming speed v of the particle.
In this model, the drift velocity slows down, and the average position of the particles

even gets “stuck” at a given y value. The average velocity after scattering 〈~v〉scat is the
average momentum divided by mass:

〈~v〉scat =
v sin θe

π − θe
ŷ (26)

It is important to note that 〈~v〉scat depends on the incoming speed of the particle v.
In a model with elastic collisions, the speed of the particle is constantly increasing. After
each scattering event, 〈~v〉scat will approach the average velocity gained during free flight
〈~v〉 f light.

When 〈~v〉scat = 〈~v〉 f light, then the system’s average displacement will stop changing
and settle at a maximum value. With no net motion of the particles, the drift velocity of the
TDS model with any vertical exclusion angle > 0◦, vdTDS−V , will approach zero.

vdTDS−V → 0. (27)

4.2.3. Symmetric Exclusion Angles

The symmetric exclusion angle is shown in Figure 1c. In this case, the particle is
excluded from scattering in the ±y directions for a given range of angles given by the half
angle θe. The average momentum after scattering can be calculated by averaging over
all of the allowed scattering angles. The ranges of allowed scattering angles are equally
probable and in opposite directions, so the average momentum after scattering is zero. This
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means that the momentum is again reset on average after the scattering event, as it was
for a uniform distribution of scattering angles between 0–2π. Therefore, the analytic drift
velocity will be the same as for the uniform scattering angle models, and will simply depend
on the distribution of times between scattering events. The drift velocity is calculated by
finding the average y velocity between collisions as before.

There is one distinctive property of the symmetric exclusion angle model: the variance
in the simulated drift velocity decreases as θe increases. This can be seen if we take θe to
the extreme limit where the particle is only scattered in a direction perpendicular to the
external force. In this case, all of the momentum in the y direction is transferred to the
x direction after every scattering event and there is no variance in the drift velocity of
the particles.

An even more extreme case is that where the particle is only allowed to scatter in the
+x direction, which is perpendicular to the force. The net momentum after scattering is no
longer zero; it is in the positive x direction. However, a constant drift velocity, which is
measured in the direction of the force, could also be achieved in this case. Therefore, it is
only necessary that the momentum in the y direction is reset after scattering in order for
the system to reach a constant drift velocity.

4.2.4. Directional Exclusion Angles

When the exclusion angle depends on the direction of motion of the particle, as in the
case of the directional exclusion angle model (Figure 1d), then the constant drift velocity
returns. In fact the drift velocity can be tuned by adjusting the range of excluded angles.
The greater the θe, the smaller the drift velocity, as seen in the slopes of the 〈y〉 vs. t plot
in Figure 3d. The drift velocities plotted in Figure 4 shows an almost linear correlation
between θe and vd. In fact, when the directional exclusion angles are repeated for a constant
time TDS model, the linear regression is a very close fit.

Several attempts have been made to analytically derive the relationship between θe
and vd for directional exclusion angles. One way involves conditional probability, where
the distribution of allowed angles on average after scattering is evaluated recursively. The
scattering angle probabilities are step functions centered around the direction of flight at
scattering. Deriving the average distribution of scattering angles after N scattering events
(steps) involves adding N uniform distributions centered at different angles. According to
the central limit theorem, the distribution of scattering angles on average should approach
a normal distribution. A quick visualization of the average range of scattering angles after
N steps shows that it quickly randomizes after a few steps, and all scattering angles from
0− 2π become equally probable. The angles randomize quicker for smaller θe. This would
explain why the model reaches a constant drift velocity for all directional exclusion angles;
if after a certain number of steps all scattering angles are equally probable on average,
then the momentum effectively resets after collisions. The average time between scattering
events being constant would mean that the models would all gain the same velocity on
average after each scattering event. Nevertheless, the analytic solution for the relationship
between directional θe and vd still remains an open question.

4.3. SDS and EDS Models

A uniform distribution of scattering angles between 0–2π was used for both SDS
and EDS models, so the average momentum after scattering is also zero. However, in
both models, the drift velocity approaches zero for long periods of time. This result is
explained for the space scattering model by ref. [20]: if the system is purely elastic and the
particles do not lose energy between collisions, then the material will become “optically
thick” as particles reach fast speeds, and the drift velocity will approach zero. As particles
gain kinetic energy, the time between collisions approaches zero, so they have negligible
time to respond to the applied force. For the SDS model where a constant distance or
random distance between scattering events is chosen, higher speeds naturally result in
shorter intervals between scattering events. In the EDS model, the scattering rate is set up



Axioms 2023, 12, 1076 17 of 20

to increase as the speed of the particle increases. With elastic collisions, the kinetic energy
of the particles is constantly increasing, resulting in faster scattering rates and smaller
free-flight times that approach zero.

For the SDS, the velocity gained during free flight can be analytically calculated
and shown to depend on the speed of the particle. For a constant distance l between
scattering events, the time between collisions is t = l/v, where v is the speed of the particle
right before scattering. The kinematic variable y = 1

2 at2 = al2

2v2 , which is also 〈y〉 f light for
a constant distance l. The average time between collisions is also 〈t〉 f light = l/v from
Equation (15):

vdSDS = 〈vy〉 f light =
1
2

al
v

(28)

As the speed increases to v � al, the drift velocity for the SDS model, vdSDS will
approach zero:

vdSDS → 0 (29)

The EDS model has set relations between the time between scattering and the velocity.
For the power law relation, Equation (3), recalling that γ ∝ 1/t and ε ∝ v2, the time between
scattering events is t ∝ 1/v2n. The velocity gained on average during free flight for the EDS
power law model is:

vdEDS−pl
= 〈vy〉 f light ∝

1
2

a
v2n (30)

The drift velocity again depends on the speed of the particle. For higher values of the
exponent n, the drift velocity will approach 0 at a faster rate. In the limit that n = 0, we
reproduce the TDS model with a constant scattering rate.

A similar analysis can be made for the exponential dependence of the scattering rate
on energy, given by Equation (5). Here, t ∝ e−v

vdEDS−exp = 〈vy〉 f light ∝
1
2

ae−v (31)

The drift velocity will again approach zero as v increases.

vdEDS → 0 (32)

5. Conclusions

This research has shown that it is possible to achieve a constant drift velocity with
elastic scattering. The time-dependent scattering model, where the average time between
collisions was constant, immediately resulted in a constant drift velocity. Changing the
range of scattering angles alters the drift velocity results. By excluding a range of scattering
angles in the direction of the applied force, the particles reached a maximum average
displacement and their average velocity reached zero in that direction. When the same
range of scattering angles was excluded in opposite directions, in the direction of the
force and against it, then the constant drift velocity returned with approximately the
original value it had with a uniform 2π distribution of allowed scattering angles. Finally,
a directional exclusion angle allows for the drift velocity to be tuned, decreasing as the
exclusion angle in the direction of the particle’s motion increases. The directional exclusion
angle model is most like the range of angles that classical scattering would allow, where the
direction of propagation after scattering depends on its impact parameter. The analytical
derivation of the relationship between the directional exclusion angle and the drift velocity
remains an open question.

The space-dependent scattering and energy-dependent scattering models do not arrive
at a constant drift velocity. These two models are related in that, as the kinetic energy of
the particle increases, the time between collisions decreases. This means that the force on
the particle has a negligible effect on the change in speed of the particle between flights.
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The 1
2 at2 term becomes much smaller than vt at short times and high speeds. This causes

the average velocity of the particles in the direction of the force to decrease with time.
Three-dimensional models and models with elastic boundaries were also considered

in this study. The drift velocity of the particles in these models is the same as in the
two-dimensional and boundary-less models with similar parameters. This means that the
diffusion of energy in a third dimension does not change the drift velocity in the direction
of the force. Elastic boundaries, where the particle simply reflects its velocity, only confines
the horizontal position of the particles and has no effect on their overall average vertical
motion in the direction of the force.

6. Future Research

In addition to deriving the relationship between drift velocity and directional exclusion
angle, this study opens up several other questions for further research. The scatterers in
this study were chosen randomly. How would the drift velocity behavior change for a
perfectly periodic lattice of scatterers? The range of ordering from a completely periodic
to a completely random set of scatterers could be investigated. It could still be possible to
arrive at a drift velocity with the SDS model by introducing a scatterer density gradient
that decreases in the direction of the force. In this paper, we have only presented a few
simple models that lead to a variety of drift behaviors. However, it opens a door to the
possibility that there are many more models that could lead to rich behavior with elastic
scattering. Some of these could be more realistic physical scattering models such as those
that include angle-dependent scattering rates as well as models based on hard and soft
sphere kinetics. Finally, to bring the results of this study to the experimental realm, one
could use these elastic scattering models to predict or classify the change in transient drift
velocity behavior of materials as elastic scatterers are added, for example, by doping with
ionized impurities.
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Abbreviations and Symbols
The following abbreviations and symbols are used in this manuscript:

TDS Time-Dependent Scattering
SDS Space-Dependent Scattering
EDS Energy-Dependent Scattering
TDS-E Exponential distribution of scattering times for TDS model
TDS-C Constant scattering time for TDS model
TDS-U Uniform distribution of scattering times for TDS model
TDS-V Vertical Exclusion angle for TDS model
EDS-pl Energy-Dependent Scattering power law model
EDS-exp Energy-Dependent Scattering exponential model
NND Nearest Neighbor Distribution
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A Parameter in the EDS model (coefficient)
a Acceleration magnitude, Fitting constant (coefficient)
~a Acceleration vector
b Fitting constant (power)
c Fitting constant (initial condition)
ε Kinetic energy
~F Force vector
γ Scattering rate
k Parameter in the EDS model
l Constant distance in the SDS model
λ Parameter in the exponential distribution
m Mass of particle
N Total number of steps
n Parameter in the EDS model (power)
~p Momentum
px x-component of the momentum
py y-component of the momentum
〈~p〉scat Average momentum after scattering
r Radial distance
ρ Number density of scatterers
T Total simulation time
t Scattering time, Simulation time
t∗ Constant time between scattering events for TDS model
tmax Maximum time in Uniform Distribution for TDS model
tmin Minimum time in Uniform Distribution for TDS model
tstart Initial time for sampling method
tstop End time for sampling method
〈t〉 f light Average time of free flight (between scattering events)
τ Relaxation time
τi Time of free flight given step i
θ Scattering angle after collision
θe Exclusion angle
v Speed
~v Velocity
vd Drift velocity
vx x-component of the velocity
vy y-component of the velocity
~v0i Initial velocity at step i
〈~v〉 f light Average velocity gained during free flight
〈~v〉scat Average velocity after scattering
x Horizontal position
y Vertical position
〈y〉 Average y position
〈y〉 f light Average displacement in y direction during free flight
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