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Abstract: This paper considers nonparametric regression estimation with errors in the variables. It is
a standard assumption that the characteristic function of the covariate error does not vanish on the
real line. This assumption is rather strong. In this paper, we assume the covariate error distribution
is a convolution of uniform distributions, the characteristic function of which contains zeros on the
real line. Our regression estimator is constructed via the Laplace transform. We prove its strong
consistency and show its convergence rate. It turns out that zeros in the characteristic function have
no effect on the convergence rate of our estimator.
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1. Introduction

This paper considers a regression model with errors in the variables. Suppose obser-
vations (W, Yy),- -+, (W, Yy) are i.i.d. (independent and identically distributed) random
variables generated by the model

WjZX]'—i-(S‘, Y]-:m(X]-)+€]-,j:1,~~,n. )

The ii.d. random variables J; are independent of X; and Y;. ¢; are independent of
Xj, Ee; = 0 and Ecs]2 < +oo. The functions fs (known) and fx (unknown) stand for the
densities of 6; and Xj, respectively. The goal is to estimate the regression function m(x)
from the observations (Wy, Y1), - -, (Wy, Yy ). Errors-in-variables regression problems have
been extensively studied in the literature, see, for example, ([1-7]). Regression models
with errors in the variables play an important role in many areas of science and social
science ([8-10]).

Nadaraya and Watson ([11,12]) propose a kernel regression estimator for the classical
regression model (6; = 0). Since the Fourier transform can transform a complex convolu-
tion to an ordinary product, it is a common method to deal with the deconvolution problem.
Fan and Truong [4] generalize the Nadaraya—Watson regression estimator from the classical
regression model to the regression model (1) via the Fourier transform. They study the
convergence rate by assuming the integer order derivatives of fx and m to be bounded.
Compared to integer-order derivatives, it is more precise to describe the smoothness by the
Holder condition. Meister [6] shows the convergence rate under the local Holder condition.

The above references on model (1) both assume that the characteristic function of the
covariate errors 6; does not have zeros on the real line. The assumption is rather strong.
For example, if f; is of uniform density on [—1, 1], it vanishes at v = kmr, k = £1,+2,- - -
in the Fourier domain. Delaigle and Meister [1] consider the regression model (1) with a
Fourier-oscillating noise, which means the Fourier transform of f; vanishes periodically.
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They show that if fx and m are compact, then they can be estimated with the standard
rate, as in the case where f; does not vanish in the Fourier domain. Guo and Liu ([13-15])
extend Delaigle and Meister [1]’s work to multivariate cases.

The compactness is the cost of eliminating the zero points effect in the Fourier domain.
Belomestny and Goldenshluger [16] apply the Laplace transform to construct a deconvolu-
tion density estimator without assuming the density to be compact. They provide sufficient
conditions under which the zeros of the corresponding characteristic function have no effect
on the estimation accuracy. Goldenshluger and Kim [17] also construct a deconvolution
density estimator via the Laplace transform; they study how zero multiplicity affects the
estimation accuracy. Motivated by the above work, we apply the Laplace transform to
study the regression model (1) with errors following a convolution of uniform distributions.

The organization of the paper is as follows. In Section 2, we present some knowledge
about the covariate error distribution and functional classes. Section 3 introduces the kernel
regression estimator via the Laplace transform. The consistency and convergence rate of
our estimator are discussed in Section 4 and Section 5, respectively.

2. Preparation

This section will introduce the covariate error distribution and functional classes.
For a integrable function f, the bilateral Laplace transform [18] is defined by

+0c0
f(z):= N f(t)e #dt.

The Laplace transform f(z) is an analytic function in the convergence region X ., which
is a vertical strip:

fi= {ZE(C:ITJ: <Re(z)<(7f+}, forsome—oo§0J7<(7f+§—|—oo.

The inverse Laplace transform is given by the formula
1 SO a0\ it L i) p(sHiv)t - ot
f(t):ﬁ/s,iw f(z)e dz:ﬂ/iOo f(s+iv)e do, se(af,af).

Let the covariate error distribution be a -fold convolution of the uniform distribution
on [—6,6],6 > 0. This means
6=Z1+-+2Zy,

where Z;(i =1,2,- -+ ,) areiid and Z; ~ U(—6, ) with density f7. Hence,

f5(z) = [fz(z)p = [sinh(()z)r = ((1 — )y z e C. )

6z —20z)7e792’

Here, f5(z) is the product of two functions; the function (1 — ¢2%2)7 has zeros only

on the imaginary axis, the function does not have zeros for the analyticity of

(—26z)7en0z
(—26z)7e7%2. The zeros of fs(z) are z; = lan, where k € Z\{0}.

Now, we introduce some functional classes.

Definition 1. For A > 0,0 > 0,and B > 0, a function f : R — R is said to satisfy the local
Holder condition with smoothness parameter B if f is k times continuously differentiable and

O - D) < Aly-9"  Wgelx—ox+o, 3)

where B =k + o and 0 < Bo < 1. All these functions are denoted by 5 p.x(A).
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If (3) holds for any y, 7 € R, f satisfies the Holder condition with smoothness parame-
ter B. All these functions are denoted by 73(A).

Clearly, k in Definition 1 equals max{/ € N : | < B}. In later discussions, |B] :=
max{l € N:I < B}.

Example 1. Function

1—x|, |x| <1,
0, lx| > 1.

filx) = {

Then, f1 € J4(A) and fi € H;1.(A).

It is easy to see that f € J#3(A) must be contained in % 4., (A) for each x € R.
However, the reverse is not necessarily true.

Example 2 ([19]). Consider the function
fx) =Y (1 =2']x = 21)x (x),
1=0

where x;(x) is the indicator function on the interval [21 — 27,21 + 27| for a non-negative integer
I. Then, fy € H;1.5(A) for each x € R. However, f, ¢ J64(A).

Note that (3) is a local Holder condition around x € R. When we consider the
pointwise estimation, it is natural to assume the unknown function to satisfy a local
smoothness condition.

Definition 2. Let r > 0 and B > 0 be real numbers. We say that a function f belongs to the
functional class .#,(B) if

—+o0
max(]| f o, max [ " [x"|f(x)ldx} < B.

We denote %, g .x (A, B) = 5 p.x(A) N .4 (B).

3. Kernel Estimator

This section will construct the kernel regression estimator. Two kernels K and L ;, will
be used.
Assume that the kernel K : R — R satisfies the following conditions:

@) /', K(x)dx = 1,K € C*(R) and supp(K) C [~1,1];
(ii) There exists a fixed positive integer k( such that

1.
/)ﬂK@Mx:Q j=1,- k.
-1

Example 3 ([20]). Function
K(x) = ag(x),

where

1
e 127, |x| <1
(x) := !
i 0, ] > 1

and a = (fj;o (p(x)dx)_1. Then, the kernel K(x) satisfies conditions (i) and (ii) with kg = 1.
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Motivated by Belomestny and Goldenshluger [16], we will construct the regression
estimator via the Laplace transform. Note that f5(—z) does not have zeros out of the
imaginary axis. Then, the kernel L j, is defined by the inverse Laplace transform

s+ico R
Lyp(t) == L/ F(Zh) e“ldz

2701 Js—ieo f5(—2) @)
_ 1t KA«S + iv)h)e(SJri”)tdv,
fs(=s—iv)

where s # 0, h > 0 and K(-) is the Laplace transform of kernel K with the convergence
region g = C. There is a complex-valued improper integral in (4). One can use the
property of the Laplace transform to compute it, see [18].

The following lemma provides a infinite series of kernel L (t). It is a specific form of
Lemma 2 in [16] . In order to explain the construction of the estimator, we give the details
of the proof.

Lemma 1. Let (2) hold and [ |R(ivh)||v|7dv < co.
(a) If s > O, then

20)7 & A S ) e
L+,h(l‘) = Ls,h(t) = (27_3 ZZ Z Lw K(lvh)(lv)'yew[t 76-20(I++1y)] 35,
1=0 l,=0
(b) If s < 0, then
o _ (—29)'}’ 0 =) +oo ) . iv[t+79+29(ll+.<.+l )]
Loult) i= Lon(t) = IEO lgo L _ Rioh)(iv)e Dy,

Proof. (a) If s > 0, we have

% _ I;O p—201(s+iv)
Therefore,
; [i o0 5+w] i i o= 20(sHi0) (1441,
[1— ¢ 20G+iv)] = =
By (2) and (4),

= R((s +i0)n)[20(s +i0)]" (1 io)(t-0) 4,
[1 729(s+iv)]'y
= i i /+oo R((s+iv)h)(s + l‘v)’ye(5+iv)[t—’79—29(11+~.+17)]dv
h=0 1,=0""%

5=
—
2 +

W)

Lyp(t) :=Lou(t) =

= i i /+°° R(ivh) (iv)7elt=70-20(h++1)] gy,
h=0 1,=07"%
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(b) If s < 0, then

1 — ¢20(s+iv)

~20(s+iv)1 =Y _
[1— e 2] = l —o26(s+1v)

-
‘| _ (_1)76279(5-&-1'0) [1 _ 629(5-&-1'0)]—7

[e9)

= (_1)73279(s+iv) Z i 20(s+i0) (i +++++1y)
I1=0 1,=0

Similarly,

L_j(t) :=Leyu(t) =

i i /+°° K(ivh)(iv)yeiv[t+76+26(h+---+l7)]dv'
1=0

ly=0"""%°
This ends the proof. [

The truncation is used to deal with infinite series. Select parameter N so that % € N;.
The cut-off kernels are defined by

N N
20T X il oo ' o
0= B e e,
n=0  1,=0
N N
— v 4 +oo )
N0 = 20 5 [ Ryt e, e
' 2T 4Zo i=o-ee
1 v
Denote
+1\,] (t)/ s > 0/

Motivated by the Nadaraya—Watson regression estimator, we define the regression
estimator of m(x) as

_ ey (%)
mgl;l])(x) = ~(I’\};) , 7)
X,sh(x)
where
AN) oy L () SNy Ly ()
fX,s,h(x) = n 21 Ls,h (I/V] - x) and Ps,i (X) = n 21 Yﬂ‘s,h (Wf - x)' (8)
= =

In what follows, we will write rhSrN}z (x) and mSNZ (x) for the estimator (7) associated

with s > 0 and s < 0, respectively. Finally, our regression estimator is denoted by

)

4. Strong Consistency

In this section, we investigate the consistency of the regression estimator (9). Roughly

speaking, consistency means that the estimator m,SN) (x) converges to m(x) as the sample

size tends to infinity.
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Theorem 1 (Strong consistency). Consider the model (1) with (2). Suppose fx,p 1= mfx €
My (B)(r > 1), E|Y1|3*t) < t-c0 and kernel function K satisfies condition (i). If x is the

Lebesgue point of both fx and p (fx(x) # 0), then m,SN) (x) satisfies

1 1 1
withh =n 0+ gnd n30+) < N

Proof. (1) We consider the estimator rhSerz (x) for x > 0.
) P p(x)
Note that 171}, (x) = T m(x) = and fx(x) # 0. Then, it is sufficient to
+, Z(N) fX(x)
Fxen(®)
. (N s. . N 5.
prove lim §)(x) * p(x) and lim f) (x) = fx(x).

. (N s.
Now, we prove nh_r};o pi/h)(x) 2 p(x) . Forany e > 0,

~ ~ ~ €
PP~ p(0)] > vl < P10 — Ep 0l > U] 4 x e (P

By Markov’s inequality, we obtain

P[P () = p(x)] > Ve] < ereEIpL)) (x) — EFL (01 + x,

@oo)“Eﬁfﬁ(ﬂ —p(x))  (10)

for s := 4(y + 1). This motivates us to derive an upper bound on E |ﬁ(+ )

N (N
) () — Ep) ().
Combining (5) with (8), we have
(N 1 & N
) = - Y LW - )
=1
N N
(20)7 ¢~ [ oW\ —io(x4+70) | T D 60(ly et
=5 ;/oo R(ivh) (iv) 7 (Y;e™™"i)e 00 10) 2 Yy e elitth) | gy,
]71 11—0 lzy—
and
20)7 & e : ivW;\ ,—iv(x % % —i20v(l+---
Eﬁng;f(x) = (Zn)n Z/w R(ivh)(iv) VE(Y;e'™"r)e~0(x+10) { Yoo ) ettt *’W} do. (11)
=1 Lh=0 1,0
We obtain

2s 2s
~(N _(N 26)7 ot )
E[p) (x) — B () = [(27; ] E|Y [ o) (i) ¥;(0). n(x,0)de]
jF
N N
where ¥;(0) := Yie™i — E(Ye™), @,y (x,0) = e~0(x+19) [ i . i ei290(11+~--+17)‘|‘
Lh=0 1,0
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Thus,
E[pN) (0 - BN ()
2s
20)7 L 1 too rtoo N N . .
= {(27121 } 21 ,Zf[(/_m '“/_oo | K(ivgx_1h)K(—ivgih) (ivgx—_1) 7 (—ivg )7
= J2s= =1

x @ N (x, 02k 1) Py N (X, —02) ¥y (02k-1) ¥y (021 )dO7 - 'd025>:|
_ (29)”y
| 27n
X N (x, vok1) P4 N (X, —2% }E{

k

i Y

Z Z /+°° /+°° [ﬁK ivgk_1h)K(—ivgeh) (ivgx_1) " (—ivgy)” (12)

j1=1 jas=1 k=1

S

iy (k- 1)‘I’j2k(—02k)] doy - - - dogg
=1

]_[ (ivak—1h)[|R(~ ivzkh)lvzlevsz]

=1 =1 k=1
N 2’ys
(’Y +1) H‘-Fhk (V1) ¥y (—02k) | [dog - - - ds.

Let #A denote the number of elements contained in the set A. If #{ ji, jzs} > s,

at least one of ‘I’ is independent of all other ‘I’] 1 " # 1. Hence,

S
E H ‘Ij]'zj(,l (UZkfl )‘P]ék (_UZk)‘| =0.
k=1
On the other hand, if #{ji, - - - , jos} = s1 for s7 < s, by Jensen’s inequality, we obtain

2s
"Yl (tl)‘

E []ﬁwfzkl (UZk—l)\P]’Zk(_UZk)‘| ‘ = ‘E [‘P/i (tll)}Al - [‘P]él (t;l)])\sl

< E(|Y1| + E|Y1])* < 4°E|V1 /%,

where A; + -+ -+ A, =2s. Let [, = {(j1, -+ ,jos) 1 #{j1, -+ ,jos} <s,jie{l,--- ,n}i=
1,-+-,2s}. Then,

2s 2s
Elply) () — EpY) () < [@9)] (@N*)WEWP) Y ( /- rK<z'vh>||v|’*dv) -

27tn il

Since |v|¥|R(iv)| < c(k) for all k, we obtain that [ |R(ivh)||v|Ydv < esh~("*+2) for
k = v + 2. This, with #],, < ¢4n°, leads to
B\ (x) — BP0 (1) < e SNP1h 200D < o, (13)
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Note that (W}, ;) are identically distributed. Then, it follows from (11) and E(Yje oWy —
E(Y;e"™X)E(¢™™) that

EpL) ()
20)Y [+ 5 N (15)
- &) / (ivh) (iv) VE (Y, X1) E (¢ )~ 0(x+10) { )RR fﬂev(lﬁ"'“”} dv,
2 J- h=0  1,=0
where

1=
| Me\z
o
N
<

Ltotl 5 ! 1 (—izev)ﬂﬂ l
Ty —iv(2on) | _ |t (€ !
’ = [D’ . )] = [1_6—29] . 19

I, =0 i=0
By (2), we have
Ep00 = 5 [ B Riome 1~ () 1] o
L o (s ivx v v —i2007\ (N +1
E|e®X1 - E(Y1|X1) | R (ivh)e ™% ( )(—1)’@ i200)1(5+1) g,
27r/ [ ] I;:) 1
Y 1 feof pte N
_ l ivt —io[x+201(% +1)]
lzﬂ( ) [ {/m p()e dt} (ivh)e do (17)
il 1 t—x—201(N +1)
—Z(?) ' wm( e L
=0
o0 1 t—
=/ 5K hxpum+ﬂ;%@mx
where
N
&Y, ad et x=20i(N )
Bg@J%;<l>(thP®K< ; a
Y 1 N
= Z( ;y ) (—1)! / ) K(y)p(yh +x+ 291(; + 1)>dy.
I=1 -
Hence,
EptN)( <| [ 1 byt — T, n(p;
[Ep, ) (x x)| Jp(t)dt —p(x)| + | T, x(p;x)
(18)
-—\(/ plx+yh) = p(0)dy| +| T, x (pi)].
Since p € .#,(B) and considering the boundedness of K,
1 C9B ClOB
)T-k—,% ‘ <CSZ< >/ <yh+x—|—291( ))‘dyé W+2—w < NG (19)

1 1
holds for an h that is small enough. It follows from r > 1, h = n” §0¥0 and N > n30+1
that

n—oo,

‘TJD%(p;x) — 0.
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Note that the kernel function K satisfies condition (i) and p € L(R), then

! /_11 K(y)[p(x+yh) — p(x>]dy} =0

holds for each Lebesgue point x of p. Hence, for an #n that is sufficiently large, the term
X )(|Ef1$\]h) (x) — p(x)|) vanishes. This, with (14), shows
5,00 ,

P[IpMN) (x) - p(x)] > Ve] < cn™aD (20)

for an n that is large enough. Since s = 4(y + 1), we have

ilp[ﬁ%)(x) —p(x)| > Ve| < 0.

For any € > 0, it follows from the Borel-Cantelli lemma that

P{Em (170 - p)| > vel | =0

n—oo

Thus,

N (x) 22 p(a).

lim 7
n—co Py

When putting Y; = 1 almost surely, we have
. AN s.
Tim Y (6) % f(x).

Hence,

lim w\N) () % m(x).

(2) We consider the estimator 771(71\2 (x) for x < 0. Inserting (6) into (8), we obtain

i

N 1
PG = L L LS - )
j=1
_ (—20)7 & /+ooK(wh)(w)ry(y‘eiij)e—iv(x—'y&) % %ei29v(ll+~~+ly) do
27n i/ - I = — ’
= =0 1,=0
and
@)Y 1, oo . , A
Eﬁ_Nh)(x) _ ( 29) Z/ K(ivh)(iv)”E(Yjewwf)e*w("’W) { 2 . Z 61290(11+~~-+1/},):| do. (21)
’ 27tn j=1/- h=0  1,=0
We obtain

2s

7

27tn

—00

2s
£ ™) () — EpN) () = [(29)71 Zpy / % R(ioh) (i) 1 (0) @ (x, 0)do
=
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where ®_ n(x,v) = e—iU(X—WG)l

N N

Y Y .

Z L. Z 6129‘0(11-&-"'-&-17) )
we obtain

Similar to (12) and (13),
0 1,=0

EﬁfN;B(x)FS < ey,
By (21), we have

where

- Y 7 N_q Y
1 .

1= 1= — pl20v
1 1 (—i200)7e0(10)
B . = . . d (2), h that ——————— =
. y (1 _ 61290)7 (_61290)7(1 _6—1290)7 an ( ) we have tha (1 _61290)7
——. So,
fs(—iv)

) 1 e
EpN)(x) = /

’ — E o K(ivh)E(Yleivxl )e—ivx [1 _ (ei290)%+1]7dv.

Similar to (17), we obtain

+o0 1 t—
[ K pnat+ T u (i),
(o) h h Ty

where

h

e —Xx N
Ty = (] ) P(t)K<t “f’l(wl))dt

Thus, we have

BN~ po)l < | [ K@)pGet y) — plldy] + [T ()]

(22)
Since p € .#,(B) and considering the boundedness of K,

v 1
Y N C13B C14B
T x(px)| <cpn) htx—201(=+1))|ldy < ———~ < 23
‘ - (p x)‘ Clzll< ! )./1"7@ * (7 ))’ Y h(=x+20N-1)r = hN’ )

holds for an / that is small enough.
Similar to x > 0, we get

This completes the proof. [
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Remark 1. Theorem 1 shows the strong consistency of kernel estimator mgN) (x). It is different
from the work of Meister [6] in that the density function of our covariate error § contains zeros
in the Fourier domain. Our covariate error belongs to the Fourier oscillating noise considered by
Delaigle and Meister [1]. Compared to their work, we construct a regression estimator via the
Laplace transform without assuming fx and m to be compact.

5. Convergence Rate

In this section, we focus on the convergence rate in the weak sense. Meister [6]
introduces the weak convergence rate by modifying the concept of weak consistency.
A regression estimator i1, (x) is said to attain the weak convergence rate ¢, if

im (hmsup sup P[Wn(x) —m(x)]*>>C- snD =0.

|
Coo\ noeo (m,fx)eP

The set 7 is the collection of all pairs (m, fx) that satisfy some conditions. The order
of limits is first 1 — oo, and then C — oo. Here, C is independent of n.
Define the set

P = {0m, fx) : fx,mfx € Foprx(A B), [m(x)| < Co, fx(x) = Co, || m(-) [l0< G},

where Cq, Cp,C3 > 0.
The following Lemma is used to prove the theorem in this section.

Lemma 2 ([6]). If p := mfx, t,(x) = fzn(ég), |m(x)| < +ooand fx(x) # 0. Then, for a

small enough € > 0,

P[J1i(x) = m(x)]2 > €] < P|lpu(x) = p(x)12 > c1¢] + P||frn(x) = fx () > ca€]
with two positive constants, c1 and cy.

Theorem 2. Consider the model (1) with (2). Assume that (m, fx) € Py withr = 27y —2
ify > 1,and r > 0if v = 1. Suppose kernel K satisfies conditions (i), (ii) with kg > B. Let
+1

-1 p
h=nZP2H N > nr@2r) | Then,

lim (lim sup sup P[|rh£lN) (x) —m(x)>*>C- sn}) =0,

Ceo n—co (m/fx)eyﬁ,r;x

where €, = n2f2r+1,

N)

1 (x). Applying Lemma 2

Proof. (1) We assume that x > 0 and consider the estimator 7
and Markov’s inequality, we obtain

. c - x
P i) (x) = m(x)[2 > C e < e (EIPTH () = p()2 + EIFLY () — fx(x) ),
(24)
where c3 is the larger of % and %, and ¢y, ¢ appear in Lemma 2. Then,
E[p) (x) — p(x) 2 = var[p') (x)] + [EFY) (x) — p(x)[2, (25)

and
EIFS) () — fx(0)2 = var[f8) L (0)] + [EFY) , (x) = fx(2) (26)
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First, we estimate |E ;5(”3( ) — p(x)|*> and |Ef)((NJ2h(x) — fx(x)|?. By (18), we have

2 2
BN - pP <2(| [ Kbty — play| 4 |7 s (i0)[). @)
By Taylor expansion of p with the degree || — 1, there exists 0 < # < 1 such that
1
‘/1 K(y) [px+yh) = p(x)] dy‘

Lﬁj(hj,
yh)
2 f (/)
j=t 7

18] i
[ k) X Y 0 )y +
=1 T

(yLI;)JLfJ (1D e+ ) — p 12D ("))1 dy’

K(y) (x) +

-1

(ym) P!

1
< » K(y)W(P“ﬁ“(Hwh) —pPD(x))dy.

Since kernel K satisfies condition (ii) and § < kg, we have

L8] i
[ k) Y0 )y = o
_ = j!

By p € 5 p.x(A), we find that

Il
‘/le(y)(y{gJ' (p(LﬁJ)(erﬂyh) p(LﬁJ)(x))dy‘

1 [y
S/_llK(y) v | = [p? Hnyh)—P(W)(x)\dy

(28)
! Alyh|ﬁ||ﬂ|5
S AlhPlnP12
K ey
< C4Ahﬁ
holds for an k that is small enough. Equations (19) and (28) imply the following upper
bound:
IEFN) (x) — p(x) 2 < o5 A2H2P + B (29)
Pin p =6 N2 )

Now, we estimate the term |Ef}(<NJ2h(x) — fx(x)|% By (8) and (5),

Ef)(<l,\]+),h(x) =E [Lgrl\,lpf(wl - x)}

(267 (30)

N N
+oo . v v
_ / K(ivh)(iv)WE(ewxl)E( 1v(51 —zv (x+786) |: Z Z —i20v(I1+-- +l”r):| do.

27T —0

Note that E(e0X1) f f )e'¥tdt. Then, similar arguments to (15)-(17) show

EfcLu0 = [ f}l (50 +T, (i), @

Similar to (27)—(29), we have

AN) oy 2 2,08 B 2
Ef () = fx(0) < o6 | AW + ). (32)
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Now, we estimate Var[ﬁ(j\g (x)] and var| f)((NJZh (x)]. By (8), we have
_ 1
var[p) (x)] < ;E[|Y1|2|L<N><w1 —x)ﬂ
1
= —E[E( P Wy — )P ) |
1 [*e 5
= _E(nP X1 = E[LT) (¢ + 81 — x) P (t)at

Note that var(Y;|X; = t) = E(|Y1]2|X; = t) m?(t). Tt follows from || var(Y;|X; =
) o= Ee} and || m(-) |lo< C that [| E(V1?[X; = ) [le<[| var(V1|X1 = ) [leo + ||
m?(+) ||eo< c7. Then,

- c
varlp) (0] < 7 [ CEILT (46— 0P fx ()t
=7 E{E<|L$Y,2<w1 —x>|2|x1>} (33)
cy [T

It follows from (5) that

L(N)(t) = (20)7 % %K(7)<t—79—29(11+...+17)>.

i L=0  1,=0 h
Therefore,
o & & 0 —20( |
_(N) c7 [T](20)7 & Loy (W x— 0 =20+t
Var[er,h(x)] < Pl e lzo...lZOK“r ( - )
1— T
X fw(w)dw
(26)? 5 5 (1 ly) ’
c7(20)57 [t | & u w—x—90-=20(l1 +---+1,
— nh2r+2 /—oo [Z Z Km( h )
h=0 1,20
X fw(w)dw.

(34)

Let

. [+9-1
C’”'_( y-1 )

where C; , is the number of weak compositions of | in <y parts [21]. Note that

N N
i i W—x—90 =201+ +1) N w—x — v —20])
Z...ZKM( = 1 7>‘§ZC,,71<(7)<—]1 ) (35)
h=0  1,=0 =0
Then,
~(N) C7 (26)27 w—x—0(y+2I)
var([p  (x)] < nh2v+2 ZZCI’YC]’Y/ h )

(36)
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By supp(K) C [—1, 1], we have supp [K('V) (u} —2 _:(74_21))} Clx+6(y+2)—

h,x +6(y+2l)+h]. Denote I ;(x) := [x+60(y+2]) —h,x+6(y+2])+h]. Ifh <6,

the intervals I ;(x) and I j(x) are disjointed for I # j. For an h that is small enough,
we obtain

var[PSrI\,]h) (x)] < 7h27+2 Z c? / 'K(W)( - (7 ))

fw(w)dw

(37)
csg (2

<
< Z /m(x)fw(

Denote & ; := x + 0(y +21). By supp(f5) C [—78,70] and f5 < %9,

1/ Fwl@w)dw < & /wf(a)—t)dt dew
W m " =00 iy | Je” "

c © +oo
- i oo fX(u)l o X(u—y8,u+6) (w)?((gﬂfh,g%ﬁh) (w)dw] du.

Since h < 6, we have

1

e fw(w)dw < 69[/ 1+ )fx(t+§+, —79) dt+2/ fX(t+§+’l)dt

+/ fx t+§+1+79)dt}
. (38)
< éo[./_hfx(tJrx+291)dt+/_79fx(t+x+9('y+21))dt

h
+/hfx(t+x+29('y+l))dt}
This, with (37), leads to

20)27 N c?
Var[ﬁ(ﬂf( )]S%Z ”U Fx (t+ x 4 261) dt+/ Fx(t+x+0(y+21))dt
1=0

+/hhfx(t+x+29('y+l))dt}

(39)
When ¢ > 1, we obtain
1 C, 127 x+201+h
2 / fx(t+x+2600)d 9/ Fx(t dt+27/x+291h )
(40
% + CllBG 2741

by fx € .#r,_>(B) and similar arguments to [16]. Similarly,

N

CZ
/ Fx(t4x+0(y+20))dt < 9+c12B9 2+l
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and
1
Z ”/ fx(t+x+20(y +1))dt < 5 +c13BO2TH,

When v = 1, we have that

N 1 rh Nd N 1 (x+201+h p 1 [x+20N+h p 1
= ' 200)dt = 7/ tt<—/ Hdt< - (41
L [ xterraonar =35 [0 o< g fe(nde < 5 @D
holds for i < 6. Similar to (41), for i < 6, we have
%1/6f(t+x+9(21+1))dt<1 and ﬁl/ (b4 x4 2001 +1))dt < ©
=) ¢'* =9 =8 0

Hence,

_(N) c14(20)%7 (0 90q 3 291y [, 7.27+1\ 1
var([p ' (x)] < | BO s +3 < c15(BO+ 627 H(mp?rtHT (42)

(N)

1 (x)], we have

Similar to estimate var[p

varlfQY), (0] < TE[ILO) (W) — )] < cio(BO+ 62 (@)

By (29), (32), (42) and (43) with (24)—(26), we obtain

~ (N C17 o _
P[|mgﬁh)(x) —m(x)]> > C~£n} <& APIPP o (BO 4 627 (2T T (44)
+1
Since h = n2ﬁ+27+1 and N > nr@p+2r+1)
2 m2 291 oy
P[\m(ﬁf(x) Cm(x)2 > C~£n} < c17(A +Bct BO + 627 1) e
! n

_Zﬁ
Note that ¢, = n2f+27+1  Then,

sup PN (x) —m(x)2>C. sn} <cp(A2+B24+BO+02 1l (45)
(m/fX)egzﬁ,r;x

This leads to the result of Theorem 2 for x > 0.
(2) We consider the estimator m( }3( ) for x < 0. By (22), (23) and (28), we have

£ —p)P <2(] [ Klp(e+yh) — play| + [T s (p])

21,2 Bz
< Clg(A h ‘B+ hZNZV)'

Similar arguments to (30)—(32) show

. B2
EFRY () = fx ()2 < e (AZW + thzr)-
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Similar to (33),

varlp®) ()] < 2 [ L) (@ - ) fug )i

and from (6),

N N
(—20)7 Loyt 20+ + 1)
- ;0...21(7( . )

Similar arguments to (34)—(37) show

2 e[ L X
varlp) ()] < DOV [ [Z---Z

—® Lh=0 I1,=0

2

() (W= xX+70+20( + -+ 1)
Ko 7 )

X fw(w )dw
Czl (20)% l'y
- h2'y+1 Z /I A
holds for an & that is small enough, where I ;(x) := [x — 0(y +2I) — h,x — 6(y + 2) + K.

Denote §_ ; := x — 0(+y + 2I). Similar to (38),

PlzI,l(x)fW(w)de%z[/ (14— )fx( +Z_;1—90) dt—l—Z/_h Fx(t+E_p)dt

+Lh(1 - ﬁ)fx(t—l-@,z +79)dt]
h 0
< Cés[/hfx(t—l—x—29(’)’+Z))dt—|—/7wfx(t—b—x—0(7+2l))dt
h
+/_hfx(t+x—291))dt].
By similar arguments to (39)—(42), we have

var[p! ,j( )] < c2a(BO + 627 1) (nh2r 1)1,

and
var[f)(g,\]_),h (V)] < E[|L (Wi — )] } < c25(BO + 627 1) (np?r 1)1

Similar to (45),

sup Pl (x) — m(x) 2 = C-en] < ca6(A%+ B2+ Bo + 621 1)C .
(mffx)e'@ﬁ,r,x

This leads to the result of Theorem 2 for x < 0.
This completes the proof. [

Remark 2. Our convergence rate is the same as that in the ordinary smoothness case of Meister [6],
where the density function of the covariate error does not vanish in the Fourier domain. Compared
to Delaigle and Meister [1], we do not assume fx and m to be compact.

Remark 3. Belomestny and Goldenshluger [16] consider the density deconvolution problem with
non-standard error distributions. They assume the density function to be estimated satisfies the
Holder condition. It is natural to assume a local smooth condition in point estimation. Hence, fx
and m fx are assumed to satisfy the local Holder condition in our discussion.
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Remark 4. Theorem 1 shows the strong consistency of the regression estimator without the smooth-
ness assumption. The main tool used is the Borel-Cantelli lemma which requires a convergent
series. It is easy to see from (13) and (20) that the choice of h is not unique. Theorem 2 gives a weak
convergence rate, which is defined by modifying the weak consistency. It is natural to assume the
smoothness condition when discussing the convergence rate. In Theorem 2, the choice of h is related
to the smoothness index B. It follows from our proof (44) that the choice of h is unique in the sense of
a constant difference.

X o (i00) 17 .
Remark 5. In our discussion, fs(iv) = M} = [sm(Gv)

v
% } . Substituting this into the

proof of Theorem 3.5 in [6], one can obtain the optimality of convergence rate in our Theorem 2.
This means that there does not exist an estimator 171 (x) of the regression function m(x) based on
iiddata (Wy,Y1),- -, (Wy,Yy) generated by model (1) with (2), which satisfies

_ =2
lim | limsup sup P [|ﬁ1(x) —m(x)]*>C-o (n2ﬁ+27+1>} =0.

Coeo n—eo (mzfX)efgﬁ,r;x

It would be interesting to study the numerical illustration of our estimation. We shall
investigate this in the future.
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