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Abstract: Nonlinear identification problems for evolution differential equations, solved with respect
to the highest-order Dzhrbashyan–Nersesyan fractional derivative, are studied. An equation of the
considered class contains a linear unbounded operator, which generates analytic resolving families
for the corresponding linear homogeneous equation, and a continuous nonlinear operator, which
depends on lower-order Dzhrbashyan–Nersesyan derivatives and a depending on time unknown
element. The identification problem consists of the equation, Dzhrbashyan–Nersesyan initial value
conditions and an abstract overdetermination condition, which is defined by a linear continuous
operator. Using the contraction mappings theorem, we prove the unique local solvability of the
identification problem. The cases of mild and classical solutions are studied. The obtained abstract
results are applied to an investigation of a nonlinear identification problem to a linearized phase field
system with time dependent unknown coefficients at Dzhrbashyan–Nersesyan time-derivatives of
lower orders.

Keywords: fractional differential equation; Dzhrbashyan–Nersesyan fractional derivative; coefficient
inverse problem; identification problem; initial boundary value problem
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1. Introduction

Works on fractional integro-differential calculus in contemporary mathematics are very
diverse. They concern both various theoretical aspects (properties of fractional integration
and differentiation operators, issues of solvability of new problems to equations with
various fractional derivatives and integrals, and much more [1–5]) and applications of
fractional calculus methods in various applied problems [6–9]. To the reader’s attention,
we present an article on the existence of a unique solution of a new class of coefficient
inverse problems to equations containing fractional derivatives, also called forecast-control
problems [10], or identification problems [11,12]. We are talking about a problem for an
equation containing, in addition to an unknown solution function, also unknown functional
parameters and overdetermination conditions of a corresponding nature.

Consider the equation

Dσn z(t) = Az(t) + B(t,Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t), u(t)), (1)

endowed by the Dzhrbashyan–Nersesyan initial conditions [1]

Dσk z(0) = zk, k = 0, 1, . . . , n− 1, (2)

and by the additional overdetermination condition

Φz(t) = Ψ(t), t ∈ [0, T]. (3)
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Here, Dσk , k = 0, 1, . . . , n ∈ N are the Dzhrbashyan–Nersesyan differentiation operator,
which corresponds to the set {αk}, 0 < αk ≤ 1, (see Formula (4) below), A is a linear
closed operator with a domain DA in a Banach space Z , U is another Banach space,
B : [0, T]×Zn ×U → Z is a nonlinear mapping, Φ : Z → U is a linear bounded operator;
initial values zk ∈ DA, k = 0, 1, . . . , n, and Ψ : [0, T]→ U are known. A solution of (1)–(3)
is a pair of functions (z, u). The main aim of the work are theorems on the existence and
the uniqueness of a mild and a classical local solution (z, u).

Various linear inverse problems for differential equations containing Riemann–Liou-
ville or Gerasimov–Caputo fractional derivatives were studied in papers [12–16]. Unique
solvability issues for a nonlinear identification problem of form (1)–(3) with Gerasimov–
Caputo derivatives and with a closed operator A, which generates an analytic resolving
family of operators for a respective linear homogeneous equation, were investigated in [17].

The notion of the Dzhrbashyan–Nersesyan derivative includes Riemann–Liouville
and Gerasimov–Caputo fractional derivatives as particular cases; for a study of various
problems with this general fractional derivative, see [1], its English translation [18], in
works [19–24]. The unique solvability conditions and a form of a solution for linear
inhomogeneous problem with the Dzhrbashyan–Nersesyan derivative (1), (2) (B ≡ f (t))
in a Banach space were obtained in work [25] in the case of a bounded operator A, and in
paper [26] for a closed operator A from the class A{αk} of generators of analytic resolving
families for a linear Equation (1) (B ≡ 0). Problem (2) for quasilinear Equation (1) with
known u and with a bounded operator A was researched in [27].

The results of [25] were used for obtaining a theorem on the existence of a unique
solution of nonlinear inverse problem (1)–(3) with a linear continuous operator A in [28].
In the present work, we extend these results on the case of a nonlinear identification
problem with Dzhrbashyan–Nersesyan derivatives and with A ∈ A{αk}. It is clear that
such results on Problem (1)–(3) with a closed operator A provide much greater possibilities
for their application to inverse problems to partial differential equations and systems of
them than results on the abstract inverse problem with a bounded operator A.

In the second section, preliminary definitions and statements are given; in particular,
a theorem on the existence of a unique solution of Dzhrbashyan–Nersesyan problem (2)
to linear Equation (1) (B ≡ f (t)) with A ∈ A{αk} is presented. The first subsection of the
third section contains a proof of the theorem on the existence and the uniqueness of a local
mild solution of identification problem (1)–(3). In the second subsection, for the case of
continuous mapping B:[0, T] × Zn × U → DA, the existence of a unique local classical
solution is proven. A similar result is proven under the additional conditions of Hölder
continuity in t of problem data. In the fourth section, obtained general results are used for
the investigation of a nonlinear identification problem to modified phase field equations
with depending on t unknown coefficients at Dzhrbashyan–Nersesyan time-fractional
derivatives of lower orders.

2. Preliminaries

For h : (0, T] → Z ,where Z is a Banach space, and for β > 0, we introduce the
following notations:

D−βh(t) := Jβh(t) :=
t∫

0

(t− s)β−1

Γ(β)
h(s)ds, t ∈ (0, T]

for the Riemann–Liouville fractional integral of the order β > 0, and Dβ := Dm Jm−β for the
Riemann–Liouville fractional derivative of the order β ∈ (m− 1, m], m ∈ N. For sequence
{α0, α1, . . . , αn}, αk ∈ (0, 1], k = 0, 1, . . . , n ∈ N, we define the Dzhrbashyan–Nersesyan
fractional derivatives Dσk , k = 0, 1, . . . , n by equalities [1]

Dσ0 z(t) := Dα0−1z(t), Dσk z(t) := Dαk−1Dαk−1 Dαk−2 . . . Dα0 z(t), k = 1, 2, . . . , n. (4)
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They are natural general constructions of fractional derivatives (see, e.g., [1,19,20]), they
generalize the Riemann–Liouville fractional derivatives (α0 ∈ (0, 1), αk = 1, k = 1, 2, . . . , n)
and the Gerasimov–Caputo fractional derivatives (αk = 1, k = 0, 1, . . . , n− 1, αn ∈ (0, 1)).
We also use notations

σk :=
k

∑
j=0

αj − 1, k = 0, 1, . . . , n.

For h:R+ → Z , we denote by L[h] the Laplace transform of this function. The follow-
ing equalities are known [3,26]:

L[Jαh](λ) = λ−αL[h](λ), L[Dαh](λ) = λαL[h](λ)−
m−1

∑
k=0

Dα−1−kh(0)λk,

L[Dσn h](λ) = λσnL[h](λ)−
n−1

∑
k=0
Dσk h(0)λσn−1−σk . (5)

We let L(Z) be the Banach algebra of all linear bounded operators in the Banach space
Z and C l(Z) be the set of all linear closed densely defined in Z operators. We consider the
domain DA of an operator A ∈ C l(Z) with the graph norm of A as a Banach space due to
the closedness of A. We consider the linear inhomogeneous equation

Dσn z(t) = Az(t) + f (t), t ∈ (0, T] (6)

endowed by the Dzhrbashyan–Nersesyan initial conditions [1]

Dσk z(0) = zk ∈ DA, k = 0, 1, . . . , n− 1. (7)

Here, f ∈ C([0, T];Z).
A solution to Problem (6), (7) is function z ∈ C((0, T]; DA), such thatDσk z ∈ C([0, T];Z),

k = 0, 1, . . . , n− 1, Dσn z ∈ C((0, T];Z). Equalities (6) for all t ∈ (0, T] and (7) are fulfilled.
IWe itroduce notations ρ(A) := {λ ∈ C : (λI − A)−1 ∈ L(Z)}, Rλ(A) := (λI − A)−1

for λ ∈ C.

Definition 1. We denote by A{αk}(θ0, a0) for some θ0 ∈ (π/2, π], a0 ≥ 0, αk ∈ (0, 1],
k = 0, 1, . . . , n, a class of operators A ∈ C l(Z), such that

(i) λσn ∈ ρ(A) for all λ ∈ Sθ0,a0 := {µ ∈ C : | arg(µ− a0)| < θ0, µ 6= a0};
(ii) for any θ ∈ (π/2, θ0), a > a0, there exists such a constant K(θ, a) > 0, that for all

λ ∈ Sθ,a

‖Rλσn (A)‖L(Z) ≤
K(θ, a)

|λ− a|α0 |λ|σn−α0
.

If A ∈ A{αk}(θ0, a0), then we define for t > 0 operators

Yβ(t) =
1

2πi

∫
Γ

λβRλσn (A)eλtdλ, β ∈ R.

Here, for some δ > 0, a > a0, θ ∈ (π/2, θ0) Γ := Γ+ ∪ Γ− ∪ Γ0, Γ± := {λ ∈ C : λ =
a + re±iθ , r ∈ (δ, ∞)}, Γ0 := {λ ∈ C : λ = a + δeiϕ, ϕ ∈ (−θ, θ)}. For brevity, we use the
notations of frequently used operators Zk(t) := Yσn−σk−1(t), k = 0, 1, . . . , n− 1.

We denote also
A{αk} =

⋃
θ0∈(π/2,π]

a0≥0

A{αk}(θ0, a0).

We let Cγ([0, T];Z) be the set of all Hölder continuous functions from [0, T] to Z with
the power γ ∈ (0, 1].
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Theorem 1 ([26]). We let αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 1, θ0 ∈ (π/2, π], a0 ≥ 0,
A ∈ A{αk}(θ0, a0), zk ∈ DA, k = 0, 1, . . . , n− 1, f ∈ C([0, T]; DA) ∪ Cγ([0, T];Z), γ ∈ (0, 1].
Then, Problem (6), (7) has a unique solution. It has the form

z(t) =
n−1

∑
k=0

Zk(t)zk +

t∫
0

Y0(t− s) f (s)ds.

Remark 1. We note that Zk(t)zk is a unique solution of the initial value problem Dσk z(0) = zk,
Dσl z(0) = 0, l ∈ {0, 1, . . . , n− 1} \ {k} to equation Dσn z(t) = Az(t). In addition, the unique
solution of Problem (6), (7) with zero initial conditions Dσl z(0) = 0, l ∈ {0, 1, . . . , n− 1}, is

t∫
0

Y0(t− s) f (s)ds.

Remark 2. In the proof of Lemma 1 in [26], it was shown that for some C > 0 and for all t ∈ (0, T]
‖Yβ(t)‖L(Z) ≤ Ctσn−1−β. Hence, for j, k ∈ {0, 1, . . . , n − 1}, k > j, ‖Dσj Zk(t)‖L(Z) =

‖Yσn−σk−1+σj(t)‖L(Z) ≤ Ctσk−σj . In addition, for j, k ∈ {0, 1, . . . , n− 1}, k < j, zk ∈ DA, in the
proof of Theorem 3 in [26], the following relations were proven:

L[Dσj Zk(t)zk] = λσn−σk−1+σj Rλσn (A)zk − λσj−σk−1zk = λσj−σk−1Rλσn (A)Azk,

‖λσj−σk−1Rλσn (A)Azk‖Z ≤
K‖Azk‖Z
|λ|σn+1+σk−σj

≤ K‖Azk‖Z
|λ|α0+α1+···+αk−1+αk+αj+1+αj+2+···+αn−1+αn

,

consequently, ‖Dσ
j Zk(t)zk‖Z ≤ C1tα0+α1+···+αk−1+αk+αj+1+αj+2+···+αn−1+αn−1 ≤ Ctα0+αn−1,

‖Dσk Zk(t)zk − zk‖Z ≤
1

2π

∫
Γ

‖λ−1Rλσn (A)Azk‖Z |dλ| ≤ Ctα0+αn−1, t ∈ (0, T].

3. Local Solvability of Identification Problem
3.1. Mild Solution

We take Banach spaces Z and U , an open set Z in R × Zn, a nonlinear mapping
B : Z×U → Z , a linear operator Φ ∈ L(Z ;U ) and a function Ψ : [0, T]→ U . The purpose
of Problem (1)–(3) is to find z : [0, T]→ Z , u : [0, T]→ U from Relations (1)–(3).

We denote y = (y0, y1, . . . , yn−1) and formulate several conditions.
(A) The operator B : Z×U → Z can be presented as

B(t, y, u) = B1(t, y) + B2(t, y, u), (t, y, u) ∈ Z×U .

For a = (a0, a1, . . . , an−1) ∈ Zn, R, T > 0, we use the following notations:

SZn(a, R) =
{

y ∈ Zn : ‖yj − aj‖Z < R, j = 0, 1, . . . , n− 1
}

,
SZn(a, R, T) = [0, T]× SZn(a, R).

For sufficiently smooth Ψ, we define

v0 := Dσn Ψ(0)−ΦAz0 −ΦB1(0, z0, z1, . . . , zn−1). (8)

Here, the line above ΦA means the closure of this operator.
We let the next conditions (B)–(F ) be satisfied:
(B) the equation ΦB2(0, y0, y1, . . . , yn−1, u) = v0 with unknown u has a unique solu-

tion u0 ∈ U ;
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(C) there is an operator B3 : [0, T]×Un+1 → U , for which

ΦB2(t, y, u) = B3(t, Φy0, Φy1, . . . , Φyn−1, u), (t, y, u) ∈ Z×U ;

(D) there is such a constant, R > 0, that for every t ∈ [0, T], the mapping
v = B3(t,Dσ0 Ψ(t), Dσ1 Ψ(t), . . . ,Dσn−1 Ψ(t), u) with u in SU (u0, R) has an inverse mapping
u = F(t, v);

(E) there is such a constant, R > 0, that operator F is continuous with respect to the
totality of the variables (t, v) on the set SU (u0, R, T) and is Lipschitz continuous in v;

(F ) there is R > 0 such that mappings B1(t, y) and B2(t, y, u) are continuous with
respect to the totality of the variables on set SZn×U ((z0, z1, . . . , zn−1, u0), R, T) and are
Lipschitz continuous in (y, u).

Using the form of a classical solution from Theorem 1, we can introduce the notion of
a mild solution.

Definition 2. Pair (z, u) ∈ C([0, T];Z)× C([0, T];U ) for which Dσj z ∈ C([0, T];Z) for j =
0, 1, . . . , n− 1, the inclusion (Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t)) ∈ Z and Condition (3) are valid
for all t ∈ [0, T], and equality

z(t) =
n−1

∑
k=0

Zk(t)zk +

t∫
0

Y0(t− s)B(s,Dσ0 z(s), . . . ,Dσn−1 z(s), u(s))ds (9)

is fulfilled for all t ∈ (0, T]. It is called a mild solution of identification problem (1)–(3) on [0, T].

Lemma 1. We let αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 1, θ0 ∈ (π/2, π], a0 ≥ 0, A ∈
A{αk}(θ0, a0), Φ, ΦA ∈ L(Z ;U ), zk ∈ Z , fk(t) := ΦZk(t)zk, k = 0, 1, . . . , n − 1. Then,
Dσn fk(t) = ΦAZk(t)zk ∈ C([0, T];U ), k = 0, 1, . . . , n− 1.

Proof. For some λ ∈ ρ(A), we take yk = Rλ(A)zk ∈ DA, k = 0, 1, . . . , n − 1. Then, by
Remark 1, Dσn Zk(t)yk = AZk(t)yk, fk(t) = ΦZk(t)(λI − A)yk = λΦZk(t)yk −ΦAZk(t)yk,

Dσn fk(t) = λΦDσn Zk(t)yk −ΦADσn Zk(t)yk =

= λΦAZk(t)yk −ΦAZk(t)Ayk = ΦAZk(t)zk ∈ C([0, T];U ).

Lemma 2. We let αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 1, θ0 ∈ (π/2, π], a0 ≥ 0,
A ∈ A{αk}(θ0, a0), g ∈ C([0, T];Z), Φ, ΦA ∈ L(Z ;U ),

h(t) := Φ
t∫

0

Y0(t− s)g(s)ds.

Then,

Dσn h(t) = ΦA
t∫

0

Y0(t− s)g(s)ds + Φg(t) ∈ C([0, T];U ).

Proof. For λ ∈ ρ(A), we put f (t) = Rλ(A)g(t) ∈ DA, t ∈ [0, T]. Hence, A f (t) =
λRλ(A)g(t)− g(t) ∈ C([0, T];Z); consequently, f ∈ C([0, T]; DA). Therefore,

h(t) = Φ
t∫

0

Y0(t− s)(λI − A) f (s)ds = (λΦ−ΦA)

t∫
0

Y0(t− s) f (s)ds,
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and, by Remark 1, we obtain

Dσn h(t) = (λΦ−ΦA)Dσn

t∫
0

Y0(t− s) f (s)ds

= (λΦ−ΦA)

A
t∫

0

Y0(t− s) f (s)ds + f (t)


= ΦA

λ

t∫
0

Y0(t− s) f (s)ds− A
t∫

0

Y0(t− s) f (s)ds

+ (λΦ−ΦA) f (t)

= ΦA
t∫

0

Y0(t− s)g(s)ds + (λΦ−ΦA) f (t) = ΦA
t∫

0

Y0(t− s)g(s)ds + Φg(t).

Here, ΦA f (t) = ΦA f (t), since f (t) ∈ DA.

Theorem 2. We let α0 = 1, αk ∈ (0, 1], k = 1, 2, . . . , n, θ0 ∈ (π/2, π], a0 ≥ 0, A ∈
A{αk}(θ0, a0), zk ∈ DA, k = 0, 1, . . . , n − 1, (0, z0, z1, . . . , zn−1) ∈ Z, Φ, ΦA ∈ L(Z ;U ),
Dσk Ψ ∈ C([0, T];U ), k = 0, 1, . . . , n, Φz0 = Ψ(0), and we let conditions (A)–(F ) be ful-
filled. Then, for some T1 ∈ (0, T], inverse problem (1)–(3) has a unique mild solution (z, u) ∈
C([0, T1];Z)× C([0, T1];U ) on segment [0, T1].

Proof. We take zk ∈ DA, k = 0, 1, . . . , n− 1; then, we haveDσj Zk(t)zk = Yσn−σk−1+σj(t)zk ∈
C([0, T];L(Z)) as it is shown in the proof of Theorem 3 [26]. Lemma 1 in [26] implies that

Dσj

t∫
0

Y0(t− s)g(s)ds =
t∫

0

Yσj(t− s)g(s)ds, j = 0, 1, . . . , n− 1. (10)

Therefore, due to Remark 2 and Equation (9), we have correlations for j = 0, 1, . . . , n− 1

Dσj z(t) =
m−1

∑
k=0

Yσn−σk−1+σj(t)zk +

t∫
0

Yσj(t− s)B(s,Dσ0 z(s), . . . ,Dσn−1 z(s), u(s))ds. (11)

For a mild solution (z, u), Equality (9) is valid; then, Condition (3) implies that

m−1

∑
k=0

ΦZk(t)zk + Φ
t∫

0

Y0(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds = Ψ(t).

Therefore, due to Lemmas 1 and 2, we have

Dσn
m−1

∑
k=0

ΦZk(t)zk +Dσn Φ
t∫

0

Y0(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds

= ΦA
m−1

∑
k=0

Zk(t)zk + ΦA
t∫

0

Y0(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds

+ΦB(t,Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t), u(t)) = Dσn Ψ(t).
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Due to condition (A), we can write the last equality as

ΦB2(t,Dσ0 z(t), . . . ,Dσn−1 z(t), u(t)) = Dσn Ψ(t)−ΦA
m−1

∑
k=0

Zk(t)zk

−ΦA
t∫

0

Y0(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds

−ΦB1(t,Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t)).

(12)

Then, under assumptions (C), (D), Equation (12) implies equality

u(t) = F(t, v(t)), (13)

where

v(t) = Dσn Ψ(t)−ΦA
m−1

∑
k=0

Zk(t)zk −ΦB1(t,Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t))

−ΦA
t∫

0

Y0(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds.
(14)

Thus, we obtained a nonlinear system of equations (11) with j = 0, 1, . . . , n − 1 and
Equation (13) for unknown functions y0 := Dσ0 z, y1 := Dσ1 z, . . . , yn−1 := Dσn−1 z, u.

We consider set

MT = {(y, u) ∈ C([0, T];Zn ×U ) : ‖yj(t)− zj‖Z ≤ R, j = 0, 1, . . . , n− 1,
‖u(t)− u0‖U ≤ R}

with metrics d((x, u), (y, w)) = ‖(x, u) − (y, w)‖C([0,T];Zn×U ) and mapping
H = (H0, H1, . . . , Hn), which is defined by equalities

H j(y0, y1 . . . , yn−1, u) =
n−1

∑
k=0

Yσn−σk−1+σj(t)zk

+

t∫
0

Yσj(t− s)B(s, y0(s), y1(s), . . . , yn−1(s), u(s))ds, j = 0, 1, . . . , n− 1,

Hn(y0, y1, . . . , yn−1, u) = F

(
t,Dσn Ψ(t)−ΦA

n−1

∑
k=0

Zk(t)zk

−ΦB1(t, y0(t), y1(t), . . . , yn−1(t))

−
t∫

0

ΦAY0(t− s)B(s, y0(s), y1(s), . . . , yn−1(s), u(s))ds

.

Thus, Problem (1)–(3) are represented in the form of system

y0(t) = H0(y0(t), y1(t), . . . , yn−1(t), u(t)),
y1(t) = H1(y0(t), y1(t), . . . , yn−1(t), u(t)),

. . . ,
yn−1(t) = Hn−1(y0(t), y1(t), . . . , yn−1(t), u(t)),

u(t) = Hn(y0(t), y1(t), . . . , yn−1(t), u(t)).

(15)

We take t = 0 in (15); then, we have H j(z0, z1, . . . , zn−1, u0) = zj for j = 0, 1, . . . , n− 1,

Hn(z0, z1, . . . , zn−1, u0) = F(0, v0) = u0.
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Due to the assumptions of Theorem, if (y0, y1, . . . , yn−1, u) ∈MT , then

H(y0(t), y1(t), . . . , yn−1(t), u(t))

is continuous with respect to t on [0, T]. Taking into account Remark 2 and assumptions
(E), (F ), we have, for t ∈ (0, T],

‖H j(y0(t), y1(t), . . . , yn−1(t), u(t))− zj‖Z

≤
n−1

∑
k=0
k 6=j

‖Yσn−σk−1+σj(t)zk‖Z + ‖Yσn−1(t)zk − zk‖Z

+

t∫
0

‖Yσj(t− s)‖L(Z)‖B(s, y0(s), . . . , yn−1(s), u(s))− B(0, z0, z1, . . . , zn−1, u0)‖Zds

+

t∫
0

‖Yσj(t− s)‖L(Z)‖B(0, z0, z1, . . . , zn−1, u0)‖Zds

≤ nCtα0+αn−1 + C1tσn−σj

(
n−1

∑
k=0
‖yk(t)− zk‖Z + ‖u(t)− u0‖U

)
+C1tσn−σj‖B(0, z0, z1, . . . , zn−1, u0)‖Z ≤ C2tαn(1 + (n + 1)R + C3), j = 0, 1, . . . , n− 1,

‖Hn(y0(t), y1(t), . . . , yn−1(t), u(t))− u0‖U
≤ ‖F(t, v(t))− F(t, v0)‖U + ‖F(t, v0)− F(0, v0)‖U

≤ l‖v(t)− v0‖U + ‖F(t, v0)− F(0, v0)‖U ≤ ‖F(t, v0)− F(0, v0)‖U

+l‖Dσn Ψ(t)−Dσn Ψ(0)‖U + l‖ΦA‖L(Z ;U )‖Z0(t)z0 − z0‖Z + l

∥∥∥∥∥ΦA
n−1

∑
k=1

Zk(t)zk

∥∥∥∥∥
U

+l‖ΦB1(t, y0(t), . . . , yn−1(t))−ΦB1(0, z0, . . . , zn−1)‖U

+l
t∫

0

‖ΦAY0(t− s)B(0, z0, z1, . . . , zn−1, u0)‖Uds

+l
t∫

0

‖ΦAY0(t− s)(B(s, y0(s), y1(s), . . . , yn−1(s), u(s))− B(0, z0, z1, . . . , zn−1, u0))‖Uds

≤ ‖F(t, v0)− F(0, v0)‖U + l‖Dσn Ψ(t)−Dσn Ψ(0)‖U

+C4(1 + tαn)
n−1

∑
k=0
‖yk(t)− zk‖Z + C4tαn

≤ ‖F(t, v0)− F(0, v0)‖U + l‖Dσn Ψ(t)−Dσn Ψ(0)‖U
+tαn(1 + tαn)nC2C4(1 + (n + 1)R + C3) + C4tαn ≤ C5tαn ,

where l is a Lipschitz constant for F, and v0 and v(t) are defined by (8) and (14). Here and
further, various constants the value of which is not important are denoted by symbols C1,
C2, and so on. Thus, for a sufficiently small T1 ∈ (0, T], H acts from the set MT1 into itself.
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We denote for i = 1, 2, j = 0, 1, . . . , n− 1 yi
j(t) = H j(yi

0(t), yi
1(t), . . . , yi

n−1(t), ui(t)),

ui(t) = Hn(yi
0(t), yi

1(t), . . . , yi
n−1(t), ui(t)); then, for k = 0, 1, . . . , n− 1, the Lipschitz condi-

tion for B implies that

‖y1
k(t)− y2

k(t)‖Z ≤ C1Tαn

(
n−1

∑
j=0

sup
s∈[0,T]

‖y1
j (s)− y2

j (s)‖Z + sup
s∈[0,T]

‖u1(s)− u2(s)‖U

)
,

‖u1(t)− u2(t)‖U ≤ C2

n−1

∑
j=0

sup
s∈[0,T]

‖y1
j (s)− y2

j (s)‖Z

+C2Tαn

(
n−1

∑
j=0

sup
s∈[0,T]

‖y1
j (s)− y2

j (s)‖Z + sup
s∈[0,T]

‖u1(s)− u2(s)‖U

)

≤ (nC1 + 1)C2Tαn

(
n−1

∑
j=0

sup
s∈[0,T]

‖y1
j (s)− y2

j (s)‖Z + sup
s∈[0,T]

‖u1(s)− u2(s)‖U

)
.

Hence, for a small enough T1 > 0, H is a contraction operator on MT1 and has in the
complete metric space MT1 a unique fixed point (y0

0, y0
1, . . . , y0

n−1, u0).
Since α0 = 1, we have

y0
0(t) = Dσ0 y0

0(t) =
m−1

∑
k=0

Zk(t)zk +

t∫
0

Y0(t− s)B(s, y0
0(s), . . . , y0

n−1(s), u0(s))ds.

Hence, pair (y0
0(t), u0(t)) is a mild solution of (1)–(3).

Each of the two mild solutions (z0, u0) and (z1, u1) corresponds to a fixed point
(z0,Dσ1 z0, . . . ,Dσn−1 z0, u0) and (z1,Dσ1 z1, . . . ,Dσn−1 z1, u1) of the mapping H. The unique-
ness of a fixed point for H in MT1 with a small enough T1 > 0 implies that z0(t) = z1(t),
u0(t) = u1(t) for t ∈ [0, T1].

3.2. Classical Solution

Definition 3. A classical solution of Problem (1)–(3) on [0, T] is pair (z, u) ∈ C((0, T]; DA)×
C([0, T];U ), for which Dσk z ∈ C([0, T];Z), k = 0, 1, . . . , n− 1, Dσn z ∈ C((0, T];Z). Inclusion
(t,Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t)) ∈ Z and Condition (3) for t ∈ [0, T], Equality (1) for t ∈
(0, T] and Condition (2) are fulfilled.

To obtain the unique solvability theorem in the sense of classical solution for the
identification problem, we first use an additional condition B ∈ C(Z; DA).

Theorem 3. We let α0 = 1, αk ∈ (0, 1], k = 1, 2, . . . , n, θ0 ∈ (π/2, π], a0 ≥ 0, A ∈
A{αk}(θ0, a0), zk ∈ DA, k = 0, 1, . . . , n − 1, (0, z0, z1, . . . , zn−1) ∈ Z, Φ, ΦA ∈ L(Z ;U ),
Dσk Ψ ∈ C([0, T];U ), k = 0, 1, . . . , n− 1, Φz0 = Ψ(0), and conditions (A)–(F ) be satisfied,
B ∈ C(Z; DA). Then, Problem (1)–(3) has a unique classical solution (z, u) on segment [0, T1]
with some T1 ∈ (0, T].

Proof. By Theorem 2, Problem (1)–(3) has a mild solution (z(t), u0(t)) on a small enough
segment [0, T1]. Then, f (t) := B(t,Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t)) is contained in class
C([0, T]; DA), and by Theorem 1, z is a classical solution of direct Problem (1), (2) with a
given u0.

But condition B ∈ C(Z; DA) is not often met in applications, so we replace it with
conditions for additional smoothness of B. For this aim, we replace assumptions (E) and
(F ) with stronger conditions:
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(E1) there is such a constant, R > 0, that F is continuous with respect to the totality of
the variables (t, v) on the set SU (u0, R, T), which is Lipschitz continuous in v and is Hölder
continuous with a power of γ ∈ (0, 1] in t;

(F1) there exists R > 0, such that mappings B1(t, y) and B2(t, y, u) are continuous
with respect to the totality of the variables on the set SZn×U ((z0, z1, . . . , zn−1, u0), R, T),
which is Lipschitz continuous in (y, u) and is Hölder continuous with a power of γ ∈ (0, 1]
in t.

Lemma 3. We let α ∈ (0, 1), h, Dαh ∈ C([0, T]Z); then,

∃C > 0 ∀s, t ∈ [0, T] ‖h(s)− h(t)‖Z ≤ C‖Dαh‖C([0,T];Z)|s− t|α.

Proof. We take 0 ≤ s < t ≤ T; hence,

h(t) = D1 J1h(t) = D1 Jα J1−αh(t) = JαD1 J1−αh(t) = JαDαh(t),

since J1−αh(0) = 0. Then,

h(t)− h(s) = JαDαh(t)− JαDαh(s)

=

s∫
0

(t− τ)α−1 − (s− τ)α−1

Γ(α)
Dαh(τ)dτ +

t∫
s

(t− τ)α−1

Γ(α)
Dαh(τ)dτ,

‖h(t)− h(s)‖Z ≤ ‖Dαh‖C([0,T];Z)

 (t− s)α

Γ(α + 1)
+

∣∣∣∣∣∣
s∫

0

t∫
s

(r− τ)α−2

Γ(α− 1)
drdτ

∣∣∣∣∣∣


=
‖Dαh‖C([0,T];Z)

Γ(α + 1)

(t− s)α + α

∣∣∣∣∣∣
t∫

s

(rα−1 − (r− s)α−1)dr

∣∣∣∣∣∣


≤
‖Dαh‖C([0,T];Z)

Γ(α + 1)

(t− s)α + α

t∫
s

(r− s)α−1dr

 =
2‖Dαh‖C([0,T];Z)

Γ(α + 1)
(t− s)α.

Theorem 4. We let α0 = 1, αk ∈ (0, 1], k = 1, 2, . . . , n, θ0 ∈ (π/2, π], a0 ≥ 0, A ∈
A{αk}(θ0, a0), zk ∈ DA, k = 0, 1, . . . , n − 1, (0, z0, z1, . . . , zn−1) ∈ Z, Φ, ΦA ∈ L(Z ;U ),
Dσk Ψ ∈ C([0, T];U ), k = 0, 1, . . . , n− 1, Dσn Ψ ∈ Cγ([0, T];U ), γ ∈ (0, 1], Φz0 = Ψ(0), and
conditions (A)–(D), (E1), (F1) be satisfied. Then, Problem (1)–(3) has a unique classical solution
(z, u) on segment [0, T1] with some T1 ∈ (0, T].

Proof. As before, (z(t), u0(t)) is a mild solution of (1)–(3) on some small enough segment
[0, T1], which exists by Theorem 2. We take α ∈ (0, min{αk : k = 0, 1, . . . , n}), α ≤
γ. Then, due to Remark 2, for k, j ∈ {0, 1, . . . , n − 1}, k > j, we have DαDαj Zk(t) =
DαYσn−σk−1+σj(t) = Yσn−σk−1+σj+α(t) by Formula (5),

‖DαDαj Zk(t)‖L(Z) = ‖Yσn−σk−1+σj+α(t)‖L(Z) ≤ Ctσk−σj−α, t ∈ [0, T],

σk − σj − α ≥ αk − α > 0. If k < j, zk ∈ DA; then, we have, due to (5), DαDαj Zk(t)zk =
DαYσj−σk−1(t)Azk = Yσj−σk−1+α(t)Azk,

‖DαDαj Zk(t)zk‖Z = ‖Yσj−σk−1+α(t)Azk‖Z ≤ Ctσn−σj+σk−α‖Azk‖Z ,
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σn − σj + σk − α ≥ αn + α0 − 1− α = αn − α > 0. In addition, for zk ∈ DA,

‖Dα(Dσk Zk(t)zk − zk)‖Z = ‖DαY−1(t)Azk‖Z = ‖Yα−1(t)Azk‖Z ≤ Ctσn−α‖Azk‖Z ,

σn − α = α1 + α2 + . . . αn − α > 0. Thus, DαDσj Zk(·)zk, Dα(Dσk Zk(t)zk − zk) ∈ C([0, T];Z)
for zk ∈ DA, k, j ∈ {0, 1, . . . , n− 1}, k 6= j; therefore, by Lemma 3,Dσj Zk(·)zk ∈ Cα([0, T];Z).

Moreover, Equality (10) implies that

DαDαj

t∫
0

Y0(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds

= D1
t∫

0

Yσj−1+α(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds

=

t∫
0

Yσj+α(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds,

∥∥∥∥∥∥DαDαj

t∫
0

Y0(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds

∥∥∥∥∥∥
Z

≤ C
σn − σj − α

max
s∈[0,t]

‖B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))‖Z tσn−σj−α.

Here, we use inequalities ‖Yσj−1+α(t)‖L(Z) ≤ Ctσn−σj−α, σn − σj − α ≥ αn − α > 0. Hence,

Dαj

t∫
0

Y0(t− s)B(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(s))ds ∈ Cα([0, T];Z)

and Dαj z ∈ Cα([0, T];Z), j = 0, 1, . . . , n− 1.
We recall that u0(t) = F(t, v(t)), where

v(t) = Dσn Ψ(t)−ΦA
n−1

∑
k=0

Zk(t)zk −ΦB1(t,Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t))

−
t∫

0

ΦAY0(t− τ)B(τ,Dσ0 z(τ),Dσ1 z(τ), . . . ,Dσn−1 z(τ), u(τ))dτ.

Consequently, under conditions (E1), (F1),

u0(t)− u0(s) = F(t, v(t))− F(s, v(s)) = F(t, v(t))− F(t, v(s)) + F(t, v(s))− F(s, v(s)),

‖u0(t)− u0(s)‖U ≤ C1(|s− t|α + ‖v(t)− v(s)‖U ) ≤ C1|s− t|α+

+C2‖B1(t,Dσ0 z(t),Dσ1 z(t), . . . ,Dσn−1 z(t))− B1(t,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s))‖Z
+C2‖B1(t,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s))− B1(s,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s))‖Z

≤ C3|s− t|α + C3

n−1

∑
k=0
‖Dσk z(s)−Dσk z(s)‖Z ≤ C3|s− t|α.

Therefore, mapping t → B(t,Dσ0 z(s),Dσ1 z(s), . . . ,Dσn−1 z(s), u(t)) satisfies the Hölder
condition with power α due to condition (F1). Thus, by Theorem 1, z is a solution of direct
problem (1), (2) with a given u0; therefore, (z, u0) is a classical solution of identification
problem (1)–(3).
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4. Time-Fractional Phase Field System of Equations

We let Ω ⊂ Rd be a bounded domain with a smooth boundary ∂Ω, δ, ν, κ ∈ R, α0 = 1,
α1, α2, . . . , αn ∈ (0, 1), σk = α0 + α1 + · · ·+ αk − 1, k = 0, 1, . . . , n; ∆ = ∂2

∂2ξ1
+ · · ·+ ∂2

∂2ξd
is

the Laplace operator, 〈·, ·〉 is the inner product in space L2(Ω), ηl ∈ H2(Ω), l = 1, 2, . . . , 2n.
We consider problem

Dσk
t x(ξ, 0) = xk(ξ), Dσk

t y(ξ, 0) = yk(ξ), k = 0, 1, . . . , n− 1, ξ ∈ Ω, (16)

(1− δ)x(ξ, t) + δ
∂x
∂n

(ξ, t) = 0, (1− δ)y(ξ, t) + δ
∂y
∂n

(ξ, t) = 0, (ξ, t) ∈ ∂Ω× [0, T], (17)

〈x(·, t), ηl〉 = φl(t), 〈y(·, t), ηl〉 = ψl(t), l = 1, 2, . . . , 2n, t ∈ [0, T], (18)

to the system of equations in Ω× [0, T],

Dσn
t x(ξ, t) = ∆x(ξ, t)− ∆y(ξ, t) +

n−1

∑
k=0

u1
k(t)D

σk
t x(ξ, t) +

n−1

∑
k=0

v1
k(t)D

σk
t y(ξ, t) + f (ξ, t), (19)

Dσn
t y(ξ, t) = ν∆y(ξ, t)− κy3(ξ, t)+

n−1

∑
k=0

u2
k(t)D

σk
t x(ξ, t)+

n−1

∑
k=0

v2
k(t)D

σk
t y(ξ, t)+ g(ξ, t) (20)

with unknown functions x, y, ui
k, vi

k, k = 0, 1, . . . , n − 1, i = 1, 2. At n = 1, α1 = 1,
u1

k = v1
k = 0, k = 0, 1, . . . , n− 1, u2

k = v2
k = 0, k = 1, 2, . . . , n− 1, System (19), (20) up to

linear replacement x(ξ, t) = x̃(ξ, t) + l
2 ỹ(ξ, t), y(ξ, t) = l

2 ỹ(ξ, t), l ∈ R, and stretching over
t coincide with the linearization of phase field equations [29,30].

We put j ∈ N, j > d/2, Z = (H j(Ω))2,

A =

(
∆ −∆
0 ν∆

)
, DA = (H j+2

δ (Ω))2,

H j+2
δ (Ω) :=

{
h ∈ H j+2(Ω) :

(
δ

∂

∂n
+ 1− δ

)
h(ξ) = 0, ξ ∈ ∂Ω

}
.

Therefore, A ∈ C l(Z).
By {ϕk:k ∈ N}, we denote orthonormal in the sense of the inner product 〈·, ·〉 in L2(Ω)

eigenfunctions of the Laplace operator with domain H j+2
δ (Ω), which are numbered in the

order of non-increasing eigenvalues {λk:k ∈ N} taking into account their multiplicities.

Theorem 5. We let α0, α1, . . . , αn ∈ (0, 1), α0 + αn > 1, σn = 1, ν > 0, δ ∈ R, j ∈ N0 :=
N∪ {0}, then A ∈ A{αk}(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0 in this case σ(A) = {λk, νλk :
k ∈ N}.

Proof. We take the basis {ϕk : k ∈ N} in L2(Ω) and obtain for λ 6= λk, λ 6= νλk, k ∈ N
operators

λσn I − A =

(
λI − ∆ ∆

0 λσn I − ν∆

)
,

(λσn I − A)−1 =
∞

∑
k=1

(
1

λ−λk
− λk

(λ−λk)(λ−νλk)

0 1
λ−νλk

)
〈·, ϕk〉ϕk.

We take arbitrary θ0 ∈ (π/2, π), a0 > max{λk, νλk : k ∈ N}; then, for any a ≥ a0, λ ∈ Sθ0,a0 ,∣∣∣∣ 1
λ− λk

∣∣∣∣ ≤ −1
|λ− a| sin θ0

,
∣∣∣∣ 1
λ− νλk

∣∣∣∣ ≤ −1
|λ− a| sin θ0

,
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∣∣∣∣ λk
(λ− λk)(λ− νλk)

∣∣∣∣ = ∣∣∣∣ 1
(1− λ/λk)(λ− νλk)

∣∣∣∣ ≤ C1

|λ− a| sin2 θ0

for some C1 > 0, since for all λ ∈ Sθ0,a0 , k ∈ N,∣∣∣∣ 1
1− λ/λk

∣∣∣∣ ≤ C1.

Therefore, for all λ ∈ Sθ0,a0 ,

‖Rλσn (A)‖2
L(Z) ≤

C2

|λσn − a|α0 |λ|σn−α0

and A ∈ A{αk}(θ0, a0).

Theorem 6. We let α0 = 1, α1, α2, . . . , αn ∈ (0, 1), σn = 1, ν > 0, δ, κ ∈ R, j ∈ N, j > d/2,
g, h ∈ C([0, T]; H j(Ω)), xk, yk ∈ H2+j

δ (Ω), k = 0, 1, . . . , n− 1, ηl ∈ H2(Ω), Dσk φl ,Dσk ψl ∈
C([0, T];R), k = 0, 1, . . . , n, 〈x0, ηl〉 = φl(0), 〈y0, ηl〉 = ψl(0), l = 1, 2, . . . , 2n,

det


Dσ0 φ1(t) Dσ0 ψ1(t) . . . Dσn−1 φ1(t) Dσn−1 ψ1(t)
Dσ0 φ2(t) Dσ0 ψ2(t) . . . Dσn−1 φ2(t) Dσn−1 ψ2(t)

. . . . . . . . . . . . . . .
Dσ0 φ2n(t) Dσ0 ψ2n(t) . . . Dσn−1 φ2n(t) Dσn−1 ψ2n(t)

 6= 0 (21)

for all t ∈ [0, T]. Then, Problem (16)–(20) has a unique mild solution.

Proof. We take U = R4n, (bk, ck) ∈ Z , k = 0, 1, . . . , n− 1, ui
k, vi

k ∈ R, k = 0, 1, . . . , n− 1,
i = 1, 2,

B(t, b0, c0, . . . , bn−1, cn−1, u1
0, v1

0, . . . , u1
n−1, v1

n−1, u2
0, v2

0, . . . , u2
n−1, v2

n−1)

=


n−1
∑

k=0
u1

kbk +
n−1
∑

k=0
v1

kck + f (·, t)

n−1
∑

k=0
u2

kbk +
n−1
∑

k=0
v2

kck − κc3
0 + g(·, t)

.

Hence, B : Zn ×U → Z ,

B1(t, b0, c0, . . . , bn−1, cn−1) =

(
f (·, t)

−κc3
0 + g(·, t)

)
.

We have Φ = (Φ1, Φ2, . . . , Φ2n), where for h = (h1, h2) Φlh = (〈h1, ηl〉, 〈h2, ηl〉),
l = 1, 2, . . . , 2n. Then,

Φl Ah = (〈∆h1 − ∆h2, ηl〉, 〈ν∆h2, ηl〉) = (〈h1 − h2, ∆ηl〉, 〈h2, ν∆ηl〉), l = 1, 2, . . . , 2n,

since ηl ∈ H2(Ω), l = 1, 2, . . . , 2n. Hence, ΦA ∈ L(Z ;U ).
Condition (B) is satisfied due to Condition (21) at t = 0. In Condition (C), we take for

ulk, vlk, ui
k, vi

k ∈ R, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , 2n, i = 1, 2, B3 : R4n(n+1) → R4n,

B3(u10, v10, . . . , u2n n−1, v2n n−1, u1
0, v1

0, . . . , u1
n−1, v1

n−1, u2
0, v2

0, . . . , u2
n−1, v2

n−1)

=



u10u1
0 + v10v1

0 + · · ·+ u1 n−1u1
n−1 + v1 n−1v1

n−1
. . .

u2n 0u1
0 + v2n 0v1

0 + · · ·+ u2n n−1u1
n−1 + v2n n−1v1

n−1
u10u2

0 + v10v2
0 + · · ·+ u1 n−1u2

n−1 + v1 n−1v2
n−1

. . .
u2n 0u2

0 + v2n 0v2
0 + · · ·+ u2n n−1u2

n−1 + v2n n−1v2
n−1

.
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By Inequality (21), Condition (D) is valid.
Due to inequality j > d/2, by virtue of the Sobolev embedding theorem, Z ⊂ (C(Ω))2.

In such a case, a nonlinear operator N(b0, c0) = (0,−κc3
0) acts from Z into Z and satisfies

the local Lipschitz condition. Therefore, Condition (F ) is satisfied by the construction of
operators B1 and B2 = B− B1. In addition, F(t, v) = G(t)−1v, where matrix

G(t) =


Dσ0 φ1(t) Dσ0 ψ1(t) . . . Dσn−1 φ1(t) Dσn−1 ψ1(t)
Dσ0 φ2(t) Dσ0 ψ2(t) . . . Dσn−1 φ2(t) Dσn−1 ψ2(t)

. . . . . . . . . . . . . . .
Dσ0 φ2n(t) Dσ0 ψ2n(t) . . . Dσn−1 φ2n(t) Dσn−1 ψ2n(t)

 ∈ C([0, T];R2n×2n),

hence, due to (21) G−1 ∈ C([0, T];R2n×2n), Condition (E) is fulfilled.
Reference to Theorems 2 and 5 completes the proof.

By slightly increasing the smoothness of some data, we obtain a theorem on the
classical solution of identification problem (16)–(20).

Theorem 7. We let α0 = 1, α1, α2, . . . , αn ∈ (0, 1), σn = 1, ν > 0, δ, κ ∈ R, j ∈ N, j > d/2,
g, h ∈ Cγ([0, T]; H j(Ω)), γ ∈ (0, 1], xk, yk ∈ H2+j

δ (Ω), k = 0, 1, . . . , n − 1, ηl ∈ H2(Ω),
Dσk φl ,Dσk ψl ∈ C([0, T];R), k = 0, 1, . . . , n − 1, Dσn φl ,Dσn ψl ∈ Cγ([0, T];R), 〈x0, ηl〉 =
φl(0), 〈y0, ηl〉 = ψl(0), l = 1, 2, . . . , 2n, Condition (21) be fulfilled for all t ∈ [0, T], G−1 ∈
Cγ([0, T];R2n×2n). Then, Problem (16)–(20) has a unique classical solution.

Proof. Under the additional condition g, h ∈ Cγ([0, T]; H j(Ω), assumption (E1) is satisfied.
Due to condition G−1 ∈ C([0, T];R2n×2n), assumption (F1) is valid. By Theorems 4 and 5,
we obtain the required result.

5. Conclusions

The obtained abstract results of the unique solvability in the sense of mild and classical
solutions for a wide new class of identification problems can find their applications in the
study of coefficient inverse problems for various evolutionary equations and systems of
equations with the general fractional derivative. In particular, it can be useful for parabolic
equations, for equations of hydrodynamics, the theory of visoelasticity, etc. Moreover,
the unique solvability theorems can be used for the correct formulation of initial boundary
value problems in applied research and for the development of numerical methods for
solving these problems.
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