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Abstract: The space, Fcc(R), of all fuzzy intervals in R cannot form a vector space. However, the
space Fcc(R) maintains a vector structure by treating the addition of fuzzy intervals as a vector
addition and treating the scalar multiplication of fuzzy intervals as a scalar multiplication of vectors.
The only difficulty in taking care of Fcc(R) is missing the additive inverse element. This means that
each fuzzy interval that is subtracted from itself cannot be a zero element in Fcc(R). Although Fcc(R)
cannot form a vector space, we still can endow a norm on the space Fcc(R) by following its vector
structure. Under this setting, many different types of open sets can be proposed by using the different
types of open balls. The purpose of this paper is to study the topologies generated by these different
types of open sets.
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1. Introduction

The fuzzy set, x̃, in topological space, U, is defined by a membership function, ξ x̃ :
U → [0, 1]. For λ ∈ (0, 1], the λ-level set of x̃ is defined by

x̃λ = {x ∈ U : ξ x̃(x) ≥ λ}.

The 0-level set, x̃0, is defined as the closure of the support {x ∈ U : ξ x̃(x) > 0}, given by

x̃0 = cl({x ∈ U : ξ x̃(x) > 0}) = cl

 ⋃
λ∈(0,1]

x̃λ

.

Let x̃ be a fuzzy set in R. We say that x̃ is a fuzzy interval when its λ-level set, x̃λ, is a
bounded closed interval for λ ∈ [0, 1]. More precisely, we write

x̃λ =
[

x̃L
λ, x̃U

λ

]
,

where x̃L
λ denotes the left endpoint of the bounded closed interval, x̃λ, and x̃U

λ denotes the
right endpoint of the bounded closed interval, x̃λ. We denote by Fcc(R) the family of all
fuzzy intervals.

Let � denote any one of the four basic arithmetic operations, ⊕,	,⊗, or �, between
two fuzzy intervals, x̃ and ỹ. The membership function of x̃� ỹ is defined by

ξ x̃�ỹ(z) = sup
{(x,y):z=x◦y}

min
{

ξ x̃(x), ξ ỹ(y)
}
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for all z ∈ R. More precisely, the membership functions are given by

ξ x̃⊕ỹ(z) = sup
{(x,y):z=x+y}

min
{

ξ x̃(x), ξ ỹ(y)
}

;

ξ x̃	ỹ(z) = sup
{(x,y):z=x−y}

min
{

ξ x̃(x), ξ ỹ(y)
}

;

ξ x̃⊗ỹ(z) = sup
{(x,y):z=x∗y}

min
{

ξ x̃(x), ξỹ(y)
}

;

ξ x̃�ỹ(z) = sup
{(x,y):z=x/y,y 6=0}

min
{

ξ x̃(x), ξỹ(y)
}

.

For example, given two fuzzy intervals, 2̃ and 3̃, with membership functions ξ2̃ and ξ3̃, the
addition 2̃⊕ 3̃ is a new fuzzy interval, z̃ = 2̃⊕ 3̃, with a membership function given by

ξ z̃(z) = ξ2̃⊕3̃(z) = sup
{(x,y):z=x+y}

min{ξ2̃(x), ξ3̃(y)}.

In particular, we have

ξ z̃(5) = ξ2̃⊕3̃(5) = sup
{(x,y):5=x+y}

min{ξ2̃(x), ξ3̃(y)}.

Each real number a can also be treated as a fuzzy interval, 1̃{a}, with a membership
function defined by

ξ1̃{a}
(r) =

{
1 if r = a
0 if r 6= a.

In this case, the fuzzy interval 1̃{a} is also called a crisp number with a value of a. For
convenience, we write κx̃ ≡ 1̃κ ⊗ x̃.

Let x̃ and ỹ be two fuzzy intervals with x̃λ = [x̃L
λ, x̃U

λ ] and ỹλ = [ỹL
λ, ỹU

λ ] for λ ∈ [0, 1].
It is well known that

(x̃⊕ ỹ)λ =
[

x̃L
λ + ỹL

λ, x̃U
λ + ỹU

λ

]
and, for κ ∈ R,

(κx̃)λ =

{
[κx̃L

λ, κx̃U
λ ] if κ ≥ 0

[κx̃U
λ , κx̃L

λ] if κ < 0.

For any κ ∈ R and x̃, ỹ ∈ Fcc(R), it is clear to see

κ(x̃⊕ ỹ) = κx̃⊕ κỹ. (1)

Given any x̃ ∈ Fcc(R), we have

(x̃	 x̃)λ =
[

x̃L
λ − x̃U

λ , x̃U
λ − x̃L

λ

]
=
[
−
(

x̃U
λ − x̃L

λ

)
, x̃U

λ − x̃L
λ

]
. (2)

We see that each λ-level set (x̃	 x̃)λ contains 0 as the middle value of this bounded closed
interval. In this case, we can say that x̃	 x̃ is a fuzzy zero number. Now, we can collect all
these fuzzy zero numbers as a set:

Ψ = {x̃	 x̃ : x̃ ∈ Fcc(R)}.

We also call Ψ the null set in Fcc(R). It is clear to see that the crisp number 1̃{0} with a
value of 0 is in the null set, Ψ.

By referring to (2), the elements in the null set Ψ can be realized as follows.

ψ ∈ Ψ if and only if ψU
λ ≥ 0 and ψL

λ = −ψU
λ for all λ ∈ [0, 1].
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The λ-level sets are given by

ψλ =
[
ψL

λ, ψU
λ

]
=
[
−ψU

λ , ψU
λ

]
.

Given any fuzzy interval, x̃, and crisp number, 1̃{0}, it is clear to see

x̃⊕ 1̃{0} = 1̃{0} ⊕ x̃ = x̃,

which shows that 1̃{0} is the zero element of the space Fcc(R). Since x̃	 x̃ is in Ψ and is
not a zero element of Fcc(R), this means that the space Fcc(R) of all fuzzy intervals cannot
form a vector space under the above fuzzy addition and scalar multiplication. In other
words, the additive inverse element of each fuzzy interval does not exist.

From the monographs [1–10], we see that the normed space must be based on the
vector space. Since Fcc(R) is not a vector space, this means that we are able to endow a
norm on the space (Fcc(R, ‖ · ‖). The purpose of this paper is to overcome this difficulty.
Since the space Fcc(R) maintains a vector structure by treating the addition of fuzzy
intervals as a vector addition and treating the scalar multiplication of fuzzy intervals as
a scalar multiplication of vectors, we can still endow a norm on Fcc(R) and study its
topological structure by including the null set in Fcc(R) and following the similar axioms
of the conventional norm.

In order to study the topological structure of the normed space (Fcc(R), ‖ · ‖), it is
necessarily to consider the concept of open balls. Suppose that (X, ‖ · ‖) is a (conventional)
normed space. It is clear to see

{y :‖ x− y ‖< ε} = {x + z :‖ z ‖< ε}

by taking y = x + z. However, for the space (Fcc(R), ‖ · ‖), we cannot have the above
equality. A detailed explanation is given below.

Given any x̃, ỹ, z̃ ∈ Fcc(R), by taking ỹ = x̃⊕ z̃, we have

‖ x̃	 ỹ ‖=‖ x̃	 (x̃⊕ z̃) ‖=‖ ψ	 z̃ ‖6=‖ z̃ ‖,

where ψ = x̃	 x̃ ∈ Ψ. This means that the following equality

{ỹ :‖ x̃	 ỹ ‖< ε} = {x̃⊕ z̃ :‖ z̃ ‖< ε}

cannot hold true.
In this case, two different types of open balls will be considered in (Fcc(R), ‖ · ‖).

This also means that we can consider many different types of open sets. A more detailed
definition will be presented in the context of this paper. Based on the different types of
open sets, the topological structure of the normed space (Fcc(R), ‖ · ‖) will be studied.

The fuzzy topology has been studied for a long time by referring to the monograph by
Liu and Luo [11], in which the intersection and union of fuzzy sets are defined based on
membership functions. The topological structure studied in this paper is based on the point-
set topology, which is completely different from the fuzzy topology using membership
functions. On the other hand, many different types of fuzzy normed spaces have also be
introduced by many researchers, which are briefly described below.

(a) The concept of fuzzy normed space is referred to by Felbin [12] and Xiao and Zhu [13].
Let X be a vector space, and let L and R be two symmetric and nondecreasing
functions defined by [0, 1] × [0, 1] in [0, 1], satisfying L(0, 0) = 0 and R(1, 1) = 1.
Let F+

cc be a family of all the nonnegative fuzzy numbers in R, and let ‖ · ‖ be a
function defined by X in F+

cc , where, given any fixed x ∈ X, the α-level set ‖ x ‖α of
the nonnegative fuzzy number ‖ x ‖ is a bounded closed interval given by

‖ x ‖α=
[
‖ x ‖L

α , ‖ x ‖U
α

]
for α ∈ (0, 1].
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We say that (X, ‖ · ‖,L,R) is a fuzzy normed space when the following conditions
are satisfied:

• ‖ x ‖= 0̃ if and only if x = θ;
• ‖ λx ‖= |λ|⊗ ‖ x ‖ for x ∈ X and λ ∈ R;
• Given any x, y ∈ X, for s ≤‖ x ‖L

1 , t ≤‖ y ‖L
1 and s + t ≤‖ x + y ‖L

1 , we have

‖ x + y ‖ (s + t) ≥ L(‖ x ‖ (s), ‖ y ‖ (t)).

• Given any x, y ∈ X, for s ≥‖ x ‖L
1 , t ≥‖ y ‖L

1 and s + t ≥‖ x + y ‖L
1 , we have

‖ x + y ‖ (s + t) ≤ R(‖ x ‖ (s), ‖ y ‖ (t)).

(b) The concept of a fuzzy norm in the vector space X is referred to by Bag and Samanta [14,15].
Let N be a function defined on X× [0, ∞) into [0, 1]. We say that the function N is a
fuzzy norm in X when the following conditions are satisfied:

• N (x, 0) = 0 for all x ∈ X;
• N (x, t) = 1 for all t > 0 if and only if x = 0;
• N (λx, t) = µ(x, t/|λ|) for (x, t) ∈ X× [0, ∞) and λ 6= 0;
• N (x + y, s + t) ≥ min{N (x, t),N (y, s)} for all (x, t), (y, s) ∈ X× [0, ∞);
• Given any fixed x ∈ X, we have

lim
t→∞
N (x, t) = 1.

(c) The concept of an intuitionistic fuzzy normed space is referred to by Saadati and
Park [16]. Let ∗ be a continuous t-norm, let ◦ be a continuous t-conorm, and let X be a
vector space. Given two functions µ and ν, defined by X× (0, ∞) in [0, 1], we say that
(X, µ, ν, ∗, ◦) is an intuitionistic fuzzy normed space when the following conditions
are satisfied:

• Given any (x, t) ∈ X× (0, ∞), we have µ(x, t) + ν(x, t) ≤ 1;
• Given any (x, t) ∈ X× (0, ∞), we have µ(x, t) > 0;
• For (x, t) ∈ X× (0, ∞), µ(x, t) = 1 if and only if x = 0;
• Given any (x, t) ∈ X× (0, ∞), we have µ(λx, t) = µ(x, t/|λ|) for a 6= 0;
• Given any (x, t), (y, s) ∈ X× (0, ∞), we have µ(x, t) ∗ µ(y, s) ≤ µ(x + y, s + t);
• Given any fixed x ∈ X, the function µ(x, ·) : (0, ∞)→ [0, 1] is continuous;
• Given any fixed x ∈ X, we have

lim
t→∞

µ(x, t) = 1 and lim
t→0

µ(x, t) = 0.

• Given any (x, t) ∈ X× (0, ∞), we have ν(x, t) < 1;
• For (x, t) ∈ X× (0, ∞), ν(x, t) = 1 if and only if x = 0;
• Given any (x, t) ∈ X× (0, ∞), we have ν(λx, t) = ν(x, t/|λ|) for a 6= 0;
• Given any (x, t), (y, s) ∈ X× (0, ∞), we have ν(x, t) ◦ ν(y, s) ≥ ν(x + y, s + t);
• Given any fixed x ∈ X, the function ν(x, ·) : (0, ∞)→ [0, 1] is continuous;
• Given any fixed x ∈ X, we have

lim
t→∞

ν(x, t) = 0 and lim
t→0

ν(x, t) = 1.

A bunch of articles that studied these three kinds of fuzzy normed spaces have been
published. In this paper, we endow a norm directly on the family of all fuzzy intervals,
which is completely different from that of those three fuzzy normed space since the vector
space is not taken into account.

In Section 2, we present many interesting properties of fuzzy intervals, which will be
used to study the topology generated by the norm. In Section 3, the concept of the norm
in the space of fuzzy intervals is introduced. Many useful properties are also provided in
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order to study the topology generated by the norm. In Section 4, two different types of
open balls are introduced. In Section 5, using the different types of open balls, many types
of open sets are introduced. Finally, in Section 6, the topologies generated by these different
types of open sets are investigated.

2. Space of Fuzzy Intervals

Let us recall that the following set

Ψ = {x̃	 x̃ : x̃ ∈ Fcc(R)}

is called the null set in Fcc(R). For further discussion, we present some useful properties.

• We have

Ψ =
{

ψ ∈ Fcc(R) : ψα =
[
−ψU

α , ψU
α

]
for all α ∈ [0, 1]

}
.

• It is clear to see that ψ ∈ Ψ implies −ψ = ψ.
• We have the equality λΨ = Ψ for λ ∈ R with λ 6= 0.

Example 1. The membership function of the trapezoidal fuzzy interval ã is given by

ξ ã(r) =


(r− aL)/(a1 − aL) if aL ≤ r ≤ a1
1 if a1 < r ≤ a2
(aU − r)/(aU − a2) if a2 < r ≤ aU

0 otherwise,

which is denoted by ã = (aL, a1, a2, aU). The α-level set ãα = [ãL
α , ãU

α ] is obtained by

ãL
α = (1− α)aL + αa1 and ãU

α = (1− α)aU + αa2.

Let ã = (aL, a1, a2, aU) and b̃ = (bL, b1, b2, bU) be two trapezoidal fuzzy intervals. We can show
that ã⊕ b̃ is also a trapezoidal fuzzy interval given by

ã⊕ b̃ = (aL + bL, a1 + b1, a2 + b2, aU + bU).

Now, we have ψ = ã	 ã ∈ Ψ, with the α-level sets given by

ψα = ãα − ãα =
[

ãL
α , ãU

α

]
−
[

ãL
α , ãU

α

]
=
[

ãL
α − ãU

α , ãU
α − ãL

α

]
=
[
(1− α)

(
aL − aU

)
+ α(a1 − a2), (1− α)

(
aU − aL

)
+ α(a2 − a1)

]
for α ∈ [0, 1].

Proposition 1. We have the following properties:

(i) Let F be a subset of Fcc(R). We have the inclusion F ⊆ F⊕Ψ.
(ii) Given any ψ1, ψ2 ∈ Ψ, we have ψ1 ⊕ ψ2 ∈ Ψ. Moreover, we have Ψ⊕Ψ = Ψ.

Proof. To prove part (i), since 1̃{0} ∈ Ψ, given any x̃ ∈ F, we have

x̃ = x̃⊕ 1̃{0} ∈ F⊕Ψ.

To prove part (ii), for ψ1, ψ2 ∈ Ψ, the definition of a null set says

ψ1 = x̃	 x̃ and ψ2 = ỹ	 ỹ

for some x̃, ỹ ∈ Fcc(R). Using the distributive law (1), we obtain

ψ1 ⊕ ψ2 = x̃	 x̃⊕ ỹ	 ỹ = (x̃⊕ ỹ)	 (x̃⊕ ỹ) ∈ Ψ.
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This also shows the inclusion Ψ⊕Ψ ⊆ Ψ. Now, we want to prove the other direction of
inclusion. Given any ψ ∈ Ψ, since the crisp number 1̃{0} ∈ Ψ is a zero element, we have

ψ = ψ⊕ 1̃{0} ∈ Ψ⊕Ψ.

This shows the inclusion Ψ ⊆ Ψ⊕Ψ. Therefore, we obtain the desired equality Ψ⊕Ψ = Ψ,
and the proof is complete.

Definition 1. Given any x̃, ỹ ∈ Fcc(R), we say that the fuzzy intervals x̃ and ỹ are almost
identical when there exist ψ(1), ψ(2) ∈ Ψ satisfying

x̃⊕ ψ(1) = ỹ⊕ ψ(2). (3)

In this case, we write x̃ Ψ
= ỹ.

Suppose that the fuzzy interval x̃ is regarded as the “approximated real number r”.
This means ξ x̃(r) = 1. Since ξψ(0) = 1, we can say that ψ ∈ Ψ is a fuzzy zero number. It is
also clear to see ξ x̃⊕ψ(r) = 1. In this case, we can say that x̃⊕ ψ is an “approximated real
number r”. Similarly, we can also say that ỹ⊕ ψ is an “approximated real number r”. In

other words, x̃ Ψ
= ỹ means that x̃ and ỹ are identical, but they differ from the fuzzy zero

elements ψ(1) and ψ(2), respectively, as referred to in (3).
Suppose that x̃ 	 ỹ = z̃. We cannot obtain x̃ = ỹ ⊕ z̃ as with the conventional

operation in vector space. We can just obtain x̃ Ψ
= ỹ⊕ z̃. An explanation is given below.

Since x̃	 ỹ = z̃, by adding ỹ on both sides, we obtain

x̃	 ỹ⊕ ỹ = z̃⊕ ỹ.

Let ψ = ỹ	 ỹ ∈ Ψ. Then, we obtain x̃⊕ ψ = ỹ⊕ z̃, which gives x̃ Ψ
= ỹ⊕ z̃.

Proposition 2. Given any x̃, ỹ ∈ Fcc(R), we have the following properties:

(i) Suppose that x̃	 ỹ ∈ Ψ. Then, we have x̃ Ψ
= ỹ.

(ii) Suppose that x̃ Ψ
= ỹ. Then, there exists ψ ∈ Ψ satisfying x̃	 ỹ⊕ ψ ∈ Ψ.

Proof. To prove part (i), there exists ψ(1) ∈ Ψ satisfying x̃⊕ (−ỹ) = ψ(1). By adding ỹ on
both sides, we obtain

x̃⊕ (−ỹ)⊕ ỹ = ψ(1) ⊕ ỹ.

Let ỹ	 ỹ ∈ Ψ. We also have x̃⊕ ψ(2) = ψ(1) ⊕ ỹ for ψ(1), ψ(2) ∈ Ψ. This shows x̃ Ψ
= ỹ.

To prove part (ii), the relation x̃ Ψ
= ỹ implies that there exist ψ(1), ψ(2) ∈ Ψ satisfying

x̃⊕ ψ(2) = ψ(1) ⊕ ỹ.

By adding −ỹ on both sides, we obtain

x̃	 ỹ⊕ ψ(2) = ψ(1) ⊕ ỹ	 ỹ.

Let ψ(3) = ỹ	 ỹ ∈ Ψ. Using part (ii) of Proposition 1, we obtain

x̃	 ỹ⊕ ψ(2) = ψ(1) ⊕ ψ(3) ∈ Ψ.

This completes the proof.

The following interesting results will be used for studying the topological structure of
the normed space of fuzzy intervals.
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Proposition 3. Given any two subsets, F1 and F2, of Fcc(R), we have the following inclusion

(F1 ∩ F2)⊕Ψ ⊆ [(F1 ⊕Ψ) ∩ (F2 ⊕Ψ)].

If we further assume
F1 ⊕Ψ ⊆ F1 and F2 ⊕Ψ ⊆ F2 (4)

then the following equality is satisfied

[(F1 ⊕Ψ) ∩ (F2 ⊕Ψ)] = (F1 ∩ F2)⊕Ψ = F1 ∩ F2.

Proof. Given any
ỹ ∈ (F1 ∩ F2)⊕Ψ,

there exist ψ ∈ Ψ and x̃ ∈ Fi for i = 1, 2 satisfying ỹ = x̃⊕ ψ. This gives

ỹ ∈ (F1 ⊕Ψ) ∩ (F2 ⊕Ψ).

Therefore, we obtain the following inclusion

(F1 ∩ F2)⊕Ψ ⊆ [(F1 ⊕Ψ) ∩ (F2 ⊕Ψ)].

Under a further assumption (4), using part (i) of Proposition 1, we obtain

F1 ⊕Ψ = F1 and F2 ⊕Ψ = F2,

which shows the following equality

[(F1 ⊕Ψ) ∩ (F2 ⊕Ψ)] = F1 ∩ F2 ⊆ (F1 ∩ F2)⊕Ψ.

This completes the proof.

3. Normed Space of Fuzzy Intervals

Although the space, Fcc(R), of all fuzzy intervals in R is not a vector space as we
mention above, we still can endow a norm on Fcc(R) by following similar axioms.

Definition 2. Let ‖ · ‖: Fcc(R) → R+ be a nonnegative real-valued function. We consider the
following conditions.

(a) ‖ λx̃ ‖= |λ| ‖ x̃ ‖ for x̃ ∈ Fcc(R) and λ ∈ R;
(a′) ‖ λx̃ ‖= |λ| ‖ x̃ ‖ for x̃ ∈ Fcc(R) and λ ∈ R with λ 6= 0.
(b) ‖ x̃⊕ ỹ ‖≤‖ x̃ ‖ + ‖ ỹ ‖ for x̃, ỹ ∈ Fcc(R).
(c) ‖ x̃ ‖= 0 implies x̃ ∈ Ψ.

When condition (c) is replaced by the following statement

‖ x̃ ‖= 0 if and only if x̃ ∈ Ψ,

the norm ‖ · ‖ is said to satisfy the null condition.
Different kinds of normed space of fuzzy intervals are defined below.

• The space (Fcc(R), ‖ · ‖) is said to be a pseudo-seminormed space when conditions (a′) and
(b) are satisfied.

• The space (Fcc(R), ‖ · ‖) is said to be a seminormed space when conditions (a) and (b) are
satisfied.

• The space (Fcc(R), ‖ · ‖) is said to be a pseudo-normed space when conditions (a′), (b), and
(c) are satisfied.

• The space (Fcc(R), ‖ · ‖) is said to be a normed space whe conditions (a), (b), and (c) are
satisfied.

Regarding the null set Ψ, we also consider the following
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• The norm ‖ · ‖ is said to satisfy the null super-inequality when the inequality

‖ x̃⊕ ψ ‖≥‖ x̃ ‖

is satisfied for x̃ ∈ Fcc(R) and ψ ∈ Ψ.
• The norm ‖ · ‖ is said to satisfy the null sub-inequality when the inequality

‖ x̃⊕ ψ ‖≤‖ x̃ ‖

is satisfied for x̃ ∈ Fcc(R) and ψ ∈ Ψ.
• The norm ‖ · ‖ is said to satisfy the null equality when the equality

‖ x̃⊕ ψ ‖=‖ x̃ ‖

is satisfied for x̃ ∈ Fcc(R) and ψ ∈ Ψ.

Given any x̃, ỹ ∈ Fcc(R), since x̃	 ỹ = −(ỹ	 x̃), by referring to the distributive law
(1), we have the following equality

‖ x̃	 ỹ ‖=‖ ỹ	 x̃ ‖, (5)

which also confirms that the symmetric condition is satisfied.

Example 2. Let us define a nonnegative real-valued function, ‖ · ‖, in Fcc(R) by

‖ x̃ ‖=
∫ 1

0

∣∣∣x̃L
α − x̃U

α

∣∣∣dα.

Then, we have the following properties:

‖ λx̃ ‖ =
∫ 1

0

∣∣∣(λx̃)L
α − (λx̃)U

α

∣∣∣dα =


∫ 1

0

∣∣∣λx̃L
α − λx̃U

α

∣∣∣dα if λ ≥ 0∫ 1

0

∣∣∣λx̃U
α − λx̃L

α

∣∣∣dα if λ < 0

= |λ|
∫ 1

0

∣∣∣x̃L
α − x̃U

α

∣∣∣dα = |λ| ‖ x̃ ‖

and

‖ x̃⊕ ỹ ‖ =
∫ 1

0

∣∣∣(x̃⊕ ỹ)L
α − (x̃⊕ ỹ)U

α

∣∣∣ = ∫ 1

0

∣∣∣x̃L
α + ỹL

α − x̃U
α − ỹU

α

∣∣∣
≤
∫ 1

0

∣∣∣x̃L
α − x̃U

α

∣∣∣dα +
∫ 1

0

∣∣∣ỹL
α − ỹU

α

∣∣∣dα =‖ x̃ ‖ + ‖ ỹ ‖ .

Given any ψ, we have ψα = [−ψU
α , ψU

α ], which shows that

‖ ψ ‖= 2
∫ 1

0

∣∣∣ψU
α

∣∣∣dα 6= 0.

Therefore, (Fcc(R), ‖ · ‖) is a seminormed space of fuzzy intervals such that the null condition is
not satisfied.

Example 3. Let us define a nonnegative real-valued function, ‖ · ‖, in Fcc(R) by

‖ x̃ ‖=
∫ 1

0

∣∣∣x̃L
α + x̃U

α

∣∣∣dα.
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Then, using the argument of Example 2, we can still obtain

‖ λx̃ ‖= |λ| ‖ x̃ ‖ and ‖ x̃⊕ ỹ ‖≤‖ x̃ ‖ + ‖ ỹ ‖ .

For ‖ x̃ ‖= 0, we must have x̃L
α + x̃U

α = 0 for all α ∈ [0, 1], which gives x̃L
α = −x̃U

α for all
α ∈ [0, 1]. Therefore, we obtain x̃ ∈ Ψ. It is also clear that ψ ∈ Ψ implies ‖ ψ ‖= 0, which shows
that the null condition is satisfied. Finally, for ψ ∈ Ψ, i.e., ψL

α = −ψU
α , we have

‖ x̃⊕ ψ ‖ =
∫ 1

0

∣∣∣(x̃⊕ ψ)L
α + (x̃⊕ ψ)U

α

∣∣∣ = ∫ 1

0

∣∣∣x̃L
α + ψL

α + x̃U
α + ψU

α

∣∣∣
=
∫ 1

0

∣∣∣x̃L
α + x̃U

α

∣∣∣dα =‖ x̃ ‖ .

Therefore, we conclude that (Fcc(R), ‖ · ‖) is a normed space of fuzzy intervals such that the null
condition and null equality are satisfied.

Example 4. For any x̃ ∈ Fcc(R), we define

‖ x̃ ‖= sup
α∈[0,1]

∣∣∣x̃L
α + x̃U

α

∣∣∣.
Then, we can show that (Fcc(R), ‖ · ‖) is a normed space of fuzzy intervals such that the null
condition and null equality are satisfied.

Proposition 4. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space such that the norm ‖ · ‖
satisfies the null super-inequality. Given any x̃, z̃, ỹ1, · · · , ỹm ∈ Fcc(R), we have the following
inequality

‖ x̃	 z̃ ‖≤‖ x̃	 ỹ1 ‖ + ‖ ỹ1 	 ỹ2 ‖ + · · ·+ ‖ ỹi 	 ỹi+1 ‖ + · · ·+ ‖ ỹm 	 z̃ ‖ .

Proof. Since ỹi 	 ỹi ∈ Ψ for i = 1, · · · , m, using the null super-inequality m times, we
obtain

‖ x̃	 z̃ ‖≤‖ x̃⊕ (−z̃)⊕ ỹ1 ⊕ · · · ⊕ ỹm ⊕ (−ỹ1)⊕ · · · ⊕ (−ỹm) ‖ .

After re-arranging and using the triangle inequality, we obtain

‖ x̃	 z̃ ‖≤‖ [x̃⊕ (−ỹ1)]⊕ [ỹ1 ⊕ (−ỹ2)] + · · ·+ [ỹi ⊕ (−ỹi+1)] + · · ·+ [ỹm ⊕ (−z̃)] ‖
≤‖ x̃	 ỹ1 ‖ + ‖ ỹ1 	 ỹ2 ‖ + · · ·+ ‖ ỹi 	 ỹi+1 ‖ + · · ·+ ‖ ỹm 	 z̃ ‖ .

This completes the proof.

4. Open Balls

Let X is a vector space, and let (X, ‖ · ‖) be a (conventional) normed space. It is clear
to see

{y :‖ x− y ‖< ε} = {x + z :‖ z ‖< ε}

by taking y = x + z. However, in the pseudo-seminormed space (Fcc(R), ‖ · ‖), we cannot
have the following equality

{ỹ :‖ x̃	 ỹ ‖< ε} = {x̃⊕ z̃ :‖ z̃ ‖< ε}.

As a matter of fact, by taking ỹ = x̃ ⊕ z̃ and using the distributive law (1), we can just
obtain

‖ x̃	 ỹ ‖=‖ x̃	 (x̃⊕ z̃) ‖=‖ −z̃⊕ ψ ‖6=‖ z̃ ‖,

where ψ = x̃	 x̃ ∈ Ψ. Therefore, we can define two types of open balls as follows.
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Definition 3. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space. Two different types of open balls
with a radius of ε are defined by

O�(x̃; ε) = {x̃⊕ z̃ :‖ z̃ ‖< ε}

and
O(x̃; ε) = {ỹ :‖ ỹ	 x̃ ‖< ε},

where ‖ x̃	 ỹ ‖=‖ ỹ	 x̃ ‖, as shown in (5).

Remark 1. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space. Then, we have the following
observations.

• Given any fuzzy interval, x̃, we cannot have the equality

‖ x̃	 x̃ ‖=‖ ψ ‖= 0.

However, if the norm ‖ · ‖ satisfies the null condition, then we have ‖ ψ ‖= 0 for any ψ ∈ Ψ,
which also means ‖ x̃	 x̃ ‖= 0. Therefore, in general, we cannot have x̃ ∈ O(x̃; ε), unless
the norm ‖ · ‖ satisfies the null condition.

• Since 1̃{0} is the zero element of Fcc(R), this gives x̃ = x̃⊕ 1̃{0}. Now, we assume ‖ 1̃{0} ‖=
0. It is clear to see x̃ ∈ O�(x̃; ε).

Example 5. Continued from Example 4, we have the open ball

O�(x̃; ε) = {x̃⊕ z̃ :‖ z̃ ‖< ε} =
{

x̃⊕ z̃ : sup
α∈[0,1]

∣∣∣z̃L
α + z̃U

α

∣∣∣ < ε

}
.

We remark that{
x̃⊕ z̃ : sup

α∈[0,1]

∣∣∣z̃L
α + z̃U

α

∣∣∣ < ε

}
=
{

x̃⊕ z̃ :
∣∣∣z̃L

α + z̃U
α

∣∣∣ < ε for all α ∈ [0, 1]
}

when the supremum
sup

α∈[0,1]

∣∣∣z̃L
α + z̃U

α

∣∣∣ = max
α∈[0,1]

∣∣∣z̃L
α + z̃U

α

∣∣∣
is attained. For example, the function z̃L

α + z̃U
α is upper semicontinuous with respect to α. We also

have the following open ball

O(x̃; ε) = {ỹ :‖ ỹ	 x̃ ‖< ε} =
{

ỹ : sup
α∈[0,1]

∣∣∣(ỹL
α + ỹU

α

)
−
(

x̃L
α + x̃U

α

)∣∣∣ < ε

}
.

Proposition 5. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Then, we
have the following properties:

(i) Given x̃ ∈ Fcc(R), let ψx̃ = x̃	 x̃ ∈ Ψ. Then, we have the following inclusion:

O(x̃; ε)⊕ ψx̃ ⊆ O�(x̃; ε).

(ii) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Then, we have the following
inclusion:

O�(x̃; ε) ⊆ O(x̃; ε).

(iii) Given x̃ ∈ Fcc(R), let ψx̃ = x̃ 	 x̃ ∈ Ψ. Suppose that the norm ‖ · ‖ satisfies the null
sub-inequality. Then, we have the following inclusions:

O(x̃; ε)⊕ ψx̃ ⊆ O(x̃; ε) and O�(x̃; ε)⊕ ψx̃ ⊆ O�(x̃; ε).
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Proof. To prove part (i), given any ỹ ∈ O(x̃; ε), we have ‖ ỹ	 x̃ ‖< ε. Let z̃ = ỹ	 x̃. This
means ‖ z̃ ‖< ε. By adding x̃ on both sides, we also have ỹ⊕ ψx̃ = x̃⊕ z̃. Therefore, we
obtain

O(x̃; ε)⊕ ψx̃ ⊆ {ỹ⊕ ψx̃ :‖ z̃ ‖< ε} = {x̃⊕ z̃ :‖ z̃ ‖< ε} = O�(x̃; ε).

To prove part (ii), given any z̃ ∈ Fcc(R) satisfying ‖ z̃ ‖< ε, using the null sub-
inequality, we obtain

‖ (x̃⊕ z̃)	 x̃ ‖=‖ ψ⊕ z̃ ‖≤‖ z̃ ‖< ε.

This shows x̃⊕ z̃ ∈ O(x̃; ε). Therefore, we obtain the following inclusion:

O�(x̃; ε) = {x̃⊕ z̃ :‖ z̃ ‖< ε} ⊆ O(x̃; ε).

Part (iii) follows immediately from parts (i) and (ii). This completes the proof.

Proposition 6. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Then, we
have the following properties:

(i) Suppose that the norm ‖ · ‖ satisfies the null super-inequality. Then, we have the following
inclusion

O(x̃⊕ ψ; ε) ⊆ O(x̃; ε)

for any ψ ∈ Ψ.
(ii) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Then, we have the following

inclusions:
O(x̃; ε) ⊆ O(x̃⊕ ψ; ε) and O�(x̃⊕ ψ; ε) ⊆ O�(x̃; ε)

for any ψ ∈ Ψ.
(iii) Suppose that the norm ‖ · ‖ satisfies the null equality. Then, we have the following equality

O(x̃⊕ ψ; ε) = O(x̃; ε)

for any ψ ∈ Ψ.

Proof. To prove part (i), given any ỹ ∈ O(x̃⊕ ψ; ε), we have ‖ ỹ	 (x̃⊕ ψ) ‖< ε. Therefore,
we obtain

‖ ỹ	 x̃ ‖ ≤‖ (ỹ	 x̃)⊕ ψ ‖ (using the null super-inequality)

=‖ (ỹ	 x̃)	 ψ ‖ (since −ψ = ψ)

=‖ ỹ	 (x̃⊕ ψ) ‖< ε (using the distributive law (1)).

This shows the desired inclusion.
To prove part (ii), for ỹ ∈ O(x̃; ε), we have ‖ x̃	 ỹ ‖< ε. Using the null sub-inequality,

we obtain
‖ (x̃⊕ ψ)	 ỹ ‖=‖ (x̃	 ỹ)⊕ ψ ‖≤‖ x̃	 ỹ ‖< ε.

This shows the following inclusion

O(x̃; ε) ⊆ O(x̃⊕ ψ; ε).

Now, for ỹ ∈ O�(x̃⊕ ψ; ε), we have

ỹ = x̃⊕ ψ⊕ z̃ with ‖ z̃ ‖< ε.

Let ṽ = ψ⊕ z̃. Using the null sub-inequality, we obtain

‖ ṽ ‖=‖ ψ⊕ z̃ ‖≤‖ z̃ ‖< ε. (6)
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This shows
ỹ = x̃⊕ ṽ ∈ O�(x̃; ε).

Therefore, we obtain the following inclusion

O�(x̃⊕ ψ; ε) ⊆ O�(x̃; ε).

Finally, part (iii) follows immediately from parts (i) and (ii). This completes the proof.

Let X be a vector space, and let (X, ‖ · ‖) be a normed space. It is clear to see

O(x; ε) + y = O(x + y; ε)

for x, y ∈ X. However, in the pseudo-seminormed space (Fcc(R), ‖ · ‖) of fuzzy intervals,
we cannot have

O(x̃; ε)⊕ ỹ = O(x̃⊕ ỹ; ε)

for x̃, ỹ ∈ Fcc(R). An interesting relationship is presented below.

Proposition 7. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Then, we
have the following properties:

(i) For any x̃, x̃∗ ∈ Fcc(R), we have the following equality:

O�(x̃; ε)⊕ x̃∗ = O�(x̃⊕ x̃∗; ε).

By taking x̃∗ = ψ ∈ Ψ, we also have the following equality:

O�(x̃; ε)⊕ ψ = O�(x̃⊕ ψ; ε).

(ii) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Then, we have the following
inclusion:

O(x̃; ε)⊕ x̃∗ ⊆ O(x̃⊕ x̃∗; ε).

We further assume that ‖ · ‖ satisfies the null equality. Given any ψ ∈ Ψ, we also have the
following inclusions:

O(x̃; ε)⊕ ψ ⊆ O(x̃; ε) and O(ψ; ε)⊕ x̃∗ ⊆ O(x̃∗; ε).

(iii) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Given any x̃ ∈ Fcc(R), let
ψx̃ = x̃	 x̃ ∈ Ψ. Then, we have the following inclusion:

O(x̃; ε)⊕ ψx̃ ⊆ x̃⊕O(ψx̃; ε).

(iv) Given any x̃∗ ∈ Fcc(R), let ψx̃∗ = x̃∗ 	 x̃∗ ∈ Ψ. Then, we have the following inclusion:

O(x̃⊕ x̃∗; ε)⊕ ψx̃∗ ⊆ O(x̃; ε)⊕ x̃∗.

Proof. To prove part (i), for ‖ z̃ ‖< ε, we have the following equality:

(x̃⊕ z̃)⊕ x̃∗ = (x̃⊕ x̃∗)⊕ z̃,

which shows the desired equality.
To prove part (ii), given any ỹ ∈ O(x̃; ε) ⊕ x̃∗, there exists ỹ∗ ∈ O(x̃; ε) satisfying

ỹ = ỹ∗ ⊕ x̃∗. We also have ‖ x̃	 ỹ∗ ‖< ε. Let ψ = x̃∗ 	 x̃∗ ∈ Ψ. Then, we obtain

‖ (x̃⊕ x̃∗)	 ỹ ‖ =‖ (x̃⊕ x̃∗)	 (ỹ∗ ⊕ x̃∗) ‖
=‖ (x̃	 ỹ∗)⊕ (x̃∗ 	 x̃∗) ‖ (using the distributive law (1))

=‖ (x̃	 ỹ∗)⊕ ψ ‖≤‖ x̃	 ỹ∗ ‖< ε (using the null sub-inequality).
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This shows ỹ ∈ O(x̃⊕ x̃∗; ε). Therefore, we obtain the following inclusion:

O(x̃; ε)⊕ x̃∗ ⊆ O(x̃⊕ x̃∗; ε).

Now, taking x̃∗ = ψ and using part (iii) of Proposition 6, we obtain

O(x̃; ε)⊕ ψ ⊆ O(x̃⊕ ψ; ε) = O(x̃; ε).

Similarly, by taking x̃ = ψ, we also obtain

O(ψ; ε)⊕ x̃∗ ⊆ O(ψ⊕ x̃∗; ε) = O(x̃∗; ε).

To prove part (iii), for x̃∗ ∈ O(x̃; ε), we have

‖ x̃∗ 	 x̃ ‖< ε and x̃∗ ⊕ ψx̃ = x̃⊕ (x̃∗ 	 x̃).

Using the null sub-inequality, we also have

‖ ψx̃ 	 (x̃∗ 	 x̃) ‖≤‖ x̃∗ 	 x̃ ‖< ε.

This shows x̃∗ 	 x̃ ∈ O(ψx̃; ε). Therefore, we obtain

x̃∗ ⊕ ψx̃ = x̃⊕ (x̃∗ 	 x̃) ∈ x̃⊕O(ψx̃; ε),

which shows the desired inclusion.
To prove part (iv), for ỹ ∈ O(x̃ ⊕ x̃∗; ε), we have ‖ ỹ 	 (x̃ ⊕ x̃∗) ‖< ε. Using the

distributive law (1), we also have

ε >‖ ỹ	 (x̃⊕ x̃∗) ‖=‖ (ỹ	 x̃∗)	 x̃ ‖ .

This shows ỹ	 x̃∗ ∈ O(x̃; ε). Since

ỹ⊕ ψx̃∗ = (ỹ	 x̃∗)⊕ x̃∗,

we obtain
ỹ⊕ ψx̃∗ ∈ O(x̃; ε)⊕ x̃∗,

which shows the desired inclusion. This completes the proof.

Proposition 8. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals.

(i) We have the following properties:

(a) Suppose that the norm ‖ · ‖ satisfies the null super-inequality. Given any ψ ∈ Ψ,

x̃⊕ ψ ∈ O(x̃∗; ε) implies x̃ ∈ O(x̃∗; ε).

(b) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Given any ψ ∈ Ψ,

x̃ ∈ O(x̃∗; ε) implies x̃⊕ ψ ∈ O(x̃∗; ε)

and
x̃ ∈ O�(x̃∗; ε) implies x̃⊕ ψ ∈ O�(x̃∗; ε).

(c) Suppose that the norm ‖ · ‖ satisfies the null equality. Then, given any ψ ∈ Ψ,

x̃⊕ ψ ∈ O(x̃∗; ε) if and only if x̃ ∈ O(x̃∗; ε).

(ii) We have the following inclusions:

O(x̃; ε) ⊆ O(x̃; ε)⊕Ψ and O�(x̃; ε) ⊆ O�(x̃; ε)⊕Ψ.
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We further assume that the norm ‖ · ‖ satisfies the null sub-inequality. Then, we have the
following equalities:

O(x̃; ε)⊕Ψ = O(x̃; ε) and O�(x̃; ε)⊕Ψ = O�(x̃; ε).

(iii) Suppose that the norm ‖ · ‖ satisfies the null condition. Given a fixed ψ ∈ Ψ, we have the
following inclusions:

Ψ⊕ ψ ⊆ O�(ψ; ε) and Ψ ⊆ O(ψ; ε).

Proof. To prove case (a) of part (i), using the null super-inequality, we have

‖ x̃	 x̃∗ ‖≤‖ (x̃⊕ ψ)	 x̃∗ ‖< ε,

which shows the desired implication.
To prove case (b) of part (i), given any x̃ ∈ O(x̃∗; ε), using the null sub-inequality, we

have
‖ (x̃⊕ ψ)	 x̃∗ ‖≤‖ x̃	 x̃∗ ‖< ε.

This shows
x̃⊕ ψ ∈ O(x̃∗; ε).

Now, given any x̃ ∈ O�(x̃∗; ε), we have x̃ = x̃∗ ⊕ z̃ and ‖ z̃ ‖< ε. Given an ψ ∈ Ψ, let
z̃∗ = z̃⊕ ψ. Then, we have

x̃⊕ ψ = x̃∗ ⊕ z̃∗,

where
‖ z̃∗ ‖=‖ z̃⊕ ψ ‖≤‖ z̃ ‖< ε.

This shows
x̃⊕ ψ ∈ O�(x̃∗; ε).

It is clear to see that case (c) of part (i) follows immediately from the previous cases (a) and (b).
To prove part (ii), since 1̃{0} ∈ Ψ is a zero element, we have ỹ = ỹ⊕ 1̃{0}, which shows

the following inclusions:

O(x̃∗; ε) ⊆ O(x̃∗; ε)⊕Ψ and O�(x̃∗; ε) ⊆ O�(x̃∗; ε)⊕Ψ.

We further assume that the norm ‖ · ‖ satisfies the null sub-inequality. Given any x̃ ∈
O(x̃∗; ε) and ψ ∈ Ψ, using case (b) of part (i), we have x̃⊕ ψ ∈ O(x̃∗; ε). This shows the
following inclusion:

O(x̃∗; ε)⊕Ψ ⊆ O(x̃∗; ε).

Given any x̃ ∈ O�(x̃∗; ε) and ψ ∈ Ψ, using case (b) of part (i), we have x̃⊕ ψ ∈ O�(x̃∗; ε).
This shows the following inclusion:

O�(x̃∗; ε)⊕Ψ ⊆ O�(x̃∗; ε).

Therefore, we obtain the desired equalities.
To prove part (iii), for any ψ′ ∈ Ψ, we have ‖ ψ′ ‖= 0. This shows

ψ⊕ ψ′ ∈ O�(ψ; ε),

which shows the inclusion Ψ⊕ ψ ⊆ O�(ψ; ε). On the other hand, we also have

‖ ψ′ 	 ψ ‖=‖ ψ′ ⊕ (−ψ) ‖≤‖ ψ′ ‖ + ‖ −ψ ‖=‖ ψ′ ‖ + ‖ ψ ‖= 0.

This shows ψ′ ∈ O(ψ; ε). Therefore, we obtain Ψ ⊆ O(ψ; ε). This completes the proof.

Proposition 9. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals.
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(i) Given any fixed ψ ∈ Ψ and λ 6= 0, we have the following properties:

(a) Suppose that the norm ‖ · ‖ satisfies the null equality. Then, we have the following
inclusion:

λO(ψ; ε) ⊆ O(ψ; |λ|ε).

(b) Suppose that the norm ‖ · ‖ satisfies the null super-inequality and λ < 1. Then, we
have the following inclusion:

O(ψ; |λ|ε) ⊆ λO(ψ; ε).

(ii) Given any fixed ψ ∈ Ψ and λ 6= 0, we have the following equality:

λO�(ψ; ε) = O�(λψ; |λ|ε).

Proof. To prove case (a) of part (i), given any x̃ ∈ O(ψ; ε), since λψ ∈ Ψ, using the null
equality, we have

‖ ψ	 λx̃ ‖=‖ (ψ⊕ λψ)	 λx̃ ‖=‖ λψ	 λx̃ ‖=‖ λ(x̃	 ψ) ‖= |λ| ‖ x̃	 ψ ‖< |λ|ε.

This gives λx̃ ∈ O(ψ; |λ|ε). Therefore, we obtain the following inclusion:

λO(ψ; ε) ⊆ O(ψ; |λ|ε).

To prove case (b) of part (i), given any x̃ ∈ O(ψ; |λ|ε), we have ‖ ψ	 x̃ ‖< |λ|ε. This
gives

‖ (ψ/λ)	 (x̃/λ) =‖ (ψ	 x̃)/λ ‖= 1/|λ|· ‖ ψ	 x̃ ‖< ε.

Since λ < 1, we have

ψ

λ
= ψ⊕

(
1
λ
− 1
)

ψ and
(

1
λ
− 1
)

ψ ∈ Ψ.

Therefore, there exists ψ∗ ∈ Ψ satisfying ψ/λ = ψ⊕ ψ∗. Now, we obtain

‖ ψ	 (x̃/λ) ‖≤‖ (ψ⊕ ψ∗)	 (x̃/λ) ‖=‖ (ψ/λ)	 (x̃/λ) ‖< ε.

This gives x̃/λ ∈ O(ψ; ε), which also gives x̃ ∈ λO(ψ; ε). Therefore, we obtain the
following inclusion:

O(ψ; |λ|ε) ⊆ λO(ψ; ε).

To prove part (ii), given any x̃ ∈ O�(ψ; ε), we have x̃ = ψ⊕ z̃ and ‖ z̃ ‖< ε. Therefore,
we obtain λx̃ = λψ⊕ λz̃. Let z̃∗ = λz̃. This gives ‖ z̃∗ ‖< |λ|ε. Therefore, we obtain the
following inclusion:

λO�(ψ; ε) ⊆ O�(λψ; |λ|ε).

Now, given any x̃ ∈ O�(λψ; |λ|ε), we have x̃ = λψ⊕ z̃ and‖ z̃ ‖< |λ|ε. Let z̃∗ = z̃/λ. We
obtain

x̃ = λψ⊕ z̃ = λψ⊕ λ(z̃/λ) = λψ⊕ λz̃∗ = λ(ψ⊕ z̃∗) with ‖ z̃∗ ‖< ε.

This gives x̃ ∈ λO�(ψ; ε). Therefore, we obtain the following inclusion:

O�(λψ; |λ|ε) ⊆ λO�(ψ; ε).

This completes the proof.

5. Open Sets

Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. The concept of
open set in Fcc(R) is considered below by using the types of open balls studied above.
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Definition 4. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F be a
nonempty subset of Fcc(R).
• A fuzzy interval, x̃ ∈ F, is called an interior point of F when there exists an open ball O(x̃; ε)

satisfying
O(x̃; ε) ⊆ F.

The collection of all interior points of F is called the interior of F and is denoted by int(F).
• A fuzzy interval, x̃ ∈ F, is called an α-interior point of F when there exists an open ball

O(x̃; ε) satisfying
O(x̃; ε)⊕Ψ ⊆ F.

The collection of all α-interior points of F is called the α-interior of F and is denoted by
int(α)(F).

• A fuzzy interval, x̃ ∈ F, is called a β-interior point of F when there exists an open ball O(x̃; ε)
satisfying

O(x̃; ε) ⊆ F⊕Ψ.

The collection of all β-interior points of F is called the β-interior of F and is denoted by
int(β)(F).

• A fuzzy interval, x̃ ∈ F, is called a γ-interior point of F when there exists an open ball O(x̃; ε)
satisfying

O(x̃; ε)⊕Ψ ⊆ F⊕Ψ.

The collection of all γ-interior points of F is called the γ-interior of F and is denoted by
int(γ)(F).

The different types of �-interior points using the open ball, O�(x̃; ε), can be similarly
defined. For example, a fuzzy interval, x̃ ∈ F, is called a �γ-interior point of F when there
exists an open ball, O�(x̃; ε), satisfying

O�(x̃; ε)⊕Ψ ⊆ F⊕Ψ.

The collection of all �γ-interior points of F is called the �γ-interior of F and is denoted by
int(�γ)(F).

Example 6. Continued from Example 1, given a trapezoidal fuzzy interval, ã = (aL, a1, a2, aU),
the α-level set ãα = [ãL

α , ãU
α ] is obtained by

ãL
α = (1− α)aL + αa1 and ãU

α = (1− α)aU + αa2.

We consider a nonempty subset, F, of Fcc(R) by

F =

{
ỹ :
∫ 1

0

∣∣∣(ỹL
α + ỹU

α

)
−
(

ãL
α + ãU

α

)∣∣∣dα ≤ 1
}

=

{
ỹ :
∫ 1

0

∣∣∣(ỹL
α + ỹU

α

)
− (1− α)(aL + aU)− α(a1 + a2)

∣∣∣dα ≤ 1
}

.

Considering the norm given in Example 3, we have the open ball

O(x̃; ε) = {ỹ :‖ ỹ	 x̃ ‖< ε} =
{

ỹ :
∫ 1

0

∣∣∣(ỹL
α + ỹU

α

)
−
(

x̃L
α + x̃U

α

)∣∣∣dα < ε

}
.
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The definition says that x̃ is an interior point of F when there exists an ε > 0 satisfying the following
inclusion {

ỹ :
∫ 1

0

∣∣∣(ỹL
α + ỹU

α

)
−
(

x̃L
α + x̃U

α

)∣∣∣dα < ε

}
⊆
{

ỹ :
∫ 1

0

∣∣∣(ỹL
α + ỹU

α

)
− (1− α)(aL + aU)− α(a1 + a2)

∣∣∣dα ≤ 1
}

.

In particular, if we take x̃ to be a trapezoidal fuzzy interval b̃ = (bL, b1, b2, bU), then b̃ is an interior
point of F when there exists an ε > 0 satisfying the following inclusion{

ỹ :
∫ 1

0

∣∣∣(ỹL
α + ỹU

α

)
− (1− α)(bL + bU)− α(b1 + b2)

∣∣∣dα < ε

}
⊆
{

ỹ :
∫ 1

0

∣∣∣(ỹL
α + ỹU

α

)
− (1− α)(aL + aU)− α(a1 + a2)

∣∣∣dα ≤ 1
}

.

Remark 2. Let F be a nonempty subset of Fcc(R). Remark 1 says x̃ 6∈ O(x̃; ε) in general, unless
the norm ‖ · ‖ satisfies the null condition. For a fuzzy interval, x̃, satisfying ‖ x̃	 x̃ ‖6= 0 and
ε∗ <‖ x̃ 	 x̃ ‖, it follows that x̃ 6∈ O(x̃; ε∗). Given any ε < ε∗, it is clear to see O(x̃; ε) ⊆
O(x̃; ε∗). When we take F = O(x̃; ε∗), we see that the open ball, O(x̃; ε), is contained in F, even
though the center x̃ is not in F.

Remark 3. Let F be a nonempty subset of Fcc(R). Remark 2 says that it is possible that there exists
an open ball, O(x̃; ε), satisfying O(x̃; ε) ⊆ F and x̃ 6∈ F. In this situation, x̃ is not an interior point
since x̃ 6∈ F. Similarly, the set O(x̃; ε)⊕Ψ does not necessarily contain the center x̃. Therefore, it
is possible that there exists an open ball, O(x̃; ε), satisfying O(x̃; ε)⊕Ψ ⊆ F and x̃ 6∈ F. In this
situation, x̃ is not an α-interior point, since x̃ 6∈ F. However, we make the following observations.

• Suppose that the norm ‖ · ‖ satisfies the null condition. Remark 1 says x̃ ∈ O(x̃; ε). Since
1̃{0} ∈ Ψ is a zero element, we have x̃ = x̃⊕ 1̃{0}, which also means x̃ ∈ O(x̃; ε)⊕Ψ.

• Suppose that ‖ 1̃{0} ‖= 0. Then, we have x̃ ∈ O�(x̃; ε) by the second observation of Remark 1.
Since x̃ = x̃⊕ 1̃{0} and 1̃{0} ∈ Ψ, we also have x̃ ∈ O�(x̃; ε)⊕Ψ.

According to Remark 3, the different types of so-called pseudo-interior points are
defined below.

Definition 5. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F be a
nonempty subset of Fcc(R).
• A fuzzy interval, x̃ ∈ Fcc(R), is called a pseudo-interior point of F when there exists an open

ball, O(x̃; ε), satisfying
O(x̃; ε) ⊆ F.

The collection of all pseudo-interior points of F is called the pseudo-interior of F and is denoted
by pint(F).

• A fuzzy interval, x̃ ∈ Fcc(R), is called an α-pseudo-interior point of F when there exists an
open ball, O(x̃; ε), satisfying

O(x̃; ε)⊕Ψ ⊆ F.

The collection of all α-pseudo-interior points of F is called the α-pseudo-interior of F and is
denoted by pint(α)(F).

• A fuzzy interval, x̃ ∈ Fcc(R), is called a β-pseudo-interior point of F when there exists an
open ball, O(x̃; ε), satisfying

O(x̃; ε) ⊆ F⊕Ψ.

The collection of all β-pseudo-interior points of F is called the β-pseudo-interior of F and is
denoted by pint(β)(F).
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• A fuzzy interval, x̃ ∈ Fcc(R), is called a γ-pseudo-interior point of F when there exists an
open ball, O(x̃; ε), satisfying

O(x̃; ε)⊕Ψ ⊆ F⊕Ψ.

The collection of all γ-pseudo-interior points of F is called the γ-pseudo-interior of F and is
denoted by pint(γ)(F).

The different types of �-pseudo-interior points using the open ball, O�(x̃; ε), can be
similarly defined. The difference between Definitions 4 and 5 is that x̃ ∈ F is considered in
Definition 4, and x̃ ∈ Fcc(R) is considered in Definition 5.

Remark 4. Let F be a nonempty subset of Fcc(R). Then, we have the following observations.

• The following inclusions are obvious:

int(F) ⊆ pint(F) and int(�)(F) ⊆ pint(�)(F).

We also have

int(α)(F) ⊆ pint(α)(F) and int(�α)(F) ⊆ pint(�α)(F)

int(β)(F) ⊆ pint(β)(F) and int(�β)(F) ⊆ pint(�β)(F)

int(γ)(F) ⊆ pint(γ)(F) and int(�γ)(F) ⊆ pint(�γ)(F).

• The following inclusions are obvious:

int(F) ⊆ F, int(α)(F) ⊆ F, int(β)(F) ⊆ F and int(γ)(F) ⊆ F.

However, the above inclusions may not hold true for pseudo-interior points.
• Using Remark 1, we also have the following observations.

– Suppose that the norm ‖ · ‖ satisfies the null condition. Since x̃ ∈ O(x̃; ε), the concepts
of an interior point and a pseudo-interior point are equivalent.

– Suppose that ‖ θ ‖= 0. Since x̃ ∈ O�(x̃; ε), the concepts of a �-interior point and a
�-pseudo-interior point are equivalent.

Remark 5. Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Using part (ii) of
Proposition 8, we make the following observations.

• The concept of an interior point is equivalent to the concept of an α-interior point.
• The concept of a β-interior point is equivalent to the concept of a γ-interior point.
• The concept of a pseudo-interior point is equivalent to the concept of an α-pseudo-interior

point.
• The concept of a β-pseudo-interior point is equivalent to the concept of a γ-pseudo-interior

point.

The equivalence between the concepts of �-interior points and �-pseudo-interior points can be
similarly realized.

Remark 6. Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Using part (ii) of
Proposition 5, we make the following observations:

• If x̃ is an interior point, then it is also a �-interior point.
• If x̃ is an α-interior point, then it is also a �α-interior point.
• If x̃ is a β-interior point, then it is also a �β-interior point.
• If x̃ is a γ-interior point, then it is also a �γ-interior point.

Let F be a nonempty subset of Fcc(R). Using Remark 5, we obtain the following relationships:

int(F) = int(α)(F) ⊆ int(�α)(F) = int�(F)
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and
int(β)(F) = int(γ)(F) ⊆ int(�γ)(F) = int(�β)(F).

Similarly, for the pseudo-interior point, we also have the following relationships:

pint(F) = pint(α)(F) ⊆ pint(�α)(F) = pint�(F)

and
pint(β)(F) = pint(γ)(F) ⊆ pint(�γ)(F) = pint(�β)(F).

Remark 7. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F be a
nonempty subset of Fcc(R). Suppose that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then, the
concept of an interior point is equivalent to the concept of a pseudo-interior point, which shows

pint(F) = int(F) ⊆ F.

Similarly, if x̃ ∈ O�(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0, then we have

pint�(F) = int�(F) ⊆ F.

Remark 8. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F be a
nonempty subset of Fcc(R). From part (ii) of Proposition 8, we have the following inclusions:

O(x̃; ε) ⊆ O(x̃; ε)⊕Ψ and O�(x̃; ε) ⊆ O�(x̃; ε)⊕Ψ.

Suppose that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R), and ε > 0. Given any x̃ ∈ pint(α)(F), we have

x̃ ∈ O(x̃; ε) ⊆ O(x̃; ε)⊕Ψ ⊆ F.

This gives
x̃ ∈ int(α)(F) and x̃ ∈ int(F).

Using Remark 4, we obtain the following inclusions:

pint(α)(F) ⊆ int(F) ⊆ F and pint(α)(F) ⊆ int(α)(F) ⊆ pint(α)(F).

This shows pint(α)(F) = int(α)(F). Similarly, if x̃ ∈ O�(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0,
then we can also obtain the following relationship

pint(�α)(F) ⊆ int(�)(F) ⊆ F and pint(�α)(F) = int(�α)(F).

Remark 9. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F be a
nonempty subset of Fcc(R) satisfying F⊕Ψ ⊆ F. Suppose that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R)
and ε > 0. Given any x̃ ∈ pint(β)(F), we have the following inclusions:

x̃ ∈ O(x̃; ε) ⊆ F⊕Ψ ⊆ F.

This gives
x̃ ∈ int(β)(F) and x̃ ∈ int(F).

Using Remark 4, we obtain the following inclusions:

pint(β)(F) ⊆ int(F) ⊆ F and pint(β)(F) ⊆ int(β)(F) ⊆ pint(β)(F).

This shows pint(β)(F) = int(β)(F). Similarly, if x̃ ∈ O�(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0,
then we can also obtain the following relationship

pint(�β)(F) ⊆ int(�)(F) ⊆ F and pint(�β)(F) = int(�β)(F).



Axioms 2023, 12, 996 20 of 33

Remark 10. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F be a
nonempty subset of Fcc(R) satisfying F⊕Ψ ⊆ F. Suppose that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R),
and ε > 0. Using part (ii) of Proposition 8, we have the following inclusions:

O(x̃; ε) ⊆ O(x̃; ε)⊕Ψ and O�(x̃; ε) ⊆ O�(x̃; ε)⊕Ψ.

Given any x̃ ∈ pint(γ)(F), we also have the following inclusions:

x̃ ∈ O(x̃; ε) ⊆ O(x̃; ε)⊕Ψ ⊆ F⊕Ψ ⊆ F.

This gives
x̃ ∈ int(α)(F), x̃ ∈ int(β)(F), x̃ ∈ int(γ)(F) and x̃ ∈ int(F).

Therefore, we obtain the following inclusions:

pint(γ)(F) ⊆ int(F) ⊆ F, pint(γ)(F) ⊆ int(α)(F) ⊆ F, pint(γ)(F) ⊆ int(β)(F) ⊆ F

and
pint(γ)(F) ⊆ int(γ)(F) ⊆ F.

Using Remark 4, we can obtain the following inclusions:

pint(γ)(F) ⊆ int(γ)(F) ⊆ pint(γ)(F).

This shows pint(γ)(F) = int(γ)(F). Similarly, if x̃ ∈ O�(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0,
then can also obtain

pint(�γ)(F) ⊆ int(�)(F) ⊆ F, pint(�γ)(F) ⊆ int(�α)(F) ⊆ F, pint(�γ)(F) ⊆ int(�β)(F) ⊆ F

and
pint(�γ)(F) = int(�γ)(F).

Definition 6. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F be a
nonempty subset of Fcc(R).
• We say that the set F is open when F = int(F), and we say that the set F is pseudo-open when

F = pint(F).
• We say that the set F is α-open when F = int(α)(F), and we say that the set F is α-pseudo-open

when F = pint(α)(F).
• We say that the set F is β-open when F = int(β)(F), and we say that the set F is β-pseudo-open

when F = pint(β)(F).
• We say that the set F is γ-open when F = int(γ)(F), and we say that the set F is γ-pseudo-open

when F = pint(γ)(F).

Using the different types of �-interior and �-pseudo-interior points, we can similarly define the
corresponding types of �-open sets.

We adopt the convention ∅⊕Ψ = ∅.

Remark 11. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F be a
nonempty subset of Fcc(R).
• Since the empty set, ∅, contains no elements, we can treat the empty set as an open ball, which

also means that the empty set ∅ is open and pseudo-open. Since

x̃ ∈ O ⊆ X
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for any open ball O, it follows that

Fcc(R) ⊆ int(Fcc(R)) and Fcc(R) ⊆ pint(Fcc(R)).

This shows that Fcc(R) is open and pseudo-open.
• Since ∅⊕Ψ = ∅ ⊆ ∅, this means that that the empty set ∅ is α-open and α-pseudo-open.

Since
x̃ ∈ O⊕Ψ ⊆ X

for any open ball O, it follows that

Fcc(R) ⊆ int(α)(Fcc(R)) and Fcc(R) ⊆ pint(α)(Fcc(R)).

This shows that Fcc(R) is α-open and α-pseudo-open.
• Since ∅ ⊆ ∅ = Ψ⊕∅, this means that the empty set ∅ is β-open and β-pseudo-open. Using

part (i) of Proposition 1, given any x̃ ∈ Fcc(R) and any open ball, O, we have

x̃ ∈ O ⊆ Fcc(R) ⊆ Fcc(R)⊕Ψ.

Therefore, we obtain

Fcc(R) ⊆ int(β)(Fcc(R)) and Fcc(R) ⊆ pint(β)(Fcc(R)).

This shows that Fcc(R) is β-open and β-pseudo-open.
• Since ∅⊕Ψ ⊆ Ψ⊕∅, this means that the empty set, ∅, is γ-open and γ-pseudo-open. Given

any x̃ ∈ Fcc(R) and any open ball, O, we have x̃ ∈ O ⊆ X. This also means

O⊕Ψ ⊆ X⊕Ψ.

Therefore, we obtain

Fcc(R) ⊆ int(γ)(Fcc(R)) and Fcc(R) ⊆ pint(γ)(Fcc(R)).

This shows that Fcc(R) is γ-open and γ-pseudo-open.

Regarding the �-open sets and �-pseudo-open sets, we can obtain similar results.

In order to study the topological structure of (Fcc(R), ‖ · ‖), we need some interesting
results.

Proposition 10. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F
be a nonempty subset of Fcc(R). Then, we have the following properties:

(i) Suppose that F is pseudo-open, i.e., F = pint(F). Then, F is also open. In other words, we
have

F = pint(F) = int(F).

Suppose that F = pint�(F), Then, we have

F = pint�(F) = int�(F).

(ii) Suppose that F = pint(α)(F). Then, we have

F = pint(α)(F) = int(α)(F).

Suppose that F = pint(�α)(F). Then, we have

F = pint(�α)(F) = int(�α)(F).
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(iii) Suppose that F = pint(β)(F). Then, we have

F = pint(β)(F) = int(β)(F).

Suppose that F = pint(�β)(F). Then, we have

F = pint(�β)(F) = int(�β)(F).

(iv) Suppose that F = pint(γ)(F). Then, we have

F = pint(γ)(F) = int(γ)(F).

Suppose that F = pint(�γ)(F), Then, we have

F = pint(�γ)(F) = int(�γ)(F).

Proof. It suffices to prove part (i), since the other parts can be similarly realized. Given any

x̃ ∈ pint(F) = F,

there exists an open ball, O(x̃; ε), satisfying O(x̃; ε) ⊆ F. Since x̃ ∈ F, it follows that
x̃ ∈ int(F). Therefore, we obtain pint(F) ⊆ int(F). Using the first observation of Remark 4,
we obtain pint(F) = int(F). This completes the proof.

Proposition 11. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals, and let F
be a nonempty subset of Fcc(R).
(i) Suppose that the norm ‖ · ‖ satisfies the null super-inequality. Then, we have the following

properties:

(a) Given any type of pseudo-open set, F, x̃ ∈ F implies x̃⊕ ψ ∈ F for any ψ ∈ Ψ.
(b) Given an open set F, x̃ ∈ F implies x̃⊕ ψ ∈ pint(F) for any ψ ∈ Ψ.
(c) Given an α-open set F, x̃ ∈ F implies x̃⊕ ψ ∈ pint(α)(F) for any ψ ∈ Ψ.
(d) Given a β-open set F, x̃ ∈ F implies x̃⊕ ψ ∈ pint(β)(F) for any ψ ∈ Ψ.
(e) Given a γ-open set F, x̃ ∈ F implies x̃⊕ ψ ∈ pint(γ)(F) for any ψ ∈ Ψ.

(ii) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Given any type of pseudo-open
set F, we have the following properties:

(a) x̃⊕ ψ ∈ F implies x̃ ∈ F for any ψ ∈ Ψ.
(b) F⊕ ψ ⊆ F for any ψ ∈ Ψ and F⊕Ψ ⊆ F.
(c) x̃⊕ ψ ∈ F⊕ ψ implies x̃ ∈ F for any ψ ∈ Ψ.
(d) We have the equality F = F⊕Ψ.

(iii) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Given any type of �-pseudo-open
set F, x̃ ∈ F implies x̃⊕ ψ ∈ F for any ψ ∈ Ψ.

Proof. To prove part (i), we first assume that F is γ-pseudo-open. Given any

x̃ ∈ F = pint(γ)(F),

there exists an open ball, O(x̃; ε), satisfying

O(x̃; ε)⊕Ψ ⊆ F⊕Ψ.

Part (i) of Proposition 6 shows the following inclusion

O(x̃⊕ ψ; ε)⊕Ψ ⊆ F⊕Ψ.
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Therefore, we obtain
x̃⊕ ψ ∈ pint(γ)(F) = F.

Now, we assume that F is γ-open. Given any

x̃ ∈ F = int(γ)(F) ⊆ pint(γ)(F),

we can similarly obtain
x̃⊕ ψ ∈ pint(γ)(F).

The other cases can be similarly obtained.
To prove case (a) of part (ii), it suffices to consider the case of a γ-pseudo-open set.

Given any
x̃⊕ ψ ∈ F = pint(γ)(F),

there exists an open ball, O(x̃⊕ ψ; ε), satisfying

O(x̃⊕ ψ; ε)⊕Ψ ⊆ F⊕Ψ.

Part (ii) of Proposition 6 shows the following inclusion:

O(x̃; ε)⊕Ψ ⊆ F⊕Ψ.

Therefore, we obtain x̃ ∈ pint(γ)(F) = F.
To prove case (b) of part (ii), it suffices to consider the case of a γ-pseudo-open set.

Given any x̃ ∈ F⊕ ψ, there exists

x̃∗ ∈ F = pint(γ)(F)

satisfying x̃ = x̃∗ ⊕ ψ. This also means that there exists an open ball, O(x̃∗; ε), satisfying

O(x̃∗; ε)⊕Ψ ⊆ F⊕Ψ.

Using part (ii) of Proposition 6, we have

O(x̃; ε) ⊆ O(x̃⊕ ψ; ε) = O(x̃∗; ε).

Therefore, we obtain

O(x̃; ε)⊕Ψ ⊆ F⊕Ψ, i.e., x̃ ∈ pint(γ)(F) = F.

Now, given any x̃ ∈ F⊕Ψ, there exists a ψ ∈ Ψ satisfying x̃ ∈ F⊕ ψ. Therefore, we obtain
x̃ ∈ F by using the above result, which shows the equality F⊕Ψ ⊆ F.

To prove case (c) of part (ii), from case (b) of part (ii), we have the following relation-
ship:

x̃⊕ ψ ∈ F⊕ ψ ⊆ F⊕Ψ ⊆ F,

which shows x̃ ∈ F by using case (a) of part (ii).
To prove case (d) of part (ii), since 1̃{0} ∈ Ψ is a zero element, we have x̃ = x̃⊕ 1̃{0}.

This shows F ⊆ F⊕Ψ. Therefore, we can obtain the desired equality by using case (b) of
part (ii).

To prove part (iii), part (ii) of Proposition 6 shows the following inclusion:

O�(x̃⊕ ψ; ε) ⊆ O�(x̃; ε).

Therefore, we can obtain the desired result by using a similar argument to the proof of part
(i). This completes the proof.

Proposition 12. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals.
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(i) Suppose that the norm ‖ · ‖ satisfies the null condition. Then, we have the following properties:

(a) We have the following inclusion:

int(α)(F)⊕Ψ ⊆ F.

When F is α-open, we also have F⊕Ψ ⊆ F.
(b) We have the following inclusion:

int(β)(F) ⊆ F⊕Ψ.

When F is β-open, we also have F ⊆ F⊕Ψ.

(ii) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Then, we have the following
inclusion:

(pint(β)(F))c ⊕Ψ ⊆ (pint(β)(F))c.

When F is β-pseudo-open, we also have Fc ⊕Ψ ⊆ Fc.

Proof. To prove case (a) of part (i), given any x̃ ∈ int(α)(F), there exists an open ball,
O(x̃; ε), satisfying O(x̃; ε)⊕ Ψ ⊆ F. The first observation of Remark 1 says x̃ ∈ O(x̃; ε).
Therefore, we have

x̃⊕Ψ ⊆ O(x̃; ε)⊕Ψ ⊆ F,

which shows the inclusion int(α)(F)⊕Ψ ⊆ F.
To prove case (b) of part (i), given any x̃ ∈ int(β)(F), there exists an open ball, O(x̃; ε),

satisfying O(x̃; ε) ⊆ F ⊕ Ψ. Since x̃ ∈ O(x̃; ε), we have x̃ ∈ F ⊕ Ψ, which shows the
inclusion int(β)(F) ⊆ F⊕Ψ.

To prove part (ii), given any

x̃ ∈ (pint(β)(F))c ⊕Ψ,

there exist an x̃∗ ∈ (pint(β)(F))c and an ψ∗ ∈ Ψ satisfying x̃ = x̃∗ ⊕ ψ∗. This means
O(x̃∗; ε) 6⊆ F⊕Ψ for every ε > 0. Using part (ii) of Proposition 6, we have

O(x̃∗; ε) ⊆ O(x̃∗ ⊕ ψ∗; ε) = O(x̃; ε).

Therefore, we obtain O(x̃; ε) 6⊆ F⊕Ψ for every ε > 0, which means x̃ 6∈ pint(β)(F). This
completes the proof.

Proposition 13. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals.

(i) The open ball O�(x̃; ε) is simultaneously �-open, �β-open and �γ-open. Moreover, we also
have the following inclusions:

O�(x̃; ε) ⊆ pint(O�(x̃; ε)), O�(x̃; ε) ⊆ pint(�β)(O�(x̃; ε)) and O�(x̃; ε) ⊆ pint(�γ)(O�(x̃; ε)).

(ii) The open ball O(x̃; ε) is simultaneously open, β-open and γ-open. Moreover, we also have the
following inclusions:

O(x̃; ε) ⊆ pint(O(x̃; ε)), O(x̃; ε) ⊆ pint(β)(O(x̃; ε)) and O(x̃; ε) ⊆ pint(γ)(O(x̃; ε)).

(iii) Suppose that the norm ‖ · ‖ satisfies the null sub-inequality. Then, the open ball O�(x̃; ε) is
simultaneously �α-open and α-open. Moreover, we also have the following inclusions:

O�(x̃; ε) ⊆ pint(�α)(O�(x̃; ε)) and O(x̃; ε) ⊆ pint(α)(O(x̃; ε)).
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Proof. To prove part (i), given any x̃ ∈ O�(x̃◦; ε), we have x̃ = x̃◦ ⊕ z̃ and ‖ z̃ ‖< ε. Let
ε̂ = ε− ‖ z̃ ‖> 0. Given any x̃∗ ∈ O�(x̃; ε̂), we also have x̃∗ = x̃ ⊕ ṽ and ‖ ṽ ‖< ε̂.
Therefore, we obtain

x̃∗ = x̃◦ ⊕ z̃⊕ ṽ

and
‖ z̃⊕ ṽ ‖≤‖ z̃ ‖ + ‖ ṽ ‖= ε− ε̂+ ‖ ṽ ‖< ε− ε̂ + ε̂ = ε.

This shows x̃∗ ∈ O�(x̃◦; ε). Therefore, we obtain the following inclusions:

O�(x̃; ε̂) ⊆ O�(x̃◦; ε), (7)

which also shows the following inclusion:

O�(x̃◦; ε) ⊆ int(O�(x̃◦; ε)).

Therefore, we obtain the following equality:

O�(x̃◦; ε) = int(O�(x̃◦; ε)).

Similarly, we can obtain the following inclusion:

O�(x̃◦; ε) ⊆ pint(O�(x̃◦; ε)).

Since pint(O�(x̃◦; ε)) is not necessarily contained in O�(x̃◦; ε), we may not have the follow-
ing equality:

O�(x̃◦; ε) = pint(O�(x̃◦; ε)).

Now, using (7), we have the following inclusion:

O�(x; ε̂)⊕Ψ ⊆ O�(x̃◦; ε)⊕Ψ,

which shows that O�(x̃◦; ε) is �γ-open. Using (7) and part (ii) of Proposition 8, we obtain
the following inclusions:

O�(x̃; ε̂) ⊆ O�(x̃◦; ε) ⊆ O�(x̃◦; ε)⊕Ψ,

which shows that O�(x̃◦; ε) is �β-open.
To prove part (ii), given any x̃ ∈ O(x̃◦; ε), we have ‖ x̃	 x̃◦ ‖< ε. Let ε̂ =‖ x̃	 x̃◦ ‖.

Given any x̃∗ ∈ O(x̃; ε− ε̂), we have ‖ x̃∗ 	 x̃ ‖< ε− ε̂. Using Proposition 4, we obtain

‖ x̃∗ 	 x̃◦ ‖≤‖ x̃∗ 	 x̃ ‖ + ‖ x̃	 x̃◦ ‖= ε̂+ ‖ x̃∗ 	 x̃ ‖< ε̂ + ε− ε̂ = ε.

This means x̃∗ ∈ O(x̃◦; ε). Therefore, we obtain the following inclusion

O(x̃; ε− ε̂) ⊆ O(x̃◦; ε), (8)

which also shows the following inclusion:

O(x̃◦; ε) ⊆ int(O(x̃◦; ε)).

Therefore, we obtain the following equality:

O(x̃◦; ε) = int(O(x̃◦; ε)).

Similarly, we can obtain the following inclusion:

O(x̃◦; ε) ⊆ pint(O(x̃◦; ε)).
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Now, using (8), we have the following incusion

O(x̃; ε− ε̂)⊕Ψ ⊆ O(x̃◦; ε)⊕Ψ,

which shows that O(x̃◦; ε) is γ-open. Using (8) and part (ii) of Proposition 8, we obtain the
following inclusion:

O(x̃; ε− ε̂) ⊆ O(x̃◦; ε) ⊆ O(x̃◦; ε)⊕Ψ,

which also shows that O(x̃◦; ε) is β-open.
To prove part (iii), using (7), (8) and part (ii) of Proposition 8, we have the following

relationships:
O�(x̃; ε̂)⊕Ψ ⊆ O�(x̃◦; ε)⊕Ψ = O�(x̃◦; ε)

and
O(x̃; ε− ε̂)⊕Ψ ⊆ O(x̃◦; ε)⊕Ψ = O(x̃◦; ε).

This shows that the open ball O�(x̃◦; ε) is simultaneously �α-open and α-open. This
completes the proof.

Proposition 14. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Then, we
have the following properties:

(i) Suppose that x̃ ∈ O(x̃; ε). Then, O(x̃; ε) is pseudo-open. We further assume that the
norm ‖ · ‖ satisfies the null sub-inequality. Then, O(x̃; ε) is simultaneously α-pseudo-open,
β-pseudo-open and γ-pseudo-open.

(ii) Suppose that x̃ ∈ O�(x̃; ε). Then, O(x̃; ε) is �-pseudo-open. We further assume that the
norm ‖ · ‖ satisfies the null sub-inequality. Then, O(x̃; ε) is simultaneously �α-pseudo-open,
�β-pseudo-open and �γ-pseudo-open.

Proof. The results follow immediately from Proposition 13, Remarks 7–10 and part (ii) of
Proposition 8.

6. Topological Spaces

Using the different types of open sets presented above, we can study the topological
structure generated by the pseudo-seminormed space (Fcc(R), ‖ · ‖) of fuzzy intervals.

• The collection of all open sets in Fcc(R) is dented by τ.
• The collection of all �-open sets in Fcc(R) is denoted by τ(�).
• The collection of all pseudo-open sets in Fcc(R) is denote by pτ.
• The collection of all �-pseudo-open sets in Fcc(R) is denoted by pτ(�).
• The collection of all α-open sets in Fcc(R) is denote by τ(α).
• The collection of all �α-open sets in Fcc(R) is denoted by τ(�α)

• The collection of all α-pseudo-open sets in Fcc(R) is denoted by pτ(α).
• The collection of all �α-pseudo-open sets in Fcc(R) is denoted by pτ(�α).

The families τ(β), τ(γ), τ(�β), τ(�γ), pτ(β), pτ(γ), pτ(�β) and pτ(�γ) can be similarly realized.

Theorem 1. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Then, we have
the following properties:

(i) (Fcc(R), τ(α)) and (Fcc(R), τ(�α)) are topological spaces.
(ii) Suppose that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then,

(Fcc(R), pτ(α)) = (Fcc(R), τ(α))

is a topological space.
(iii) Suppose that x̃ ∈ O�(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then,

(Fcc(R), pτ(�α)) = (Fcc(R), τ(�α))
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is a topological space.

Proof. To prove part (i), the second observation of Remark 11 says ∅ ∈ τ(α) and X ∈ τ(α).
Let F =

⋂n
i=1 Fi, where Fi are α-open sets for i = 1, · · · , n. Given any x̃ ∈ F, we have x̃ ∈ Fi

for i = 1, · · · , n. Therefore, there exist open balls, O(x̃; εi), satisfying O(x̃; εi)⊕Ψ ⊆ Fi for
i = 1, · · · , n. Let ε = min{ε1, · · · , εn}. Then, we have the following inclusions:

O(x̃; ε)⊕Ψ ⊆ O(x̃; εi)⊕Ψ ⊆ Fi

for i = 1, · · · , n. This shows

O(x̃; ε)⊕Ψ ⊆
n⋂

i=1

Fi = F.

Therefore, we obtain F ⊆ int(α)(F). Using Remark 4, we must have the equality
F = int(α)(F).

Let F =
⋃

γ∈Γ Fγ. Given any x̃ ∈ F, we have x̃ ∈ Fγ for some γ ∈ Γ. Therefore, there
exists an open ball O(x̃; ε) satisfying

O(x̃; ε)⊕Ψ ⊆ Fγ ⊆ F.

This shows F ⊆ int(α)(F). Using Remark 4, we must have the equality F = int(α)(F).
Therefore, we conclude that (Fcc(R), τ(α)) is a topological space. We can similarly show
that (Fcc(R), τ(�α)) is a topological space.

Finally, using Remark 8, parts (ii) and (iii) can be obtained immediately from part (i).
This completes the proof.

By looking at parts (ii) and (iii) of Proposition 1, we need the assumption x̃ ∈ O(x̃; ε).
We note that Remark 1 has shown sufficient evidence to guarantee x̃ ∈ O(x̃; ε).

Example 7. Continuing from Example 3, let us define a nonnegative real-valued function, ‖ · ‖,
in Fcc(R) by

‖ x̃ ‖=
∫ 1

0

∣∣∣x̃L
α + x̃U

α

∣∣∣dα.

Then, (Fcc(R), ‖ · ‖) is a normed space of fuzzy intervals such that the null condition and null
equality are satisfied. The open ball is given by

O(x̃; ε) = {ỹ :‖ ỹ	 x̃ ‖< ε} =
{

ỹ :
∫ 1

0

∣∣∣(ỹL
α + ỹU

α

)
−
(

x̃L
α + x̃U

α

)∣∣∣dα < ε

}
, (9)

which can define the α-open set and �α-open set F, satisfying

F = int(α)(F) and F = int(�α)(F),

respectively. Theorem 1 shows that the collection of all such kind of α-open sets and �α-open sets
form the topological spaces (Fcc(R), τ(α)) and (Fcc(R), τ(�α)).

From (9), it is clear to see x̃ ∈ O(x̃; ε) for any ε > 0, since

‖ x̃	 x̃ ‖=
∫ 1

0

∣∣∣(x̃L
α + x̃U

α

)
−
(

x̃L
α + x̃U

α

)∣∣∣dα = 0 < ε.

Therefore, part (ii) of Theorem 1 says that

(Fcc(R), pτ(α)) = (Fcc(R), τ(α))

is a topological space.
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On the other hand, regarding the open ball:

O�(x̃; ε) = {x̃⊕ z̃ :‖ z̃ ‖< ε} =
{

x̃⊕ z̃ :
∫ 1

0

∣∣∣z̃L
α + z̃U

α

∣∣∣dα < ε

}
.

We take z̃ = 1̃{0}. Then, we have

z̃L
α = z̃U

α = 0 for all α ∈ [0, 1]

and
x̃⊕ z̃ = x̃⊕ 1̃{0} = x̃,

which shows x̃ ∈ O�(x̃; ε) for any ε > 0. Therefore, part (iii) of Theorem 1 says that

(Fcc(R), pτ(�α)) = (Fcc(R), τ(�α))

is a topological space.

Theorem 2. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Then, we have
the following properties:

(i) (Fcc(R), τ) and (Fcc(R), τ(�)) are topological spaces.
(ii) Suppose that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then,

(Fcc(R), τ) = (Fcc(R), pτ)

is a topological space.
(iii) Suppose that x̃ ∈ O�(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then, we have that

(Fcc(R), τ(�)) = (Fcc(R), pτ(�))

is a topological space.

Proof. The first observation of Remark 11 says that ∅ and Fcc(R) are open sets. Therefore,
we can use the similar argument of Proposition 1 without considering the null set, Ψ.

Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. We consider
four new families as follows:

τ̂(β) =
{
F ∈ τ(β) : F⊕Ψ ⊆ F

}
τ̂(γ) =

{
F ∈ τ(γ) : F⊕Ψ ⊆ F

}
τ̂(�β) =

{
F ∈ τ(�β) : F⊕Ψ ⊆ F

}
τ̂(�γ) =

{
F ∈ τ(�γ) : F⊕Ψ ⊆ F

}
Then, we have the following inclusions:

τ̂(β) ⊆ τ(β), τ̂(γ) ⊆ τ(γ), τ̂(�β) ⊆ τ(�β) and τ̂(�γ) ⊆ τ(�γ).
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We also consider the following new families:

p̂τ(β) =
{
F ∈ pτ(β) : F⊕Ψ ⊆ F

}
p̂τ(γ) =

{
F ∈ pτ(γ) : F⊕Ψ ⊆ F

}
p̂τ(�β) =

{
F ∈ pτ(�β) : F⊕Ψ ⊆ F

}
p̂τ(�γ) =

{
F ∈ pτ(�γ) : F⊕Ψ ⊆ F

}
Then, we have the following inclusions:

p̂τ(β) ⊆ pτ(β), p̂τ(γ) ⊆ pτ(γ), p̂τ(�β) ⊆ pτ(�β) and p̂τ(�γ) ⊆ pτ(�γ).

Theorem 3. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Suppose that
the norm ‖ · ‖ satisfies the null sub-inequality. Then, we have the following identical families

p̂τ(β) = pτ(β) = pτ(γ) = p̂τ(γ) and τ̂(β) = τ(β) = τ(γ) = τ̂(γ).

Proof. Using Remark 5 and case (d) of part (ii) of Proposition 11, we can obtain the desired
results. This completes the proof.

Theorem 4. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Then, we have
the following properties:

(i) (Fcc(R), τ̂(β)) and (Fcc(R), τ̂(�β)) are topological spaces.
(ii) Suppose that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then,

(Fcc(R), p̂τ(β)) = (Fcc(R), τ̂(β))

is a topological space.
(iii) Suppose that x̃ ∈ O�(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then,

(Fcc(R), p̂τ(�β)) = (Fcc(R), τ̂(�β))

is a topological space.

Proof. To prove part (i), given any F1,F2 ∈ τ̂(β), let F = F1 ∩ F2. Given any x̃ ∈ F,
we also have x̃ ∈ Fi for i = 1, 2. Therefore, there exist open balls, O(x̃; εi), satisfying
O(x̃; εi) ⊆ Fi ⊕Ψ for i = 1, 2. Let ε = min{ε1, ε2}. Then, we have the following inclusions:

O(x̃; ε) ⊆ O(x̃; εi) ⊆ Fi ⊕Ψ

for i = 1, 2. Using Proposition 3, we can obtain

O(x̃; ε) ⊆ [(F1 ⊕Ψ) ∩ (F2 ⊕Ψ)] = (F1 ∩ F2)⊕Ψ = F⊕Ψ.

This shows that the intersection F is β-open. Now, given any x̃ ∈ F⊕Ψ, there exist x̃∗ ∈ F

and ψ ∈ Ψ satisfying x̃ = x̃∗ ⊕ ψ. Since x̃∗ ∈ F1 ∩ F2, it follows that

x̃ ∈ F1 ⊕Ψ ⊆ F1 and x̃ ∈ F2 ⊕Ψ ⊆ F2.

Therefore, we obtain
x̃ ∈ F1 ∩ F2 = F, i.e., F⊕Ψ ⊆ F.

This shows that the intersection F is indeed in τ̂(β).
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Given a family, {Fγ}γ∈Γ, in τ̂(β), let F =
⋃

γ∈Γ Fγ. Given any x̃ ∈ F, we have x̃ ∈ Fγ

for some γ ∈ Γ. Therefore, there exists an open ball, O(x̃; ε), satisfying

O(x̃; ε) ⊆ Fγ ⊕Ψ ⊆ F⊕Ψ.

This shows that the union F is β-open. Now, given any x̃ ∈ F⊕Ψ, there exist x̃∗ ∈ F and
ψ ∈ Ψ satisfying x̃ = x̃∗ ⊕ ψ, which also means x̃∗ ∈ Fγ for some γ ∈ Γ. Therefore, we
obtain the following inclusions:

x̃ ∈ Fγ ⊕Ψ ⊆ Fγ ⊆ F, i.e., F⊕Ψ ⊆ F.

This shows that the union F is indeed in τ̂(β).
The third observation of Remark 11 says that ∅ and Fcc(R) are β-open sets. It is clear

to see that
∅⊕Ψ = ∅ and Fcc(R)⊕Ψ ⊆ Fcc(R).

Therefore, we have ∅, X ∈ τ̂(β). This shows that the family (Fcc(R), τ̂(β)) is indeed a
topological space. The above arguments are also valid to show that (Fcc(R), τ̂(�β)) is a
topological space.

Finally, using Remark 9, parts (ii) and (iii) can be obtained immediately from part (i).
This completes the proof.

Theorem 5. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Then, we have
the following properties:

(i) (Fcc(R), τ̂(γ)) and (Fcc(R), τ̂(�γ)) are topological spaces.
(ii) Suppose that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then,

(Fcc(R), p̂τ(γ)) = (Fcc(R), τ̂(γ))

is a topological space.
(iii) Suppose that x̃ ∈ O�(x̃; ε) for any x̃ ∈ Fcc(R) and ε > 0. Then,

(Fcc(R), p̂τ(�γ)) = (Fcc(R), τ̂(�γ))

is a topological space.

Proof. To prove part (i), the fourth observation of Remark 11 says ∅,Fcc(R) ∈ τ(γ). It is
clear to see that

∅⊕Ψ = ∅ and Fcc(R)⊕Ψ ⊆ Fcc(R).

Therefore, we obtain ∅,Fcc(R) ∈ τ̂(γ).
Given any F1,F2 ∈ τ̂(γ), let F = F1 ∩ F2. Given any x̃ ∈ F, there exist open balls,

O(x̃; εi), satisfying
O(x̃; εi)⊕Ψ ⊆ Fi ⊕Ψ

for i = 1, 2. Let ε = min{ε1, ε2}. Then, we have the following inclusions:

O(x̃; ε)⊕Ψ ⊆ O(x̃; εi)⊕Ψ ⊆ Fi ⊕Ψ

for i = 1, 2. Using Proposition 3, we obtain

O(x̃; ε)⊕Ψ ⊆ [(F1 ⊕Ψ) ∩ (F2 ⊕Ψ)] = (F1 ∩ F2)⊕Ψ = F⊕Ψ.

This shows that the intersection F is γ-open. From the proof of Proposition 4, we can
similarly obtain F⊕Ψ ⊆ F. This shows that the intersection F is indeed in τ̂(γ).
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Given a family, {Fγ}γ∈Γ, in τ̂(γ), let F =
⋃

γ∈Γ Fγ. Given any x̃ ∈ F, we have x̃ ∈ Fγ

for some γ. Therefore, there exists an open ball, O(x̃; ε), satisfying

O(x̃; ε)⊕Ψ ⊆ Fγ ⊕Ψ ⊆ F⊕Ψ.

This shows that the union F is γ-open. From the proof of Proposition 4, we can simi-
larly obtain F⊕ Ψ ⊆ F. This shows F ∈ τ̂(γ). Therefore, we conclude that the family
(Fcc(R), τ̂(γ)) is indeed a topological space. We can similarly show that (Fcc(R), τ̂(�γ)) is a
topological space.

Finally, using Remark 10, parts (ii) and (iii) can be obtained immediately from part (i).
This completes the proof.

Theorem 6. Let (Fcc(R), ‖ · ‖) be a pseudo-seminormed space of fuzzy intervals. Suppose that
the norm ‖ · ‖ satisfies the null sub-inequality and that x̃ ∈ O(x̃; ε) for any x̃ ∈ Fcc(R) and
ε > 0. Then,

(Fcc(R), pτ(β)) = (Fcc(R), pτ(γ))

is a topological space.

Proof. The third observation of Remark 11 says ∅,Fcc(R) ∈ pτ(β). Given any F1,F2 ∈
pτ(β), let F = F1 ∩ F2. Given any x̃ ∈ F, we have x̃ ∈ Fi for i = 1, 2. Therefore, there exist
open balls, O(x̃; εi), satisfying

O(x̃; εi) ⊆ Fi ⊕Ψ

for i = 1, 2. Let ε = min{ε1, ε2}. Then, we have the following inclusions:

O(x̃; ε) ⊆ O(x̃; εi) ⊆ Fi ⊕Ψ

for i = 1, 2. Using case (d) of part (ii) of Proposition 11, we obtain

O(x̃; ε) ⊆ [(F1 ⊕Ψ) ∩ (F2 ⊕Ψ)] = F1 ∩ F2 = (F1 ∩ F2)⊕Ψ = F⊕Ψ,

which shows x̃ ∈ int(β)(F). Using Remark 4, we also obtain the following inclusions:

F ⊆ int(β)(F) ⊆ pint(β)(F).

Given any x̃ ∈ pint(β)(F), part (ii) of Proposition 11 says

x̃ ∈ O(x̃; ε) ⊆ F⊕Ψ = (F1 ∩ F2)⊕Ψ ⊆ F1 ⊕Ψ = F1.

We can similarly show x̃ ∈ F2, which implies x̃ ∈ F1 ∩ F2 = F. Therefore, we obtain the
inclusion pint(β)(F) ⊆ F. This shows the equality pint(β)(F) = F.

Given a family, {Fγ}γ∈Γ, in pτ(β), let F =
⋃

γ∈Γ Fγ. Given any x̃ ∈ F, we have x̃ ∈ Fγ

for some γ ∈ Γ. Therefore, there exists an open ball O(x̃; ε) satisfying

O(x̃; ε) ⊆ Fγ ⊕Ψ ⊆ F⊕Ψ.

This shows the following inclusions:

F ⊆ int(β)(F) ⊆ pint(β)(F).

Given any x̃ ∈ pint(β)(F), part (ii) of Proposition 11 says

x̃ ∈ O(x̃; ε) ⊆ F⊕Ψ = F,
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which shows the inclusion pint(β)(F) ⊆ F. Therefore, we obtain the equality F = pint(β)(F).
This shows that the union F is a member of pτ(β). Finally, using Remark 5, we conclude that

(Fcc(R), pτ(β)) = (Fcc(R), pτ(γ))

is a topological space. This completes the proof.

7. Conclusions

As we mentioned above, the space, Fcc(R), of all fuzzy intervals in R cannot be a
(conventional) vector space. The main reason is that each fuzzy interval cannot have an
additive inverse element. It also means that each fuzzy interval that is subtracted from itself
cannot be a zero element in Fcc(R). Although Fcc(R) is not a vector space, it maintains a
vector structure by treating the addition of fuzzy intervals as a vector addition and treating
the scalar multiplication of fuzzy intervals as a scalar multiplication of vectors.

In this case, we still can endow a norm on the space Fcc(R). For example, given any
x̃ ∈ Fcc(R), we can define three norms as follows:

‖ x̃ ‖=
∫ 1

0

∣∣∣x̃L
α − x̃U

α

∣∣∣dα

‖ x̃ ‖=
∫ 1

0

∣∣∣x̃L
α + x̃U

α

∣∣∣dα

‖ x̃ ‖= sup
α∈[0,1]

∣∣∣x̃L
α + x̃U

α

∣∣∣.
Two different types of open balls with a radius of ε are defined by

O�(x̃; ε) = {x̃⊕ z̃ :‖ z̃ ‖< ε}

and
O(x̃; ε) = {ỹ :‖ ỹ	 x̃ ‖< ε},

Using these two different types of open balls, many types of open sets and pseudo-open
sets are defined. Theorems 1 and 2 show the topological structure regarding the open sets,
and Theorems 4 and 5 show the topological structure regarding the pseudo-open sets.
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