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Abstract: In the explainable artificial intelligence (XAI) field, an algorithm or a tool can help people
understand how a model makes a decision. And this can help to select important features to reduce
computational costs to realize high-performance computing. But existing methods are usually used
to visualize important features or highlight active neurons, and few of them show the importance of
relationships between features. In recent years, some methods based on a white-box approach have
taken relationships between features into account, but most of them can only work on some specific
models. Although methods based on a black-box approach can solve the above problems, most of
them can only be applied to tabular data or text data instead of image data. To solve these problems,
we propose a local interpretable model-agnostic explanation approach based on feature relationships.
This approach combines the relationships between features into the interpretation process and then
visualizes the interpretation results. Finally, this paper conducts a lot of experiments to evaluate the
correctness of relationships between features and evaluates this XAI method in terms of accuracy,
fidelity, and consistency.
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1. Introduction

In recent years, deep learning has developed rapidly in image processing [1,2], natural
language processing [3,4], speech recognition [5,6] and other related fields and has shown
to surpass human capacity in all walks of life, which makes people increasingly reliant on
decisions made by Al To meet the increasing requirements of people in healthcare [7,8] and
the precision industry, the complexity of the model has also increased significantly. But the
more complex the model is, the more difficult it is for people to understand its structure
and the more difficult it is to explain why it makes this decision, and this creates a problem:
people begin to distrust the decisions made by the model. To solve the above problems,
XAI has become a hot field. And through methods in this field, people can think more
about the reasons why models have this effect. Such thinking is conducive to preserving
important features in images, and people can use these important features to train other
models, which can reduce computational cost. This thinking can help better understand
the model and improve the service quality of the model.

In the field of image processing, XAI methods can be divided into ante hoc inter-
pretability and post hoc interpretability. Ante hoc usually involves data preprocessing
and model selection; the purpose of the former is to show the distribution of features,
and the purpose of the latter is to explain the decision-making process by constructing a
structurally interpretable model, such as a linear model [9] and a decision tree [10,11]. Post
hoc interpretability is to make visible an analysis of the decision-making process of the
model or to analyze the importance of features [12-14]. Although the former is relatively
simple and the cost is relatively small, the structure of many deep learning models is very
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complex and generally unknown to users, so post hoc interpretability has more advantages
in the field of deep learning.

Post hoc interpretability also contains two categories: global and local. Global in-
terpretation focuses on the operating principle of the model when it works, including
activation maximization [15,16] and knowledge distillation [17,18], while the focus of local
interpretation is on the impact of the sample itself when the model makes a decision, includ-
ing at the pixel level [19,20], concept level [21,22] and picture level [23,24]. Although the
former can effectively improve the transparency of the model, the latter can often be
more easily understood by users and is easier to mine because of the direct relationship
between features.

In the field of XAl, especially for white-box models, there are already some methods
for mining the relationship between features. These methods can partly solve the problem
of only considering the importance of features and ignoring the relationship between
features [25], and at the same time, these methods’ results are not intuitive, and their
methods cannot adapt to the research of XAI methods around deep learning models to a
certain extent. And for black-box models, relationships between features are effectively
mined in the XAI methods for tabular data or text data, but the manner in which to
obtain and evaluate relationships cannot be well applied to image data [26,27]. Therefore,
the idea of this paper is to combine mining relationships between features with LIME (local
interpretable model-agnostic explanations), which is an XAI method based on black-box
that obtains explanations by locally approximating simple models, while using LIME [12] to
obtain important superpixel blocks as feature blocks, obtain relationships between feature
blocks, and optimize the visualization effect of the results, that is, visualize the importance
of features and the relationship between features at the same time. The contributions of
this paper can be summarized as follows:

(1) We analyze the shortcomings of existing XAI methods for obtaining features’ relation-
ships. And then, to solve these problems, we propose an interpretation method based
on masking to consider relationships between features in the process of interpreting a
mode, which makes the interpretation more complete and improves the credibility of
the interpretation.

(2) We perform a lot of experiments in this paper, and the results prove the correctness
of relationships between features obtained in this paper and show that our method
achieves higher accuracy, fidelity, and consistency compared to LIME.

2. Related Work

The proposed method’s characteristics are mainly reflected in two aspects: (1) methods
based on black boxes or white boxes; and (2) methods to obtain relationships between
features. So, we analyze the existing methods from these two aspects:

In terms of explaining black-box models, J. H. Friedman proposed partial dependence
plots (PDPs) in 2001 [28]. This method can show the marginal effect of one or two features
on the prediction results of models, that is, the probability of a specific category under
different feature values of a feature, thus showing that the relationship between the target
and the feature is linear, monotonic, or more complex. In 2016, Marco et al. proposed the
LIME method. This method focuses on training a local proxy model to interpret a single
prediction. It selects an interesting instance and uses it as the input of the original model,
then perturbs this instance to generate a new data set, which is composed of perturbed
samples and corresponding predictions of the black-box model. Finally, on this new data
set, LIME trains an interpretable model that is weighted by the distance between disturbed
instances and interesting instances. At the same time, Marco et al. also proposed the S-LIME
method, which uses the hypothesis testing framework based on the central limit theorem
to determine the number of disturbance points required to ensure the stability of the result
interpretation rather than using just random disturbance. After that, on the basis of LIME,
in 2018, Marco and others proposed the model-agnostic method Anchors [29], which is
based on finding a minimum subset of features. As long as any instance has this feature
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subset, the prediction result of the black box is the same, independent of other features,
and this subset can be used as an explanation. It can also be regarded as the anchor of the
black-box model to accurately explain the relatively complex local black-box prediction
model. The Shapley value can be understood as a method of allocating expenses according
to the contribution of players to total expenses. In XAl, features are players, and the model
prediction is the total expenses. Because the difference between the prediction and the
average prediction can be perfectly distributed between the characteristics through this
method, it has become very popular as a way to explain the black-box model prediction.
In 2016, Lundberg et al. proposed the SHAP method, which replaced the method of
weighting samples according to their proximity to the original instance in LIME with the
method of weighting the samples according to the weights obtained by the alliance in the
Shapley value estimation. In 2020, Messalas et al. proposed a MASHAP method [30]. It first
builds a global proxy model on the interested instance, then transfers the proxy model as an
original model to the Tree SHAP method, and then generates an explanation. Because this
method simplifies the original model in the SHAP method, it also achieves faster results
than SHAP and LIME. However, in the above methods, the relationship between features
is not well considered for image data, which also reduces the credibility of the interpretable
algorithm. Therefore, in this paper, we consider introducing the method of calculating
the relationship between features at the image data level to mine the relationship between
features and improve the interpretation reliability.

There are also many studies in XAI on obtaining relationships between features.
In terms of white-box models, Wang et al. [31] proposed spatial activation concept vector,
which considers the spatial location relationship. Ge et al. [32] demonstrated the relation-
ships between features by extracting important visual concepts related to a specific category
and representing the image as a structured visual concept map. They proposed a visual
reasoning explanation framework (VRX) that can obtain structural concept graphs similar
to that shown Figure 1. And the colors of components’ scores from high to low are: blue,
green, and pink.

Figure 1. The result of VRX.

However, the available models of these methods are limited to some extent, and they
cannot directly show how relationships between features impact the models’ predictions,
so the degree of visualization is also limited. In terms of black-box models, there are
also many characteristic relationship calculation methods for the classic XAI methods
based on black-box models. For example, for LIME, Zoumpolia et al. proposed the
GLIME method [25], which relies on the combination of LIME and the graphical least
absolute shrinkage and selection operator to generate the undirected Gaussian graph
model. In addition, regularization reduces the small partial correlation coefficient to zero
to provide a more sparse and interpretable graphical interpretation. For the Shapley value,
KJERSTI et al. proposed a method [26] that extends the kernel SHAP method to deal
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with dependency features. These two kinds of methods can effectively determine the
relationship between features through experiments, and KJERSTI proves the correctness of
the found relationship through experimental comparison. Although it effectively solved
the problem of the universality of the use model and the problem of non-intuitive results,
these methods can only be limited to text and tabular data. It has two problems: first,
tabular and text data can easily change in numerical value to affect the model prediction,
while for the pixel or pixel block in the picture as a feature, it cannot be simply changed to
observe the impact on the model prediction. Generally, for the feature of a picture, there
are only two possibilities: existence and non-existence. The second is that the features in
the tabular and text data can be artificially set so that the features have relationships, such
as Gaussian, but the picture is difficult to make, which makes it a big problem to design an
indicator to verify the correctness of relationships.

Therefore, in this paper, we draw on some ideas of finding feature association from
XAI methods based on black-box models for text and tabular data, combine the idea of
masking features with the LIME method, and propose an interpretable method based
on black-box that can obtain the relationship between features through the combination
masking of feature blocks for image data, which not only makes the relationship between
features more intuitive but also improves the universality of the method.

3. Methods

The core idea of this paper is to obtain the direct impact of the relationship between
feature blocks on the model’s decision by observing the influence of the combined mask-
ing of superpixel blocks on the model’s output and combining the relationship between
feature blocks with the importance of the feature itself to optimize the selection process
of important feature blocks to improve the credibility and stability of the explanation.
In Section 3.1, the overall architecture of the local interpretable model-agnostic explanation
approach based on feature relationships is introduced. Section 3.2 describes the specific
implementation of obtaining the relationship between features. Section 3.3 introduces the
method of optimizing the selection sequence of important features.

3.1. The Quverall Architecture

The structure of this method is shown in Figure 2. After obtaining the segmented
superpixel blocks in LIME, namely feature blocks, we calculate the relationship between
two superpixel blocks by the combined mask of superpixel blocks and then obtain the
feature correlation matrix from these relationships. Then, we obtain the importance of
feature blocks from LIME and combine it with the association size between feature blocks
to rearrange feature blocks. The feature blocks for interpretation are re-selected, the feature
blocks are used as vertices, and the feature association size is used as edge weights for
visualization. Compared with the traditional methods based on the black-box approach,
which assume that features are independent, this method takes into account the relationship
between features, making the interpretation more accurate. Compared with the method of
finding feature correlation in the methods based on the white-box method, this method is
more versatile because it is based on the black-box method.

Only one super-pixel
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Figure 2. Interpretable model-agnostic explanations based on feature relationships.
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3.2. Acquisition of Relationship between Features

The specific steps of LIME are shown in Figure 3.
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From Figure 3, it is easy to see that LIME is a proxy model method. It will first
generate a new data set by perturbing the interested instance and then calculate the distance
between them and the interested instance by using a similar distance measurement. Here,
the distance can also be converted into similarity, and the results of the original model
for the perturbed instance can also be obtained. Finally, a simple interpretable model,
such as a linear model, can be trained by using the disturbance data set, distance weight,
and results of the original model, which also means that the features will be regarded as
independent relationships while ignoring the correlation between features. At the same
time, because the internal structure of the model is invisible, it is difficult to find the
interaction size of features in the prediction process. Therefore, this paper uses the idea
of tabular and text to obtain the correlation between features through control variables.
In tabular and text data, data can be perturbed to change the value of features, while in
image data, the presence and absence of features can be controlled by occlusion. First,
preserve the feature blocks i and j of interest, obtain the prediction results f (i) and fx(j)
of the model for the specified class in the case of only feature block i and only feature block
j, and then reserve both feature blocks i and j to obtain the prediction results f(i U j) of
the model for the specified class. Since there are no other feature blocks in this method,
the impact of the relationship between i and j on the model decision is

ox(i,j) = fx(iU]) = fx (i) = (), 1)

where 0y (i, j) represents the direct impact of the relationship between feature i and feature j
on the model result when the model classification result is x; fy (i) represents the probability
of the result being class x when there is only feature i; and f,(j) represents the probability
of the result being class x when there is only feature j. The specific masking method is
shown in Figure 4.

Simple |__ Feature
model selection
——‘ Result

Figure 3. The framework of LIME.

(a) (b) ()

Figure 4. The method of masking super pixels. (a) means preserving the feature blocks i. (b) means
preserving the feature blocks j. (c) means preserving the feature blocks i and .
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Through cyclic calculation, which only requires n? time complexity, the direct influence
of the pairwise relationship between all feature blocks in the graph on model prediction
can be obtained.

3.3. Optimization of Important Features Selection Method

As mentioned in the previous section, LIME will treat each feature as independent,
so it is obviously not comprehensive to consider the importance of the feature itself and
ignore relationships between features to select important features for interpretation, and the
credibility will also be greatly reduced. At the same time, incorporating the relationship
between features into the important feature selection process can effectively reduce the
impact of the randomness of the LIME algorithm itself, especially when the relationship
between features is large. Therefore, the feature importance of this paper is calculated
as follows:

Cony(i) = Conselfu(i) + Y %), @)
j=1and j'=i 2

where Cony (i) represents the contribution of feature 7 to the model’s prediction of the result
as class x, that is, the importance of feature i; ConSel fy (i) represents the importance of
feature i obtained by LIME; and 0(i, j) represents the direct impact of the relationship
between feature i and j on the model’s prediction result.

4. Results

This paper will select common evaluation indicators in the evaluation of XAI al-
gorithms to evaluate this algorithm, namely, sensitivity [33], fidelity /accuracy [34], and
stability / consistency [35], and mainly compare them with classic XAI methods based on
black-box models and analyze them based on classic XAI methods based on black-box
models. This paper selects InceptionV3 and ResNet50 as deep neural network models for
research and conducts experiments on ImageNet data sets.

4.1. Analysis of Results

As shown in Figure 5, setting the number of features required for interpretation K = 3.
Compared to LIME, the algorithm in this paper can visualize the relationships between
important features. The blue line indicates that the relationships between feature blocks
play a direct and positive role in the model prediction results, while the red line indicates
that the relationships between feature blocks have a direct and negative impact on the
model prediction results; the stronger the effect, the wider the line. Compared to the
result in Figure 1 which can only display features that are related, our method has a better
visual effect.

Figure 5. Presentation of interpretation results.
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In Figure 6, we construct an undirected graph by using superpixels as vertices and the
strength of the relationships between superpixels as edge weights, making the relationships
between superpixels more intuitive, especially when the superpixels are close.

-0.00014

0 .11369

Figure 6. Linear graph of features’ relationships.

Combining the features’ relationships matrix in Table 1, it can be found that the
method in this paper can obtain a relationship size between feature blocks in the image
compared to the feature relationships found in the XAI method based on white boxes,
and this relationship shows the direct impact of the relationship between two features on
the model prediction results rather than simply showing the positional relationship or the
degree of correlation between the features. This makes the interpretation more intuitive and
more consistent with the general idea of the black-box interpretable method. For example,
the relationship between feature 24 and feature 35 increases the probability of the model
predicting the result class by 0.32375.

Table 1. Matrix constructed by features’ relationships.

V24 V30 V35 V37 v41
V24 / —0.00048 0.32375 —0.00120 0.00125
V30 —0.00048 / 0.11509 —0.00073 —0.00014
V35 0.32375 0.11509 / 0.04726 0.12369
V37 —0.00120 —0.00073 0.04726 / —0.00080
V41 0.00125 —0.00014 0.12369 —0.00080 /

4.2. Fidelity/Accuracy Analysis

Currently, the methods used to prove the fidelity /accuracy of XAI algorithms are
mainly implemented based on the idea of perturbation. Therefore, the evaluation of
accuracy in this article is based on the idea derived from the SHAP method: subtracting
the main effect of the feature from the total effect to obtain the pure interaction effect to
obtain the feature association size. This uses the following formula:

0y (i,j) = fx(Sub) + fx(SubU {i, j}) — fx(SubU{i}) — fe(SubU{j}), ©)

where Sub is a subset of pixel blocks; i and j are feature blocks; f, is the predicted result of
the model; and o7, is the features’ relationship based on the above idea.

The main purpose of this article is to obtain the pairwise low-order relationship
between superpixel blocks. Therefore, to minimize the impact of the high-order relationship
between superpixel blocks on the effect, the S in the experimental section will contain
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fewer non-important superpixel blocks with a small spatial correlation (relatively distant).
And we use the results obtained from Formula (3) as a benchmark to calculate the similarity
between our method and it:

0y (i, j) — ox(i,])

Similarity = oI 1)
x \&r

4)

where 0y (i, j) is the correlation between features obtained by this paper’s method, o7, is the
size of the relationship between features obtained during validation, and the results are
shown in Table 2.

Table 2. Results of fidelity /accuracy.

Model Resnet50 InceptionV3
S5=1 78.01% 76.22%
S5=2 77.89% 75.49%
S=3 78.85% 76.09%

From the experiments, it can be seen that the relationships between features obtained
by the method in this paper and the relationships between features obtained by Formula (3)
are highly similar, so it means our method can obtain a result similar to that of the SHAP
method. Instead of being essentially the same, it may be because using black pixel blocks
during occlusion results in artifacts in the image, and there may be a higher-order rela-
tionship between pixel blocks, resulting in changes in the output of the model. However,
after eliminating this effect as much as possible, experiments can demonstrate the correct-
ness of the relationship obtained in this article.

4.3. Stability/Consistency Analysis

This section focuses mainly on verifying whether the interpretation results of the algo-
rithm will be the same and whether the algorithm can achieve better stability /consistency
for the same input sample with constant parameters. The method used in this paper is
calculating the similarity of the selected feature set. First, we compare with LIME and
define T1/T as an evaluation index, where T1 is the one we believe to be the most accurate,
and T is the number of experiments. The results are as follows.

In Table 3, it can be seen that when the important feature selection method in this
article is used to replace the important feature selection method in LIME, the proportion of
interpretation results consistent with the standard increases.

Table 3. Results of stability /consistency.

Features K=2 K=3 K=14
Times N =100 N =1000 N =100 N = 1000 N =100 N =1000
LIME 31.21% 66.97% 19.66% 57.80% 12.46% 45.87%
Proposed 37.64% 70.64% 24.74% 61.39% 15.26% 47.62%

Also, we chose quantitative testing with concept activation vectors (TCAV) [21] for the
second comparative experiment. This method clusters superpixels and then uses concept
vector scores to select important concepts. And for the same, we choose the one with the
highest number of occurrences as the correct result and calculate the result through T1/T.
The results are as follows.

In Table 4, it can be seen that our method obtains more stable results than LIME
and TCAV.

Finally, we choose randomized input sampling for explanation (RISE) [36] for compar-
ative experiments. This method generates multiple masks through Monte Carlo sampling
and then weights the masks to obtain the results. As the result of this method is heat maps,
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we convert the results obtained by our method into heat maps through the superpixels’
weights. And we choose the structural similarity index (SSIM) as our evaluation index.
SSIM calculates the similarity score between two images by comparing their similarities in
brightness, contrast, and structure. And the results are as follows.

Table 4. Evaluating stability / consistency through feature selection.

TCAV LIME Proposed
K=1 66.97% 73.61% 77.19%
K=2 41.32% 66.97% 70.64%
K=3 17.64% 57.80% 61.39%

In Table 5, it can be seen that, in terms of selecting features, our method can achieve
higher stability / consistency. And by evaluating the similarity of heat maps, our methods can
obtain higher structure similarity index measure (SSIM) scores than RISE and obtain similar
results as LIME. From the above experiments, it can be seen that our method obtains better
stability / consistency, which proves that when considering the correlation between features,
the stability / consistency of the interpretable algorithm can be effectively improved.

Table 5. Evaluating stability /consistency through heat maps.

RISE LIME Proposed
N =500 44.62% 93.52% 95.83%
N = 1000 65.49% 95.37% 96.24%
N = 2000 70.89% 97.92% 98.03%
N = 5000 80.76% 99.04% 98.97%

4.4. Sensitivity Analysis

This section mainly focuses on whether the algorithm is sensitive to parameters when
replacing the important feature selection method in LIME, that is, whether the interpretation
results of the interpretable algorithm will significantly change when the parameters change.
The key parameter studied in this section is the number of neighborhood data generated,
N. For comparison purposes, this paper still selects LIME as the standard to change
the number N of neighborhood data, which are N = 100, N = 500, N = 1000, N = 3000,
and N = 5000, including 500 test images. Each image is repeated to obtain 100 interpretation
results. Similarly, the sequence that occurs most when N = 5000 is considered the standard
interpretation. At the same time, compare the interpretation results of algorithms under
different N conditions. In order to control other conditions, the number of selected features
K s set to 3, and the sensitivity is reflected by the difference in the proportion of correct
explanations that can be obtained under different N conditions.

In Table 6, it can be seen that when the important feature selection method in LIME is
replaced, the algorithm in this article can achieve a sensitivity that is basically similar to
that of LIME. And when N is large enough, the proportion of correct results changes less as
N changes. But generally, the algorithm in this article is more insensitive than LIME.

Table 6. Results of sensitivity.

Features InceptionV3 Resnet50

Methods LIME Proposed LIME Proposed
N =100 19.66% 24.74% 20.34% 24.26%
N =500 47.89% 53.52% 43.68% 49.70%
N =1000 57.80% 61.39% 59.63% 60.66%
N = 3000 62.53% 64.62% 63.37% 66.41%

N = 5000 73.34% 74.51% 76.27% 78.64%
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5. Conclusions

This paper proposes a local interpretable model-agnostic explanation method based
on feature relationships that aims to directly quantify and visualize the impact of the rela-
tionship between features on model prediction. It uses the combination mask of superpixel
blocks to obtain the pairwise relationship between features. It not only introduces the
relationship between features into the XAI methods based on black-box models and image
processing but also effectively improves the generality of searching for the relationship
between features in XAI methods. In addition to enriching the interpretation results of the
XAI methods, helping users better understand the decision of the model, improving the
credibility of the algorithm, and reducing computational cost to realize high-performance
computing, the experiments also prove that the method is more stable and consistent than
LIME to a certain extent.
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