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Abstract: The Decision-Theoretic Rough Set model stands as a compelling advancement in the realm
of rough sets, offering a broader scope of applicability. This approach, deeply rooted in Bayesian
theory, contributes significantly to delineating regions of minimal risk. Within the Decision-Theoretic
Rough Set paradigm, the universal set undergoes a tripartite division, where distinct regions emerge
and losses are intelligently distributed through the utilization of membership functions. This research
endeavors to present an enhanced and more encompassing iteration of the Decision-Theoretic Rough
Set framework. Our work culminates in the creation of the Generalized Intuitionistic Decision-
Theoretic Rough Set (GI-DTRS), a fusion that melds the principles of Decision-Theoretic Rough Sets
and intuitionistic fuzzy sets. Notably, this synthesis bridges the gaps that exist within the conventional
approach. The innovation lies in the incorporation of an error function tailored to the hesitancy
grade inherent in intuitionistic fuzzy sets. This integration harmonizes seamlessly with the contours
of the membership function. Furthermore, our methodology deviates from established norms by
constructing similarity classes based on similarity measures, as opposed to relying on equivalence
classes. This shift holds particular relevance in the context of aggregating information systems,
effectively circumventing the challenges associated with the process. To demonstrate the practical
efficacy of our proposed approach, we delve into a concrete experiment within the information
technology domain. Through this empirical exploration, the real-world utility of our approach
becomes vividly apparent. Additionally, a comprehensive comparative analysis is undertaken,
juxtaposing our approach against existing techniques for aggregation and decision modeling. The
culmination of our efforts is a well-rounded article, punctuated by the insights, recommendations,
and future directions delineated by the authors.

Keywords: intuitionistic fuzzy sets; decision-theoretic fuzzy rough set model; three-way decision
model; decision making; efficiency; optimization

MSC: 03E72; 94D05

1. Introduction

Vagueness is a critical problem that many scientists are currently working on [1].
The discovery of effective knowledge from ambiguous data has become a major area of
research [2]. To address this challenge, several techniques have been developed for iden-
tifying uncertain information, such as fuzzy set (FS) theory [3], quotient space theory [4],
and rough set theory (RST) [5]. These theories aim to handle issues arising from ambiguity
and uncertainty.
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The three-way decision (3WD) model, introduced by Yao, is an extension of RST that
focuses on uncertain classification problems [6–8]. Using a set of thresholds, 3WD divides
the universe into three distinct zones: acceptance, deferment, and rejection [9]. Therefore,
three-way decision theory has become a valuable tool for solving challenging problems
in various fields [10–12]. For example, in medical diagnosis, clinicians often have three
options based on a patient’s symptoms: treat the patient, do nothing, or observe the patient
longer [13]. In email filtering [14], texts are assigned to corresponding topics within the
framework of text classification [15]. Wang et al. [16] have worked on the application
of 3WD based on probabilistic dominance relations under IF data. Chen et al. [17] have
proposed a novel model of three-way decision where the relationship between attributes
plays a significant role. Additionally, great progress has been made in related fields [18–21].

Decision-theoretic rough sets (DTRSs), an expanded version of RS in the light of the
Bayesian decision technique, have significantly enhanced three-way decisions [22]. DTRSs
were proposed by Yao et al. [20,23], and the approach includes rational decision semantics
and reflects relevant risks. TWD with DTRSs is obtained from the minimum of the total
risk. Zhang et al. [24] have developed a technique for ranking the alternatives based on
DTRSs. Zhao et al. [25] have explored the area of 3WD with DTRSs in multiset-valued
information tables. Qian et al. [26] have expanded the above-mentioned concept to the
multiorganization of DTRSs. Liang et al. [27] have presented an approach for dual hesitant
fuzzy sets to establish three-way decisions with decision-theoretic rough sets. Moreover,
Liu et al. [28] have designed a new model of the environment of the q-rung orthopair fuzzy
rough set, which establishes three-way decisions with decision-theoretic rough sets. Liu
et al. [29] have contributed to the field by adding probabilistic model criteria with DTRSs.
By considering the modern trend of research to connect and combine different theories,
Liu et al. [18] have presented the notion of fuzzy data with three-way decision-theoretic
rough sets, and Ali et al. [19] have worked on the DTRSs with single-valued neutrosophic
data. Additionally, several models and approaches from experts for DTRSs have been
described [23,24,28,30].

Based on the research reported in [31–35], intuitionistic fuzzy sets (IFSs) have emerged
as a valuable evaluation format for describing uncertainty. IFSs, as described by
Atanassov [36,37], are a more useful concept for representing uncertainty than fuzzy sets
due to their duality characteristic, which is expressed by both a membership degree and a
non-membership degree. IFSs are primarily utilized in conjunction with intuitionistic fuzzy
numbers (IFNs) for decision-making purposes [38–40]. For example, Senapati et al. [41]
proposed a novel aggregation operator to rank alternatives based on multiple attributes
of intuitionistic fuzzy information. Gohain et al. [42] used similarity measures for IFSs
to solve various problems, while Singh et al. [43] combined the theory of IFS and RS to
offer intuitionistic fuzzy rough sets and their application. Liang et al. [44,45] developed the
notion of intuitionistic decision-theoretic rough sets (DTRS) by fusing the idea of three-way
decision-theoretic rough sets with intuitionistic fuzzy sets and demonstrated its applica-
tion with examples. Researchers have explored the 3WD approach of DTRS with various
applications [12,13,46–49].

Motivation for This Study

Qinghua et al. [50] proposed a novel model to connect the theories of DTRS and IFS.
They proposed a 3WD and sequential 3WD model with intuitionistic fuzzy numbers, which
reshapes the 3WD theory based on the Bayesian theory of risk and loss function. In this
approach, the author considered cost parameters as well as attribute values of a universal
set based on intuitionistic fuzzy numbers. They investigated the sequential 3WD model
with IFNs by considering both the IF indices (membership and non-membership indices).
While the theory offers a broad range of applications, there are some areas where it could
be improved. Our motivation in this paper is to improve upon this approach and preserve
the genuine nature of the DTRS theory. To achieve this, we propose a better and expanded
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version of the theory of Generalized Intuitionistic Decision-Theoretic Rough Sets (GI-DTRS).
Our contributions are as follows:

i We will generalize the concept of a three-way decision based on a decision-theoretic
rough set for intuitionistic fuzzy numbers.

ii We will employ similarity classes instead of equivalence classes, which expands the
scope of the approach.

iii We will retain the concept of conditional probabilities, which was ignored in [50],
from the parental theory of the decision-theoretic rough set [22].

iv We will use our proposed approach to show the validity and effectiveness of solving
real-life issues. For this purpose, we will discuss the model of an electronic device for
the special person and use the proposed approach for taking decisions.

v We will deeply discuss the comparative analysis of the developed model and some
existing techniques and show our preference for the mentioned approach.

The rest of this article is distributed as follows: Section 2 contains a brief review of
IFS, 3WD theory, and a decision-theoretic rough set of Yao [22]. Section 3 consists of an
explained review of the existing model of a 3WD with a decision-theoretic model with IFNs
presented by Qinghua et al. [50]; in Section 4, the novel model of generalized IFN-based
DTRS (GI−DTRS) is established. In Section 5, the practical and real-life use of gadgets is
prepared based on the proposed approach for decision-making, which shows the validity
and confirmation of results. Finally, Section 6 concluded the comments and future plans of
the author.

2. Preliminaries

In this section, the theories and structures of the IFSs, 3WD, and DTRS models are
briefly reviewed. Table 1 is added to show the symbols and their descriptions.

Table 1. Symbols and Descriptions.

Symbols Description Symbols Description

IFSs Intuitionistic Fuzzy Sets DTRS Decision-Theoretic Rough Sets
IFNs Intuitionistic Fuzzy Numbers DRs Decision Rules
3WD Three-Way Decision TWDM Three-Way Decision Making

2.1. IFSs: A Brief Overview

Intuitionistic fuzzy sets [36] can be viewed as a powerful tool for indicating hesitancy
involving both membership and non-membership of a component of a set [0, 1]. To be
more precise, intuitionistic fuzzy sets need not adhere to the fundamental tenet of the
FS model that states that if we choose a real integer from [0, 1] to represent the degree
of membership of an element in a fuzzy collection, say a, then the degree of its non-
membership is automatically determined as 1− a. It is assumed in the IFS model that
non-membership should not exceed 1− a. The detailed concepts are discussed below.

Definition 1 ([36]). An intuitionistic fuzzy set Nis defined over a universal set X as follows:

N = {(e, αN(e), βN(e))|αN(e) + βN(e) ≤ 1 ∀ e ∈ X}

where αN(e) : X → [0, 1] and βN(e) : X → [0, 1] represent the grades of membership and non-
membership of e to N, respectively.

The noteworthy property here is that the total of membership and non-membership
grades is less than or equal to 1 and greater than or equal to 0. The hesitation grade for
e to N is defined as ψN(e) = 1− αN(e) − βN(e). For brevity, an IFN can be written as
N(e) = (αN(e), βN(e)).
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Definition 2. Let N(e1) = (αN(e1), βN(e1)) and N(e2) = (αN(e2), βN(e2)) be two IFNs, the
following are some basic operations defined over them.

(1) N(e1)⊕ N(e2) = (αN(e1) + αN(e2)− αN(e1)αN(e2), βN(e1) βN(e2));
(2) N(e1)⊗ N(e2) = (aN(e1)αN(e2), βN(e1) + βN(e2)− βN(e1)βN(e2) );
(3) kN(e1) = 1− (1− aN(e1))

k , (βN(e1))
k); where k is a scalar.

(4) Nc(e1) = (βN(e1), aN(e1)).

2.2. 3WD Based on Rough Set-Theory and DTRS Model

Yao [8] introduced a three-way decision model, and this model consists of two basic
tasks. A trisection, or tri-partition, of the universal set is one task that involves dividing the
set into three pair-wise disjoint areas. The secondary target is to use the right techniques
to respond to situations in one or more regions. A collection of efficient techniques and
strategies known as 3WD are frequently applied in human information processing and
problem-solving. To partition the universal set, Yao designed the approximation classes
and three regions based on a rough set.

We begin this section by reviewing the fundamental ideas related to rough sets
and 3WD.

Definition 3 ([7]). An information system I = (X, At,Vl,M) consisting of a non-empty finite
set X, a set of attributes At, a set of attribute values Vl, and M : X → Vl . An indiscernibility
relation IC where C ⊆ At, is defined as follows:

IC =
{
(e, m) : (e, m) ∈ X2 f or every b ∈ C (b(e) = b(m))

}
IC is an equivalence relation that generates the partition X/IC =

{
[e]IC

∣∣∣e ∈ X
}

. Here, [e]IC
is

an equivalence class of e. The equivalence class [e]IC
is abbreviated to [e].

Definition 4. Given an information system I = (X, At,Vl,M) and a subset of attributes
C ⊆ At, the structural positive, negative, and boundary zones of a concept Ω ⊆ X are respectively
described by:

POSC(Ω) = {[e]C ∈ X/IC : [e]C ⊆ Ω}
NEGC(Ω) =

{
[e]C ∈ X/IC : [e]C ⊆ Ω′

}
BNDC(Ω) =

{
[e]C ∈ X/IC : ¬([e]C ⊆ Ω) ∧ ¬

(
[e]C ⊆ Ω′

)}
where Ω′ denotes the complement of Ω.

Definition 5 ([22]). For an information system I = (X, At,Vl,M) and a subset C ⊆ At, the
rough membership function for Ω ⊆ X is a mapping δ

IC
Ω : X → [0, 1] defined by

δ
IC
Ω (e) = Pr(Ω|[e] ) = |Ω ∩ [e]|

|[e]| for all e ∈ X,

where, Pr(Ω|[e] ) is the conditional probability of classification. Here, | . | indicates the order of
the set.

DTRS is a famous 3WD model based on Bayesian decision theory that minimizes the
risk of several decisions [20]. The result is similar to hypothesis testing in statistics. A
hypothesis is accepted if there is convincing evidence supporting it, rejected if there is
convincing evidence refuting it, and neither accepted nor rejected but needs to be further
evaluated if there is no convincing evidence supporting or refuting it. The interpretation
justifies three-way decision-making based on the risk or cost of different decisions. It needs
an understanding of the cost of acquiring and applying evidence.
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The 3WDM with DTRS theory [20] is succinctly explained here. It begins with a set of
states (Ω,−Ω) designating, respectively, that components are in Ω and not in Ω. In both
of these states, a series of actions is taken as Ac = {aP, aB, aN}, where aP, aB and aN,
respectively, represent the classification of an object e’s acceptance (e ∈ Pos(Ω)), defer-
ment (e ∈ Bnd(Ω)), and rejection (e ∈ Neg(Ω)) decision. The positive region Pos(Ω),
boundary region Bnd(Ω), and negative region Neg(Ω) are three disjoint regions. More-
over, as indicated in Table 2, a matrix M = {ξστ}3×2 (σ = P, B, N, and τ = P, N) pro-
vides the cost parameters. The costs associated with the actions aP, aB, and aN when an
element goes to Ω are ξPP, ξBP, and ξNP. However, the expenses for the corresponding
three actions are denoted by ξPN , ξBN , and ξNN when an item does not belong to Ω. The
classification losses R(aσ|[e]) associated with the three actions are expressed as follows:

R(aP|[e]) = ξPPPr(Ω|[e] ) + ξPNPr(¬Ω|[e])

R(aB|[e]) = ξBPPr(Ω|[e] ) + ξBNPr(¬Ω|[e])

R(aN |[e]) = ξNPPr(Ω|[e] ) + ξNNPr(¬Ω|[e])

Table 2. Cost parameter matrix.

Actions\States Ω −Ω

aP ξPP ξPN

aB ξBP ξBN

aN ξNP ξNN

For minimum-loss decisions, the DTRS theory presents the following decision rules:

(1) If R(aP|[e]) ≤ R(aB|[e]) and R(aP|[e]) ≤ R(aN|[e]), then e ∈ Pos(Ω).
(2) If R(aB|[e]) ≤ R(aP|[e]) and R(aB|[e]) ≤ R(aN|[e]), then e ∈ Bnd(Ω).
(3) If R(aN|[e]) ≤ R(aP|[e]) and R(aN|[e]) ≤ R(aB|[e]), then e ∈ Neg(Ω).

Given the prerequisites of ξPP ≤ ξBP ≤ ξNP, ξNN ≤ ξBN ≤ ξPN , and Pr(Ω|[e] )+
Pr(−Ω|[e]) = 1, the rules 1− 3 can be refined as (TP)− (TN) using two thresholds µ
and ν (0 ≤ ν < µ ≤ 1 ) as below:

(TP) If Pr(Ω|[e] ) ≥ µ, then e ∈ Pos(Ω).

(TB) If ν < Pr(Ω|[e] ) < µ, then e ∈ Bnd(Ω).

(TN) If Pr(Ω|[e] ) ≤ ν, then e ∈Neg(Ω),

where, µ = ξPN−ξBN

(ξPN−ξBN)+(ξBP−ξPP)
, ν = ξBN−ξNN

(ξBN−ξNN)+(ξNP−ξBP)
.

3. 3WD Based on DTRS Model with IFNs: Existing Model

The three-way decision is a very famous and realistic theory that has gained the
attention of many scholars. However, Qinghua et al. [50] extended the model of 3WD
under DTRS based on IFNs.

This section presents a comprehensive revision of the said approach [50]. Certain
shortcomings in the available approach are also highlighted. This section will lead to the
development of the next section, where a novel approach to designing DTRS with IFNs
is proposed. Membership, hesitation, and non-membership degrees are the three charac-
teristics used by IFSs to define ambiguous notions. The membership grade is always seen
as a degree of supporting an object whose aspect is ambiguous, and the non-membership
grade is a degree of opposing an object subject to a particular concept when dealing with
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intuitionistic fuzzy environments. The index that remains after deducting the membership
degree and non-membership degree from one is called the hesitation margin. This parame-
ter depicts the neutrality of an idea. Utilizing the three indices, Qinghua et al. [50] designed
IFNs-based DTRS as below.

The intuitionistic fuzzy information system IFI = (X, At, IVl,M) consists of a non-
empty finite set X, a collection of attributes At and a collection of IF attribute values
IVl. Thus, IVl contains all IFNs N(e) = (αN(e), βN(e)). Moreover, M : X → IVl is used
to assign IFNs to the elements of X. Furthermore, an IF cost parameter matrix is taken
as IM = {N(ξστ) = (αN(ξστ), βN(ξστ))}3×2(σ = P, B, N, and τ = P, N) is shown
in Table 3. Distinct from the costs ξστ in matrix M, IFNs N(ξστ) are the results of the
cost parameters in IM. To present a superior analysis, N(ξPP) which is expressed by the
membership degree αN(ξPP) and the non-membership degree βN(ξPP), is the cost if an
object takes aP lying in the positive zone.

Table 3. Intuitionistic Fuzzy Cost Parameter Matrix.

Actions\States Ω −Ω

aP N(ξPP) = (αN(ξPP), βN(ξPP)) N(ξPN) = (αN(ξPN), βN(ξPN))

aB N(ξBP) = (αN(ξBP), βN(ξBP)) N(ξBN) = (αN(ξBN), βN(ξBN))

aN N(ξNP) = ((ξNP), βN(ξNP)) N(ξNN) = ( αN(ξNN), βN(ξNN))

The cost parameters meet the relationships stated below:

αN(ξPP) < αN(ξBP) < αN(ξNP)

βN(ξNP) < βN(ξBP) < βN(ξPP)

αN(ξNN) < αN(ξBN) < αN(ξPN)

βN(ξPN) < βN(ξBN) < βN(ξNN)

(1)

The classification losses of e based on IFNs are shown as follows:

R(aP|[e]) = N(ξPP)α(e)⊕ N(ξPN)β(e)

R(aB|[e]) = N(ξBP)α(e)⊕ N(ξBN)β(e)

R(aN |[e]) = N(ξNP)α(e)⊕ N(ξNN)β(e)

(2)

Because α(e) + β(e) + ψ(e) = 1, losses in (2) can be written as

R(aP|[e]) = N(ξPP)α(e)⊕ N(ξPN)(1− β(e)− ψ(e))

R(aB|[e]) = N(ξBP)α(e)⊕ N(ξBN)(1− β(e)− ψ(e))

R(aN |[e]) = N(ξNP)α(e)⊕ N(ξNN)(1− β(e)− ψ(e))

(3)

Next, based on Bayesian decision theory, the minimum-loss decision rules are as fol-
lows:

(1) If α(R)P ≤ α(R)B and α(R)P ≤ α(R)N , then e ∈ Pos(Ω)
(2) If α(R)B ≤ α(R)P and α(R)B ≤ α(R)N then e ∈ Bnd(Ω)
(3) If α(R)N ≤ α(R)P and α(R)N ≤ α(R)B then e ∈Neg(Ω)

Utilizing Equations (1) and (3), the above decision rules can be rewritten as (P1)− (N1).

(P1) If α(e) ≥ θ1 and α(e) ≥ σ1, then e ∈ Pos(Ω)

(B1) If α(e) ≤ θ1 and α(e) ≥ τ1, then e ∈ Bnd(Ω)
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(N1) If α(e) ≤ ω1 and α(e) ≤ σ1, then e ∈Neg(Ω),

where,

θ1 = (1− ψ(e))
ln
[

1−αN(ξBN)
1−αN(ξPN)

]
ln
(

1−αN(ξPP)
1−αN(ξBP)

× 1−αN(ξBN)
1−αN(ξPN)

) (4)

σ1 = (1− ψ(e))
ln
[

1−αN(ξNN)
1−αN(ξPN)

]
ln
(

1−αN(ξPP)
1−αN(ξNP)

× 1−αN(ξNN)
1−αN(ξPN)

) (5)

τ1 = (1− ψ(e))
ln
[

1−αN(ξNN)
1−αN(ξBN)

]
ln
(

1−αN(ξBP)
1−αN(ξNP)

× 1−αN(ξNN)
1−αN(ξBN)

) (6)

The decision rules (DRs) (P1)− (N1) have so far been characterized by utilizing three
thresholds θ1(e), σ1(e) and τ1(e) from the membership degree perspective. Moreover, DRs
(4)–(6) from the perspective of non-membership degree are defined in [50] as below:

(4) If β(R)P ≥ β(R)B and β(R)P ≥ β(R)N , then e ∈ Pos(Ω)
(5) If β(R)B ≥ β(R)P and β(R)B ≥ β(R)N then e ∈ Bnd(Ω)
(6) If β(R)N ≥ β(R)P and β(R)N ≥ β(R)B then e ∈Neg(Ω)

Because β(e) = 1− α(e)− ψ(e), the thresholds in decision rules (P1)− (N1) can be
derived based on non-membership. Utilizing Equation (3), the DRs can thus be re-stated as
below: Obviously, the DRs are basically modified as (P2)− (N2).

(P2) If α(e) ≥ θ2 and α(e) ≥ σ2, then e ∈ Pos(Ω)

(B2) If α(e) ≤ θ2 and α(e) ≥ τ2, then e ∈ Bnd(Ω)

(N2) If α(e) ≤ τ2 and α(e) ≤ σ2, then e ∈Neg(Ω),

where,

θ2 = (1− ψ(e))
ln βN(ξBN)

βN(ξBP)

ln
(

βN(ξPP)
βN(ξBP)

× βN(ξBN)
βN(ξPN)

) (7)

σ2 = (1− ψ(e))
ln βN(ξNN)

βN(ξPN)

ln
(

βN(ξPP)
βN(ξNP)

× βN(ξNN)
βN(ξPN)

) (8)

τ2 = (1− ψ(e))
ln βN(ξNN)

βN(ξBN)

ln
(

βN(ξBP)
βN(ξNP)

× βN(ξNN)
βN(ξBN)

) (9)

Qinghua et al. [50] thus devised the following 3WD-making rules using the IF environment:

(7) If α(e) ≥ θj, then take aP
(8) If τj < α(e) < θj, then take aB
(9) If α(e) ≤ τj, then take aN .

4. Generalized Intuitionistic Fuzzy-Based DTRS (GI-DTRS) Model

Extending the concept of DTRS via IFNs in [50], many important components have
been ignored or replaced with unjustified notions. Below, we briefly discuss these issues
and show how the novel approach proposed in this paper helps to address them.
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4.1. Some Concerns in the Existing IF-Based DTRS Model

i The clustering of elements via equivalence classes is a restrictive condition. Stating
differently, for two elements to be in the same cluster, their feature values in all the
features should be exactly similar. Even when all other feature values are the same,
a slight variation in one feature value may cause two components to be in distinct
clusters. Relaxing this restriction, we introduce similarity classes in the DTRS model.
The threshold is determined by how much similarity between the elements is required.

ii The essence of DTRS lies in defining the conditional probabilities of elements for
the given concept. In [22], these conditional probabilities have been replaced with
intuitionistic fuzzy degrees. Probabilities and fuzzy degrees are totally different
concepts that cannot be interchanged. Probability describes how likely an event is to
occur, while fuzzy and IF degrees are linguistic information-based concepts used to
manage partial truths. To retain the true essence of DTRS theory, we use conditional
probabilities defined by Yao in [22]. These probabilities are a generalization of the
equivalence-class-based conditional probabilities.

iii The classical DTRS starts with the set of states that are to be approximated. These
states are actually subsets of the universe. In [50], these states are considered external
components that have no link with the universe. As a result, the theory outlined
in [22] significantly deviates from the fundamental idea of DTRS. On the other hand,
we nevertheless adhere to the classical approach’s interpretation of the concept of
states. This makes our model more reliable.

4.2. Generalized DTRS Based on IFNs

In this section, the novel approach GI-DTRS is described, which is very efficient as
compared to the existing approach.

In IFS [36], there are membership grades, non-membership grades, and hesitancy
grades, which show the position of an element of the universal set in a close 0,1 interval
with the condition that the total sum is 0. At this point, we use the conditional probability
as a membership grade [22], the complement of probability as a non-membership grade,
and the error value as a hesitancy grade. Moreover, the total probability, complement of
probability, and error value are 1.

Pr +Pr′ + ∆(e) = 1

Additionally, it is necessary to partition the information table for 3WD. To fulfill this
requirement, equivalence classes play a vital role. But, in this article, we utilized the
cosine similarity measure [51] and obtained similarity classes instead of equivalence classes
to partition the information system. Based on the above thought, a novel approach of
3W-DTRS under the environment of IFNs is designed and explained in detail.

Similarity measures are important instruments for determining the similarity degree
between two elements. In literature, there are many kinds of similarity measures. We
straight-forwardly utilized the cosine similarity measure in this article.

Definition 6 ([51]). The cosine similarity measure proposed by Ye et al. for IFNs (L, M)

Se(L, M) =
1
m

m

∑
i=1

(αL(ei)αM(ei) + βL(ei)βM(ei))√
α2

L(ei) + β2
L(ei)

√
α2

M(ei) + β2
M(ei)

(10)

After utilizing the novel approach, the DTRS model will change, and Equation (2) can
be written as the classification losses of e are presented as below:
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R(aP|Se) = N(ξPP)Pr(Ω|Se )⊕ N(ξPN)Pr(¬Ω|Se)

R(aB|Se) = N(ξBP)Pr(Ω|Se )⊕ N(ξBN)Pr(¬Ω|Se)

R(aN |Se) = N(ξNP)Pr(Ω|Se )⊕ N(ξNN)Pr(¬Ω|Se)

(11)

Because Pr(Ω|Se ) +Pr(¬Ω|Se) + ∆(e) = 1, gives (11) can be written as

R(aP|Se) = N(ξPP)Pr(Ω|Se )⊕ N(ξPN)[1−Pr(Ω|Se )− ∆(e)]

R(aB|Se) = N(ξBP)Pr(Ω|Se )⊕ N(ξBN)[1−Pr(Ω|Se )− ∆(e)]

R(aN |Se) = N(ξNP)Pr(Ω|Se )⊕ N(ξNN)[1−Pr(Ω|Se )− ∆(e)

(12)

By Definition 1 and the concept of DTRS, Equation (12) helps with the classification
losses, which are defined below.

R(aP|Se) =
[
1− (1− αN(ξPP))Pr(Ω|Se)(1− αN(ξPN))1−Pr(Ω|Se)−∆(e), βN(ξPP)Pr(Ω|Se)βN(ξPN)1−Pr(Ω|Se)−∆(e)

]

R(aB|Se) =
[
1− (1− αN(ξBP))Pr(Ω|Se)(1− αN(ξBN))1−Pr(Ω|Se)−∆(e), βN(ξBP)Pr(Ω|Se)βN(ξBN)1−Pr(Ω|Se)−∆(e)

]

R(aB|Se) =
[
1− (1− αN(ξBP))Pr(Ω|Se)(1− αN(ξBN))1−Pr(Ω|Se)−∆(e), βN(ξBP)Pr(Ω|Se)βN(ξBN)1−Pr(Ω|Se)−∆(e)

]
Let α(R)σ = 1 − (1− αN(ξσP))Pr(Ω|Se)(1− αN(ξσN))1−Pr(Ω|Se)−∆(e) and β(R)σ =

βN(ξσP)Pr(Ω|Se)βN(ξσN)1−Pr(Ω|Se)−∆(e)

here σ = P, B, N.
This classification losses α(R)σ and β(R)σ are respectively determined from the mem-

bership and non-membership degrees of the cost parameter, respectively. Further, based on
Bayesian decision theory, the new DRs are clearly examined by α(R)σ with respect to the
minimum-loss classifications.

(10) If α(R)P ≤ α(R)B and α(R)P ≤ α(R)N , then e ∈ Pos(Ω)
(11) If α(R)B ≤ α(R)P and α(R)B ≤ α(R)N then e ∈ Bnd(Ω)
(12) If α(R)N ≤ α(R)P and α(R)N ≤ α(R)B then e ∈Neg(Ω)

According to classification losses, if αN(R)P ≤ αN(R)B, then

ln
[
(1− αN(ξPP))Pr(Ω|Se)(1− αN(ξPN))1−Pr(Ω|Se)−∆(e)

]
≥ ln

[
(1− αN(ξBP))Pr(Ω|Se)(1− αN(ξBN))1−Pr(Ω|Se)−∆(e)

]
By (1)

Pr(Ω|Se ) ≥ (1− ∆(e))
ln
[

1−αN(ξBN)
1−αN(ξBP)

]
ln
(

1−αN(ξPP)
1−αN(ξBP)

∗ 1−αN(ξBN)
1−αN(ξPN)

)
Similarly

αN(R)P ≤ αN(R)N ⇒ Pr(Ω|Se )

≥ (1− ∆(e))
ln
[

1−αN(ξNN)
1−αN(ξPN)

]
ln
(

1−αN(ξPP)
1−αN(ξNP)

∗ 1−αN(ξNN)
1−αN(ξPN)

)
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αN(R)B ≤ αN(R)P ⇒ Pr(Ω|Se )

≤ (1− ∆(e))
ln
[

1−αN(ξBN)
1−αN(ξPN)

]
ln
(

1−αN(ξPP)
1−αN(ξBP)

∗ 1−αN(ξBN)
1−αN(ξPN)

)
αN(R)B ≤ αN(R)N ⇒ Pr(Ω|Se )

≥ (1− ∆(e))
ln
[

1−αN(ξNN)
1−αN(ξBN)

]
ln
(

1−αN(ξBP)
1−αN(ξNP)

∗ 1−αN(ξNN)
1−αN(ξBN)

)
αN(R)N ≤ αN(R)P ⇒ Pr(Ω|Se )

≤ (1− ∆(e))
ln
[

1−αN(ξNN)
1−αN(ξPN)

]
ln
(

1−αN(ξPP)
1−αN(ξNP)

∗ 1−αN(ξNN)
1−αN(ξPN)

)
αN(R)N ≤ αN(R)B ⇒ Pr(Ω|Se )

≤ (1− ∆(e))
ln
[

1−αN(ξNN)
1−αN(ξBN)

]
ln
(

1−αN(ξBP)
1−αN(ξNP)

∗ 1−αN(ξNN)
1−αN(ξBN)

)
New DRs (10)–(12) can be rephrased as (P2)− (N2).
(P2) If Pr(Ω|Se ) ≥ χ1 and Pr(Ω|Se ) ≥ ψ1, then e ∈ Pos(Ω)
(B2) If Pr(Ω|Se ) ≤ χ1 and Pr(Ω|Se ) ≥ ω1, then e ∈ Bnd(Ω)
(N2) If Pr(Ω|Se ) ≤ ω1 and Pr(Ω|Se ) ≤ ψ1, then e ∈Neg(Ω),
here

χ1 = (1− ∆(e))
ln
[

1−αN(ξBN)
1−αN(ξPN)

]
ln
(

1−αN(ξPP)
1−αN(ξBP)

∗ 1−αN(ξBN)
1−αN(ξPN)

) (13)

ψ1 = (1− ∆(e))
ln
[

1−αN(ξNN)
1−αN(ξPN)

]
ln
(

1−αN(ξPP)
1−αN(ξNP)

∗ 1−αN(ξNN)
1−αN(ξPN)

) (14)

ω1 = (1− ∆(e))
ln
[

1−αN(ξNN)
1−αN(ξBN)

]
ln
(

1−αN(ξBP)
1−αN(ξNP)

∗ 1−αN(ξNN)
1−αN(ξBN)

) (15)

The DRs (P2) − (N2) have so far been characterized by utilizing three thresholds
χ1(e), ψ1(e) and ω1(e) from the membership degree perspective. Further, DRs (13)–(15)
from the perspective of a non-membership degree are discussed.

(13) If β(R)P ≥ β(R)B and β(R)P ≥ β(R)N , then e ∈ Pos(Ω)
(14) If β(R)B ≥ β(R)P and β(R)B ≥ β(R)N then e ∈ Bnd(Ω)
(15) If β(R)N ≥ β(R)P and β(R)N ≥ β(R)B then e ∈Neg(Ω)

Because Pr(Ω|Se ) = 1−Pr(−Ω|Se)− ∆(e), using Equation (3), DRs are expressed
based on complement of conditional probability as below.

If β(R)P ≥ β(R)B, then

Pr(Ω|Se ) ln
(

βN(ξPP)

βN(ξBP)
∗ βN(ξBN)

βN(ξPN)

)
≥ (1− ∆(e)) ln

βN(ξBN)

βN(ξBP)

Thus

Pr(Ω|Se ) ≥ (1− ∆(e))
ln βN(ξBN)

βN(ξBP)

ln
(

βN(ξPP)
βN(ξBP)

∗ βN(ξBN)
βN(ξPN)

)
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Similarly

β(R)P ≥ β(R)N⇒Pr(Ω|Se )

≥ (1− ∆(e))
ln

βN(ξNN)
βN(ξPN)

ln
(

βN(ξPP)
βN(ξNP)

∗ βN(ξNN)
βN(ξPN)

)

β(R)B ≥ β(R)P⇒Pr(Ω|Se )

≤ (1− ∆(e))
ln

βN(ξBN)
βN(ξBP)

ln
(

βN(ξPP)
βN(ξBP)

∗ βN(ξBN)
βN(ξPN)

)
β(R)B ≥ β(R)N⇒Pr(Ω|Se )

≥ (1− ∆(e))
ln

βN(ξNN)
βN(ξBN)

ln
(

βN(ξBP)
βN(ξNP)

∗ βN(ξNN)
βN(ξBN)

)
β(R)N ≥ β(R)P⇒Pr(Ω|Se )

≤ (1− ∆(e))
ln

βN(ξNN)
βN(ξPN)

ln
(

βN(ξPP)
βN(ξNP)

∗ βN(ξNN)
βN(ξPN)

)
β(R)N ≥ β(R)B⇒Pr(Ω|Se )

≤ (1− ∆(e))
ln

βN(ξNN)
βN(ξBN)

ln
(

βN(ξBP)
βN(ξNP)

∗ βN(ξNN)
βN(ξBN)

)
Obviously, the decision rules are easily revised as (P2)− (N2).
(P2) If Pr(Ω|Se ) ≥ χ2 and Pr(Ω|Se ) ≥ ψ2, then e ∈ Pos(U)
(B2) If Pr(Ω|Se ) ≤ χ2 and Pr(Ω|Se ) ≥ ω2, then e ∈ Bnd(U)
(N2) If Pr(Ω|Se ) ≤ ω2 and Pr(Ω|Se ) ≤ ψ2, then e ∈Neg(U),
where,

χ2 = (1− ∆(e))
ln βN(ξBN)

βN(ξBP)

ln
(

βN(ξPP)
βN(ξBP)

∗ βN(ξBN)
βN(ξPN)

) (16)

ψ2 = (1− ∆(e))
ln βN(ξNN)

βN(ξPN)

ln
(

βN(ξPP)
βN(ξNP)

∗ βN(ξNN)
βN(ξPN)

) (17)

ω2 = (1− ∆(e))
ln βN(ξNN)

βN(ξBN)

ln
(

βN(ξBP)
βN(ξNP)

∗ βN(ξNN)
βN(ξBN)

) (18)

Noticeably, providing the IFN cost parameters are also fulfilled,

ln
[

1−αN(ξPP)
1−αN(ξBP)

]
ln
[

1−αN(ξBN)
1−αN(ξPN)

] <
ln
[

1−αN(ξBP)
1−αN(ξNP)

]
ln
[

1−αN(ξNN)
1−αN(ξBN)

]
And

ln βN(ξPP)
βN(ξBP)

ln βN(ξBN)
βN(ξPN)

<
ln βN(ξBP)

βN(ξNP)

ln βN(ξNN)
βN(ξBN)

The ωj(e) < ψj(e) < χj(e) is obtained where χj(e) ∈ (0, 1], ωj(e) ∈ (0, 1], and
ψj(e) ∈ (0, 1], (j = 1, 2). Therefore, the general DRs (P3)− (N3) can be described as below

(P3) If Pr(Ω|Se ) ≥ χj, then e ∈ Pos(U)
(B3) If ωj < Pr(Ω|Se ) < χj, then e ∈ Bnd(U)
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(N3) If Pr(Ω|Se ) ≤ ωj, then e ∈Neg(U),
From the above-obtained results, the 3WD made under IFNs is described according to

the Bayesian DRs as below.

(16) If Pr(Ω|Se ) ≥ χj, then take aP
(17) If ωj < Pr(Ω|Se ) < χj, then take aB
(18) If Pr(Ω|Se ) ≤ ωj, then take aN ,

In TWDM-IFNs, two pairs of thresholds (χ1(e), ω1(e)) and (χ2(e), ω2(e)) are ob-
tained from various viewpoints in (13)–(18). Thus, actions are taken while Pr(Ω|Se ) is
in corresponding thresholds of the positive, boundary, and negative regions. Then, the
relationship among the four thresholds χ1(e), ω1(e), χ2(e), and ω2(e) can be revealed
and proven.

Theorem 1. Given an intuitionistic fuzzy information table IS = (X, At, IVl,M); an intuition-
istic fuzzy cost parameter matrix IM = {N(ξστ) = (αN(ξστ), βN(ξστ))}3×2(σ = P, B, N,
and τ = P, N); and two pair thresholds (χ1(e), ω1(e)) and (χ2(e), ω2(e)), where ω1(e) < χ1(e)
and ω2(e) < χ2(e) for any e ∈ X, then χ2(e) > χ1(e) and ω2(e) > ω1(e), when

ln βN(ξPP)
βN(ξBP)

ln βN(ξBN)
βN(ξPN)

<
ln
[

1−αN(ξPP)
1−αN(ξBP)

]
ln
[

1−αN(ξBN)
1−αN(ξPN)

]
and

ln βN(ξBP)
βN(ξNP)

ln βN(ξNN)
βN(ξBN)

<
ln
[

1−αN(ξBP)
1−αN(ξNP)

]
ln
[

1−αN(ξNN)
1−αN(ξBN)

]
Proof. Let T = 1− αN(ξBN), U = 1− αN(ξPN), V = 1− αN(ξPP), and W = 1− αN(ξBP).
Furthermore, let T′ = βN(ξBN), U′ = βN(ξPN), V′ = βN(ξPP), and W ′ = βN(ξBP).

From the perspective of membership degree

χ1 = (1− ∆(e))
ln T

U

ln
(

V
W ∗

T
U

)
and (1/χ1(e)) = (1 + (lnV − lnW/lnT − lnU)). Moreover, from the perspective of mem-
bership degree, then

χ2 = (1− ∆(e))
ln T′

U′

ln
(

V′
W ′ ∗

T′
U′

)
and (1/χ2(e)) =

(
1− ∆(e)−1

)
(1 + (lnV′ − lnW ′/lnT′ − lnU′))

with respect to

ln βN(ξPP)
βN(ξBP)

ln βN(ξBN)
βN(ξPN)

<
ln
[

1−αN(ξPP)
1−αN(ξBP)

]
ln
[

1−αN(ξBN)
1−αN(ξPN)

]
The (1/χ2(e)) < (1/χ1(e)) and χ2(e) > χ1(e) hold. Similarly, ω2(e) > ω1(e) holds.

�

5. Case Study

The contemporary world has undergone a revolutionary transformation through the
integration of AI and its diverse applications. This advancement has led to the development
of numerous robotic devices that effectively alleviate human challenges. Despite these
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strides, several aspects of our lives still necessitate substantial advancement. Particularly,
individuals with special needs continue to encounter significant obstacles.

In response to this, a team of skilled engineers and mathematicians has crafted a
specialized device aimed at addressing this issue, thereby enhancing the quality of life for
these individuals. This innovative gadget is designed to empower individuals with special
needs through a sophisticated mechanism. To achieve this, the device undergoes a training
process wherein it learns to identify and interpret specific gestures from a predetermined
list of gesture qualities. The decision-making process within the device is executed through
a binary input of “Yes” or “No,” corresponding to the recognized or unrecognized nature
of a particular gesture. For instance, consider a scenario involving six distinct gestures
denoted as “a” to “f.” Each of these gestures possesses four attributes: finger movement,
gesture speed, hand movement, and the degree of hand circulation. These attributes,
represented as At = {A1, A2, A3, A4}, play a crucial role in distinguishing between the
gestures. The significance of these attributes is quantified through a membership and
non-membership degree framework. For example, a representation such as (0.70, 0.25)
indicates that the membership and non-membership degrees for the attribute A1 pertaining
to a specific gesture are 0.70 and 0.25, respectively.

Furthermore, the device’s decision-making process is associated with three distinct
actions: recognizing the indicated gesture and responding with a spoken confirmation
(“gesture” aP), failing to recognize the indicated gesture and responding negatively (“No to
the gesture” aN), and an indeterminate scenario leading to silence (“aB”). Additionally, the
outcomes of these actions are tied to two states: one where the attributed results are satisfied
(Ω) and the other where they are not (−Ω). These intricate interactions are encapsulated
within an IFNs parameter matrix, as illustrated in Table 4.

Table 4. Intuitionistic fuzzy information table.

Alternatives/Attributes A1 A2 A3 A4 d

a (0.70, 0.25) (0.50, 0.42) (0.39, 0.60) (0.80, 0.20) Yes
b (0.51, 0.49) (0.43, 0.51) (0.64, 0.16) (0.21, 0.73) No
c (0.87, 0.11) (0.59, 0.40) (0.76, 0.21) (0.72, 0.22) No
d (0.32, 0.67) (0.73, 0.26) (0.81, 0.18) (0.56, 0.32) Yes
e (0.71, 0.29) (0.51, 0.44) (0.91, 0.08) (0.33, 0.67) Yes
f (0.56, 0.18) (0.81, 0.1) (0.32, 0.26) (0.5, 0.4) Yes

To be precise with the IFNs given in the information table, the cosine similarity
measure is applied, which is defined in Definition 6. We get the information and present it
in Table 5.

Table 5. Information of alternative based on Cosine Similarity measure [51].

Similarity of Alternatives a b c d e f

a 1 0.782 0.929 0.830 0.815 0.924
b 0.782 1 0.827 0.879 0.972 0.838
c 0.929 0.827 1 0.870 0.906 0.929
d 0.830 0.879 0.870 1 0.873 0.886
e 0.815 0.972 0.906 0.873 1 0.890
f 0.924 0.838 0.929 0.886 0.890 1

To get the similarity classes based on the data collected using Equation (10), the
threshold ρ = 0.85, is used to develop all the alternatives.

Based on the above threshold, the similarity classes are received as below.

Sa = {a, c, f }, Sb = { b, d, e}, Sc = {a, c, d, e, f }, Sd = {a, c, d, e, f },

Se = {b, c, d, e, f }, S f = {a, c, d, e, f }
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According to DTRS [22], the set of states is given, and by considering this, a proba-
bilistic decision is designed.

Here, Ω = {a, d, e, f } Ω′ = {b, c}
Table 6 shows the values of the objects.

Table 6. Corresponding values of objects.

Alternatives Probability Values Complement of
Probability Error Values

α(Sa) Pr(U|Sa) = 0.377 1−Pr(U|Sa) = 0.122 ∆(a) = 0.5
α(Sb) Pr(U|Sb) = 0.311 1−Pr(U|Sb) = 0.277 ∆(b) = 0.411
α(Sc) Pr(U|Sc) = 0.577 1−Pr(U|Sc) = 0.255 ∆(c) = 0.166
α(Sd) Pr(U|Sd) = 0.544 1−Pr(U|Sd) = 0.333 ∆(d) = 0.122
α(Se) Pr(U|Se) = 0.577 1−Pr(U|Se) = 0.255 ∆(e) = 0.166
α(S f ) Pr(U|S f ) = 0.577 1−Pr(U|S f ) = 0.255 ∆( f ) = 0.166

As it is described, the cost parameter helps to take the correct action. To minimize the
loss of making the decision, the loss function assists and identifies the best position for an
alternative. In Table 7, cost parameters are listed in IFNs; with the help of membership and
non-membership values, we get thresholds, which are displayed in Table 8.

Table 7. Cost Parameter Matrix based on IFNs.

Ω −Ω

aP (0, 1) (0.8, 0.1)
aB (0.3, 0.7) (0.5, 0.4)
aN (0.9, 0.1) (0.05, 0.8)

Table 8. Obtained values of thresholds for conditional probability.

Alternatives χ1 (e) ψ1 (e) ω1 (e)

a 0.359 0.201 0.124
b 0.423 0.237 0.146
c 0.599 0.335 0.206
d 0.631 0.353 0.217
e 0.599 0.335 0.206
f 0.599 0.335 0.206

Using Equations (13)–(15), we get the following threshold values in Table 8.
Based on the decision rules defined in (P3)− (N3), we get the results in Table 9 that

the alternative a goes to the positive region and all the other alternatives b, c, d, e, and f will
go to the boundary region.

Table 9. Classification of the objects.

Classification Pos (U) Neg (U) Bnd (U)

Participants a ∅ b, c, d, e, f

Additionally, on the basis of Bayesian concept and the proposed approach of TWDM
for IFNs, (16)–(18) for alternative a, the positive action aP is selected and for all remaining
alternatives b, c, d, e, and f the action of deferment aB is considered.

Comparative Analysis

In this section, we have studied the comparative analysis of the proposed study and
the existing studies in Table 10, such as Khan et al. [35], Mahmood et al. [40], Zhang
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et al. [50], Ejegwa et al. [52], and Ali et al. [53]. Moreover, we discussed some benefits and
preferences of the proposed approach for the literature, and for the geometrical presentation
of the comparative study, we added Figure 1.

i When it comes to analyzing different approaches to solving a problem, it is important
to consider their effectiveness, feasibility, and scalability. In this case, we compared an
established approach with an existing approach, focusing on how they satisfy results
and their benefits.

ii The established approach typically refers to a well-known and widely used method
for solving a problem. This approach is based on a proven methodology that has
been tested and validated over time, and it often has a track record of delivering
reliable results. The existing approach, on the other hand, refers to a method that
has been developed but may not be as widely known or tested. For example, all the
existing approaches based on similarity measures give the majority of elements of the
acceptance region the same, such as {a}, similarly to the negative and boundary zones.

iii One advantage of the established approach is that it is often easier to solve. This is
because the methodology has been refined and improved over time, and there are
typically more resources available to help people understand and apply it.

iv Another advantage of the established approach is that it is often more general. This
means that it can be applied to a wider range of problems or scenarios. For example, if
we were comparing an established statistical model with a newer one, the established
model may have been designed to handle a wider range of data types or distributions,
making it more versatile.

v In addition, the established approach often uses well-defined similarity measures
and similarity classes. These measures and classes help to ensure that the results are
consistent and meaningful.

vi However, it is important to note that the existing approach may have benefits as well.
For example, it may be more specialized, meaning that it is designed specifically for a
particular problem or scenario. This can make it more effective than the established
approach in certain contexts.

vii In conclusion, when comparing an established approach with an existing approach, it
is important to consider factors such as ease of implementation, generalizability, and
the use of well-defined similarity measures and similarity classes. While the estab-
lished approach has advantages in these areas, the existing approach may be more
effective in certain contexts due to its specialization. Ultimately, the choice of approach
will depend on the specific problem being solved and the resources available.

Table 10. Comparison of proposed and existing Techniques.

Techniques
Classification

Pos (U) Neg (U) Bnd (U)

Khan et al. [35] {a} {b, c, f } {d, e}
Mahmood et al. [40] {a, f } {∅} {b, c, d, e}

Zhang et al. [50] {a, f , d} {∅} {b, c, e}
Ejegwa et al. [52] {a} {∅} {b, c, d, e f }

Ali et al. [53] {a} {∅} {b, c, d, e f }
Proposed {a} {∅} {b, c, d, e f }
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Figure 1. Geometrical representation of existing [35,40,50,52,53] and novel study.

6. Conclusions

In this era of cognitive instability, the combination of the 3WD theory with rough
sets and fuzzy sets has received significant attention. While IFS, an extension of fuzzy
sets, is widely used to handle uncertainty, IFNs offer a more comprehensive representation
by considering both membership and non-membership degrees. Therefore, it is crucial
to develop an IFN-based TWDM that aligns with human cognition. In this paper, we
first reviewed the existing 3WD model in detail and then proposed a more accurate and
generalized model based on IFNs, incorporating new developments that yield improved
results. Specifically, we employed similarity measures to partition the information system
and designed probability, complement of probability, and error functions to capture the
essence of DTRS for IFNs. During this establishment, we retained the basic idea of the
conditional probability, which is directed to the membership grade of the decided portion.
Moreover, we have presented the effectiveness and validity of the established approach by
adding a practical model of an electronic gesture device for taking decisions. We briefly
discussed the benefits and limitations of our developed model and compared it with the
existing models.

In the future, we will explore novel aggregation operators for aggregating the informa-
tion for 3WD based on DTRSs. We will further utilize our developed approach to improve
the existing literature [54–58] and design the real application in artificial intelligence and
data sciences.
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