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Abstract: Mathematical modeling and analysis of biologically inspired systems has been a fascinating
research topic in recent years. In this work, we present the results obtained from the simulation of
an elastic rod (that mimics a flagellum axoneme) rotational motion in a viscous fluid by using the
lattice Boltzmann method (LBM) combined with an immersed boundary method (IBM). A finite
element model consists of a set of beam and truss elements used to discretize the flagellum axoneme
while the fluid flow is solved by the well-known LBM. The hydrodynamic coupling to maintain the
no-slip boundary condition between the fluid and the elastic rod is conducted with the IBM. The
rod is actuated with a torque applied at its base cross-section that acts as a driving motor of the
axoneme. We simulated the rotational dynamics of the rod for three different rotational frequencies
(low, medium, and high) of the motor. To compare with previous publication results, we chose
the sperm number Sp = L[(4πµω)/(EI)]1/4 as the validation parameter. We found that at the low
rotational frequency, f = 1.5 Hz, the rod performs stable twirling motion after attaining an equilibrium
state (the rod undergoes rigid rotation about its axis). At the medium frequency, f = 2.65 Hz, the
rod undergoes whirling motion, where the tip of the rod rotates about the central rotational axis
of the driving motor. When the frequency increases further, i.e., when it reaches the critical value,
fc ≈ 2.7 Hz, the whirling motion becomes over-whirling, where the tip of the filament falls back
to the base and performs a steady crank-shafting motion. All three rotational dynamics, twirling,
whirling, and over-whirling, and the critical value of rotational frequency are in good agreement
with the previously published results. We also observed that our present simulation technique is
computationally more efficient than previous works.

Keywords: lattice Boltzmann method; immersed boundary method; flagellum mathematical analysis;
axoneme mathematical model; twirling

MSC: 65K05; 65M75; 76M27; 76A02

1. Introduction

Bio-fluid dynamics is one of the most fascinating and emerging research fields since
biological flows, such as blood flow through arteries, sperm, cilia, and bacterial motion
in a viscous fluid, are ubiquitous. The propulsion of a bacterial flagellum (a curvy helical
filament of protein) in a viscous fluid has attracted many researchers in the field of biological
fluid dynamics. A bacterial cell contains a single flagellum or multiple flagella attached to
different sites of the cell body to propel in a viscous environment. The cytoskeleton of a
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flagellum is also known as the axoneme, which is of a flexible rod (elastic in nature)-like
structure. The flagellum axoneme undergoes large bending deformations under the action
of Dynein motor proteins that generate trust for propulsion in a viscous fluid [1]. The
interaction of the active dynein links with passive structural elements (nexin links and
radial spokes) produces a coordinated propagation of bending waves along the flagellum
length. The exact mechanism by which a flagellum produces its motion has not yet been
elucidated until now. Understanding the interactions between the elastic structure of a
filament and viscous fluid is a crucial step in developing microfluidic systems powered by
artificial swimmers and cilia.

Inspired by bacterial flagella motion in a viscous environment, during the past few
years, many theoretical and numerical studies [2–7] have been carried out to elucidate the ro-
tational dynamics of the elastic rod at a very low Reynolds number, Re. In the conventional
computational approaches such as the arbitrary Lagrangian–Euler method (ALE) [8–10], a
body-fitted grid is used to simulate fluid–structure interaction (FSI) problems involving
complex boundaries. These kinds of conformal mesh methods require frequent mesh
generation and reconstruction techniques, which require a complex algorithm and are
computationally intensive to simulate FSI problems of elastic bodies. Furthermore, a large
deformation of elastic bodies may lead to grid quality deterioration. Conversely, in a
non-conformal mesh method, a fixed Cartesian grid is used, which is simpler to handle FSI
problems. The immersed boundary method (IBM) developed by Peskin [11,12] has been
successfully used by several researchers to solve fluid flow and heat transfer problems with
complex moving boundaries on a fixed Cartesian grid system.

Camalet et al. [2] considered a two-dimensional model for the beating motion of
an elastic filament in a viscous fluid and showed that the wave patterns induced by the
filament motion were only dependent on the filament bending rigidity and the viscous
drag. They restricted their study to the linear regime of instability and small deformations.
Wolgemuth et al. [3] extended the Camalet et al. [2] study to a three-dimensional rotational
motion of an elastic rod subjected to a twisting force at one of its ends by considering non-
linear instabilities. They observed two stages for the rod’s rotational motion: twirling (the
rod rotates about its centerline) and whirling (the rod’s centerline wriggles and crankshafts
around its rotational axis in a steady state). They also obtained a value for critical frequency,
where there is a shape transition from twirling to whirling. Lim and Peskin [4] investi-
gated the same problem using the immersed boundary method by considering a neutrally
buoyant elastic filament rotational motion that mimics a flagellar moment in a viscous
fluid. They modeled the rod with a flexible cylindrical tube and assigned a set of immersed
boundary (IB) points at the inner and outer layer of the cylinder, and the fluid flow was
solved by the Navier–Stokes equations. They reported that their filament also undergoes
an over-whirling (a subcritical shape transition from whirling motion, where the filament
almost folds back on itself) motion in addition to twirling and whirling motions. With the
flexible cylindrical tube model, they could obtain the critical frequency value, which was
about 3.5 times smaller than that reported in Ref. [3].

Wada and Netz [5] investigated the nonlinear dynamics of an elastic filament subjected
to a rotational force at its base with the Langevin dynamics to study the effect of thermal
fluctuations on the whirling behavior of the filament. They found that thermal fluctuations
play a crucial role in the transition behavior of the filament from whirling to over-whirling.
Manghi et al. [6] used the Stokesian simulations technique to study the dynamics of an
elastic nanorod rotational motion. They observed that, at a critical torque, the nanorod
that was initially held straight and slightly tilted undergoes a shape bifurcation to a helical
state. In a review paper, Powers [7] provided an expression for the critical frequency of the
twirling and whirling motion of an elastic rod immersed in a viscous fluid by using the
slender-body and resistive-force theories. Their expression can roughly estimate the critical
frequency obtained in Ref. [4]. Maniyeri et al. [13] simplified the Lim and Peskin [4] method
by assigning IB points only at the outer surface of the flexible cylinder immersed in a viscous
fluid. They reported that with their simplified model, they could reproduce the same
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simulation results of Lim and Peskin qualitatively with very few computational resources.
Goldstein et al. [14] studied the dynamics of a twisted elastic filament in a viscous fluid
using a nonlinear theory that dynamically couples the twist and bend degrees of freedom.
They observed that the twisted filament relaxed into a straight shape (geometric untwisting)
only by bending elasticity rather than by axial rotation. Coq et al. [15] investigated the
propulsive dynamics of a flexible filament in a viscous fluid with a simple linear model
and observed that the propulsive force rose monotonically with the torque amplitude
when they applied two transverse oscillating torques, and a discontinuous shape transition
occurred when the filament was subjected to a constant axial torque. They validated their
theoretical results with an experiment and found that the filament oscillating dynamics
strongly depend on the anchoring conditions. Qian et al. [16] studied the deformation of
an elastic rod rotating in a viscous fluid numerically and experimentally. They applied a
constant torque at the rod base and found that, at low torque, the rod bends gently and
creates a small propulsive force, and, at a critical torque, the rod undergoes a helical shape
with increased propulsive force.

The lattice Boltzmann method (LBM) [17,18] has emerged as a prominent computa-
tional tool for solving various complex fluid flow problems during the past several decades.
In LBM, one solves for the particle density distribution functions (PDF) (by obtaining the
solution for the Boltzmann kinetic equation on a discrete lattice mesh) instead of directly
solving the pressure and velocity fields. The pressure and velocity fields can then be
obtained by evaluating the hydrodynamic moments of PDF [18]. Because of its several
advantages [19] compared to the conventional Navier–Stokes equations solvers, in recent
decades, LBM has been widely used as an alternative CFD tool to conduct mathematical
analysis on various multiphysics problems [20–25]. Research on developing a numerical
technique based on coupling LBM and IBM for solving fluid–structure interaction (FSI)
problems has attained considerable attention among the CFD community to utilize the
features of both LBM and IBM. Simulation of biologically inspired fluid dynamic problems
by using immersed boundary lattice Boltzmann method (IBLBM) has been a research
hotspot in recent years. Some of the research studies are transient deformation of elastic
capsules in simple shear flow at low and moderate Re [26], migration and aggregation of
red blood cells (RBC) in a two-dimensional micro-channel [27], movement of microparticles
in pulmonary acini [28], deformation behavior of RBC flowing in a microfluidic device
of a rectangular cross-section for different capillary numbers [29], lateral migration of
RBC in a circular channel [30], dispersion of nanoparticles in a viscous fluid with RBC
Suspension [31], simulation of ion transport through a pentameric ion channel [32] that
encoded in COVID-19. From the above literature, we can say that most of the studies based
on IBLBM pertained to RBC migration and/or microparticle migration.

As mentioned before, Lim and Peskin [4] and Maniyeri et al. [13] simulated the elastic
rod rotational motion using a finite volume method combined with IBM. However, their
model consists of a complex network of springs, which does not mimic the real flagella,
computationally intensive and difficult to model. The main objective of this work is to
develop a simplified finite element model for the flagellum axoneme that exactly mimics
the axoneme internal structure that consists of microtubule doublets connected by nexin
links and radial spokes. Another objective of this study is to develop a numerical method
based on the combination of LBM and IBM methods to utilize the advantages of both
methods in dealing with biological fluid systems. The remainder of this paper is organized
as follows. The details of the numerical method proposed in this work are presented in
Section 2. The results obtained from the present scheme are discussed in Section 3. The
concluding remarks of the present work are mentioned in Section 4.

2. Simulation Methodology
2.1. Simulation Setup

The cytoskeleton of a flagellum is also known as the axoneme, which consists of nine
microtubule doublets (a combination of A and B tubules) surrounding a central pair of
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singlet microtubules, as shown in Figure 1. Peripheral microtubules are linked to one
another via the passive nexin links and active dynein links, and the central microtubules
are linked to the peripheral microtubules via the radial spokes. In this work, we developed
a three-dimensional model for a flagellum by representing each microtubule doublet of
the axoneme as long slender beams that pass through the centers of each doublet. There
are a total of eleven microtubules (nine doublets at the periphery of the flagellum and
one central pair). To simplify the model and save computational time, we consider six
beams at the periphery and one central beam. Figure 2b shows the discretized model of the
flagellum. A beam element is used to discretize each doublet (see Figure 2c for details of a
single cross-section; the green color elements show beam elements), and the nexin links
[black color elements of Figure 2c] and radial spokes [the blue color elements of Figure 2c]
are modeled with truss elements.

Figure 1. Cross-section of an axoneme of a flagellum. Figure is adopted from Wikipedia. 
 

 

 
Axioms 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/axioms 

 
Figure 2. (a) A bacterial cell with a pair of flagella; (b) simulation model of a single flagellum;
(c) details of each cross-section; (d) front view of flagellum when its shape is straight.

Figure 3 shows the simulation setup. All the simulations are performed inside a cubical
domain of size 200 µm. The computational domain is split into 41× 41× 41 lattice grid
points, so that the grid size is ∆x = ∆y = ∆z ≡ 5 µm. The periodic boundary conditions
are used in the x-, y-, and z-directions. The length and the radius of the elastic rod are set
as L = 100 µm and Ra = 5 µm, respectively. The center of the first cross-section (starting
position of the central pair) is located at [XC, YC, ZC] = [100, 100, 50] µm. The positions for
the remaining IB points in the cross-section are calculated based on the equations of the
hexagon cross-section. Similarly, the positions for the IB points of other cross-sections are
set based on the beam element size of le = 5 µm. We applied a motor force (discussed in
detail in Section 2.2) that acts tangentially to the first cross-section with an angular velocity
w. The equilibrium configuration of the rod is straight in shape, which is symmetric about
the axial axis. Initially, the rod is set in a bent state, i.e., the axial axis of the rod is set slightly
inclined with the z-axis (rotational axis of the motor). The main objective of this study is to
know whether the bent state of the rod attains its equilibrium state (straight state), the bent
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state persists, or it increases with the angular frequency of the motor. We used the IBM to
simulate the motion of the elastic rod while the fluid flow field was evaluated by the LBM.
The following sub-sections will discuss the details of IBM and LBM.

Figure 3. The simulation setup employed in the present work.

2.2. Immersed Boundary Method (IBM)

The Lagrangian force acting on each node i (ranging from 1 to N) of the flagellum is
obtained by using the following equation:

Fi(Xi, t) = Fela,i + Fext,i, (1)

where Fela,i is the elastic force due to the stretching and bending of a beam element of the
flagellum and Fext,i is the motor force which is modeled by applying a torque on the base
(first) cross-section. The elastic force is calculated by

Fela,i = −∇i(Estretch + Ebend)

Estretch = 1
2

N−1
∑

i=1
Kstretch

(
|Xi+1−Xi |

le
− 1
)2

le

Ebend = 1
2

N−1
∑

i=2
Kbend

(
|Xi−1−2Xi+Xi+1|2

l4
e

)
le

, (2)

where Kstretch, Kbend, and le in the above equations are the stretching modulus, bending
modulus, and the equilibrium length of the element, respectively. The stretching constant
value is taken as Kstretch = 4.5 µN-m throughout the simulations. The motor force, which
is only applied to the first cross-section of the flagella, is modeled by

Fext,i =

{
Kmot(Xi,tar(t)− Xi(t)) if i== 1
0 if i 6= 1

, (3)

where Kmot = 5 is motor force constant and Xi,tar is the target node position at time t for
achieving a prescribed rotation. Xi,tar is calculated with the following equation:

Xi,tar(t) =


XC + Ra cos(θi + ωt),
YC + Ra sin(θi + ωt),
ZC

, (4)

After finding Fi(Xi, t) from Equation (1), it is spread to the Eulerian grid for calculating
force acting by a flagellum node on the fluid using the following equation:
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ffl(x, t) = ∑
i

Fi(Xi, t)δ(x− Xi), (5)

where δ(x) is the Dirac delta function used to link the Lagrangian (flagella) and Eulerian
(fluid) forces and velocities. The equation for δ(x) is given by [13] as follows:

δ(x) =
1

∆x3 φ
( x

∆x

)
φ
( y

∆x

)
φ
( z

∆x

)
, (6)

where (x) = (x, y, z) are the Eulerian coordinates values in the x-, y-, and z-directions. We
used the four-point interpolation function for interpolation and extrapolation purposes,
which is given by

φ(r) =


1
8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
0 ≤ |r| ≤ 1

1
8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
1 ≤ |r| ≤ 2

0 2 ≤ |r|

.
(7)

After obtaining the force filed on the fluid, the LBE (clear formulation provided in
Section 2.3) is used to solve the fluid velocity u(x, t) at a Eulerian grid point, x. The velocity
at a Lagrangian node (flagellum) is then interpolated with the following equation:

Ui(Xi, t) = ∑
x

u(x, t)δ(x− Xi)∆x3. (8)

After evaluating the velocity of a flagellum node, the position of the node is updated
from the Euler method by using

Xi(t + ∆t) = Xi(t) + Ui(Xi, t)∆t. (9)

2.3. Lattice Boltzmann Equation (LBE)

In this work, as reported earlier, LBE is used to obtain the fluid velocity field due to
flagellum rotation. In LBE, the fluid pressure and the velocity fields are computed from the
particle distribution functions, fn(x, t), obtained by solving the Boltzmann kinetic equation
at a lattice grid point x at a time t (here, subscript n indicates index for lattice velocity
number ranges from 0 to 19 for the D3Q19 lattice). LBE with body force (due to interaction
between fluid and flagella) is given by [33,34]

fn(x + cn∆t, t + ∆t) = fn(x, t)− 1
λ

(
fn(x, t)− f eq

n (x, t)
)
+

wn∆t
c2

s
ffl(x, t)·cn (10)

where cn is the discrete velocity of fn, wn is the weighing function of fn, λ is the relaxation
time, and cs is the speed of sound. After solving for fn, the fluid density ρ(x, t), and the
velocity u(x, t) fields at lattice grid points are obtained from [23,24],

ρ(x, t) =
b

∑
n=0

fn u(x, t) =
1
ρ

b

∑
n=0

fncn. (11)

The fluid density and velocity at the start of the simulation are set as ρ(x, t) = 1 and
u(x, t) = 0, respectively.

3. Simulation Results

In this section, we present the simulation results obtained from the simulation of the
elastic rod rotational motion in a viscous fluid (for the setup shown in Figure 3) by using
the numerical method described in the previous section. We simulated filament rotating
motion for three types of motion; twirling motion, whirling, followed by over-whirling
motion. In the twirling mode, the rod attains a straight state after some time, i.e., the axial
axis (central beam axis) becomes straight, and the entire rod rotates about the axial axis
as the bending forces are very high compared to viscous forces. In the whirling mode,
the axial axis of the rod is in a bent state, and the tip of the rod rotates about the z-axis
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(motor rotational axis). The whirling motion is highly unstable, and with a slight increase
in the rotational frequency (when the frequency value reaches its peak), the bend of the
rod’s central axis increases dramatically, and the rod folds back on itself and performs
steady-state crank-shafting motion. This kind of motion is known as over-whirling. We
qualitatively compared our simulation results with Lim and Peskin’s [4] results, as the
length scales we have chosen are different from the previous work. As length scales are
different, we have chosen the sperm number, Sp (which is the ratio of bending forces and
the viscous forces), as a comparing option in such a way that both Sp are identical. The
definition of Sp is given by [35]

Sp = L
(

4πµω

EI

)1/4
. (12)

From Lim and Paskin’s work [4], we found that Sp = 6.1 when the angular frequency
of motor torque is f = ω

2π ≡ 1.69 Hz. We used this value to obtain the bending stiffness EI.
Table 1 reports the comparison between numerical parameters used in the present work
and Lim and Peskin’s work.

Table 1. Comparison of numerical parameters used in the present work and Lim and Peskin’s work.

Parameter Present Work Lim and Peskin [4]

Flagellum Length, L 100 µm 278.2 nm
Flagellum Radius, Ra 5 µm 11.5 nm

Fluid Viscosity, µ 0.001 kg/m·s 0.001 kg/m·s
Fluid Density, ρ 1000 kg/m3 1000 kg/m3

Motor Frequency, f 1.69 Hz 1.69 Hz
Bending Stiffness, EI 10× 10−21 N·m2 6.12× 10−31 N·m2

Reynolds Number, Re 5.3× 10−4 3× 10−9

Sperm Number, Sp 6.1 6.1

3.1. Twirling Motion

In this section, the simulation results of the elastic rod behavior when it undergoes
a twirling motion, where the rod rotates like a rigid membrane about its own axis, are
reported. Figure 4 shows the instantaneous three-dimensional shapes of the rod during
twirling motion when the angular frequency of the motor is f = 1.5 Hz. The fluid flow
surrounding the rod is also clearly shown in Figure 5. The motor torque is applied to the
first cross-section, and the rod central beam axis is set at an angle inclined to the motor
rotational axis. The first cross-section of the rod undergoes a rotational motion due to
applied torque. The rotational motion is then transferred to the successive cross-sections
as they are connected with beam elements, which results in the rotational motion for the
entire rod. Initially, the rod is in bent form, as shown in Figure 4. However, after some
time, the rod attains a straight shape (reaches its equilibrium state), i.e., the axial axis of
the rod becomes straight, and the entire rod simply rotates like a rigid body about its axial
axis. When the rod rotates, it drags the surrounding fluid so that the fluid surrounding the
rod also rotates in the same sense as the rod, as shown in Figure 5. This twirling motion
is stable as at lower angular frequencies of the motor; the bending forces are very high
compared to the viscous forces.
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Figure 4. The instantaneous shape of the elastic rod when viewing from the motor end during the
twirling motion at f = 1.5 Hz.

Figure 5. Cont.
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Figure 5. The instantaneous flow filed during the twirling motion at f = 1.5 Hz.

3.2. Whirling Motion

When the frequency increases beyond a critical value, the twirling motion becomes
unstable and is replaced by the whirling motion. In the whirling mode, the rod’s axial axis
is always in a bent state (does not attain a straight shape), and the entire rod rotates about
the symmetrical axis (motor rotational axis, z-axis) at an angular frequency that is different
from f. Therefore, the motion of the filament is not like a rigid body motion. Figure 6 shows
the instantaneous three-dimensional shapes of the rod during whirling motion when the
angular frequency of motor force is f = 2.65 Hz. From the figure, it is seen that the rod
undergoes the whirling motion where the rod initially takes a helical shape, and the rod’s
free end rotates about the central rotational axis of the first cross-section (the driving motor).
Figure 7 shows the instantaneous flow field around the rod during the whirling motion.
It is evident from the figures that fluid also rotates with the rod, and the fluid’s rotational
motion is slightly disturbed at the tip of the rod. This is because the fluid flow rotates along
the rod length, and the rod’s free end whirls around the central axis of the motor.
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Figure 6. Instantaneous shapes of the elastic rod when viewing from the motor end during the
whirling motion at f = 2.65 Hz.

3.3. Over-Whirling Motion

With a slight increase in the frequency (when it reaches its critical value), the bent
amplitude of the rod increases, and the whirling motion converts into the over-whirling
motion (a discontinuous shape transition occurs) when the angular frequency of the motor
is approximately equal to fc ≈ 2.7 Hz. Figure 8 shows the instantaneous shapes of the
rod during over-whirling motion at f = 3.0 Hz. In this mode, the amplitude of the bend
of the rod’s central axis increases dramatically in such a way that the rod’s tip folds back
on itself, and after some time, the tip of the rod comes in front of the base as shown in
Figure 8 (at t = 9.4 s). After folding back, the rod performs a steady crank-shafting motion.
Figure 9 shows the instantaneous fluid flow field along with the rod at three different
cross-sections during the over-whirling motion. Since the rotational frequency is higher,
we can observe a rotating flow field throughout the length of the rod from the beginning of
the simulation. As the rod takes a helical shape and folds back on itself, we can observe a
pumping action of the fluid in the opposite direction of the z-axis as the rod drags the fluid
in the reverse direction.
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Figure 7. The instantaneous flow field during the whirling motion at f = 2.65 Hz.



Axioms 2023, 12, 1011 12 of 15

Figure 8. Instantaneous shapes of the elastic rod when viewing from the motor end during the
over-whirling motion at f = 3.0 Hz.

After qualitatively comparing our simulation results with Lim and Peskin’s [4] results,
we can say that the present simulation results agree well with their results, although we used
a different length scale for the flagellum. The critical frequency value from our simulation
results also approximately matches Lim and Peskin’s results. Lim and Peskin reported
that their simulation technique is computationally very intensive (a typical computation
requires a total CPU time of 43.75 days). Maniyeri and Kang [13] also used the same length
scales as the present work, and they mentioned that their method took a CPU time of 7 days
to run a simulation using an Intel® core i7 processor. In this work, by employing a simple
FEM model that closely mimics the real flagellum, we could well capture all three rotational
dynamics (twirling, whirling, and over-whirling) of the elastic rod rotational motion in a
viscous fluid. Our simulation method only requires 1.5 days of CPU time of an Intel® core
i7 processor, which means that the present simulation technique is computationally more
efficient compared to the methods used in the previous literature. It is worth mentioning
that the greater difference in the CPU time between our case and Lim and Peskin’s case
is mainly due to the difference in the length scales adopted in each case. We can adopt
the same length scales as Lim and Peskin’s work and can match the value for the critical
frequency of shape transition accurately. However, to save computational time, it is not
necessary to consider the exact length scales of the real flagellum to elucidate the physics
behind the propulsion motion of a bacterial flagellum, as the Reynolds number is very
low at both the length scales, Re� 1. Even if we used the same length scales, we believe
that the CPU time is much less than that of Lim and Peskin’s work due to the simple FEM
model of our scheme. We adopted the same length scales as Maniyeri and Kang’s work
and observed that the CPU time of our work is 4.5 times smaller than that of Maniyeri and
Kang’s. Our simulation model can be straightforwardly extended to solve the motion of an
artificial bacteria used in various microfluidic systems.



Axioms 2023, 12, 1011 13 of 15

Figure 9. The instantaneous shape of the elastic rod during the over-whirling motion when f = 3.0 Hz.

4. Conclusions

In this work, we developed a three-dimensional finite element model to simulate the
rotational motion of an elastic rod that mimics a flagellum axoneme in a viscous fluid by
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using the immersed boundary lattice Boltzmann method. The flagellum’s microtubules
arrangement, and nexin links and radial spokes are modelled with beam and truss elements,
respectively. The elastic force on each node of the flagella is obtained from the variational
derivative of total stretching and bending potentials. The fluid flow field is solved by
LBM, while the hydrodynamic interactions between fluid and flagellum are treated with
IBM. A rotational torque is applied at the base of the rod, and simulations are performed
by varying frequency of rotation in the range of 1.5 Hz to 3.0 Hz. With the simplified
model (by avoiding the complex network of the spring used in the previous literature),
we could simulate all three regimes of rotational motion, viz. twirling, whirling, and over
whirling reported in the previous literature. We could also match the critical frequency
value, where whirling motion transits into over-whirling motion, obtained from the present
simulation with Lim and Peskin’s results. After comparing the CPU time, it is found that
our simulation model is computationally more efficient compared to the methods proposed
in the previous literature.
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