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Abstract: Let R be a commutative ring with identity, and Z(R) be the set of zero-divisors of R. The
weakly zero-divisor graph of R denoted by WΓ(R) is an undirected (simple) graph with vertex
set Z(R)∗, and two distinct vertices x and y are adjacent, if and only if there exist r ∈ ann(x) and
s ∈ ann(y), such that rs = 0. Importantly, it is worth noting that WΓ(R) contains the zero-divisor
graph Γ(R) as a subgraph. It is known that graph theory applications play crucial roles in different
areas one of which is chemical graph theory that deals with the applications of graph theory to
solve molecular problems. Analyzing Zagreb indices in chemical graph theory provides numerical
descriptors for molecular structures, aiding in property prediction and drug design. These indices
find applications in QSAR modeling and chemical informatics, contributing to efficient compound
screening and optimization. They are essential tools for advancing pharmaceutical and material
science research. This research article focuses on the basic properties of the weakly zero-divisor graph
of the ring Zp × Zt × Zs, denoted by WΓ(Zp × Zt × Zs), where p, t, and s are prime numbers that
may not necessarily be distinct and greater than 2. Moreover, this study includes the examination of
various indices and coindices such as the first and second Zagreb indices and coindices, as well as
the first and second multiplicative Zagreb indices and coindices of WΓ(Zp ×Zt ×Zs).

Keywords: weakly zero-divisor graph; topological indices; commutative rings; graph parameters

MSC: 05C10; 05C12; 05C25

1. Introduction

The exploration of graphs linked with algebraic structures has gained significant
momentum as a rapidly evolving field. A key focus lies in the classification of graphs
corresponding to algebraic structures and the reciprocal endeavor of attributing algebraic
properties to these graphs. Researchers are particularly intrigued by unraveling the intri-
cate interplay between the inherent algebraic characteristics of well-known entities and
the graph-theoretic attributes exhibited by analogous graphs. A specific instance of this is
the zero-divisor graph associated with a commutative ring R, which bears a unity element
denoted by 1 (distinct from 0). This graph, denoted as Γ(R), is constructed by representing
the elements of the ring R as its vertices. Notably, the connectivity between these vertices
is established based on a distinct rule: two vertices, namely u and v, are deemed adjacent
within the graph solely when the product of these elements, uv, equals zero. This concep-
tual framework creates an intriguing bridge between the algebraic nature of the ring R
and the graph-theoretic structure of Γ(R), exemplifying the broader trend of intertwining
algebra and graph theory. This concept was originally introduced by Beck [1], subsequently
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modified by Anderson and Livingston [2] to only consider the nonzero zero-divisors of
R as vertices. This graph-theoretical concept provides a way to study the properties of
commutative rings and their zero-divisors, with potential applications in diverse fields
such as algebraic geometry, algebraic topology, and coding theory. The zero-divisor graph
of R have been extensively studied by various researchers, as seen in several literature
contributions cited in references [3–11]. Several research studies have explored the charac-
teristics of zero-divisor graphs over finite commutative rings. Sharma et al. [12] focused on
the adjacency matrices of these graphs for the ring Zp ×Zp, where p is a prime. The contri-
butions of Akgüneş et al. [13], Aykaç and Akgüneş (2020), and Akgüneş and Nacaroğlu
(2018) have investigated the graph-theoretical properties of zero-divisor graphs. These
graphs are constructed from different rings, such as Zp ×Zq, Zp2 ×Zq2 , and Zp ×Zq ×Zr,
where p, q, and r are primes. These studies have analyzed various fundamental features of
these zero-divisor graphs, including their graph-theoretical properties, topological indices,
and other structural characteristics. These investigations provide insights into the behavior
and properties of these graphs and their relationship to the underlying algebraic structures.
Mohammad et al. [14] proposed a novel concept known as the weakly zero-divisor graph,
denoted by WΓ(R). This graph is defined based on the nonzero zero-divisors of a ring
R, where each vertex of the graph corresponds to a nonzero zero-divisor of R. The graph
is constructed such that two vertices u and v are adjacent, if and only if there exist ele-
ments r ∈ ann(u)∗ and s ∈ ann(v)∗, where ann(u) represents the set of elements in R that
annihilate u. The graph Γ(R) is a subgraph of WΓ(R) that covers the entire graph. It is
noteworthy that this concept provides a new way to study the properties of rings and the
relationships between their zero-divisors.

Chemical graph theory is an active area of research in recent times. In this field,
researchers study the structures of chemical compounds with the aid of graph theory and
mathematics. The most important concept in chemical graph theory is topological indices.
Topological indices are numeric values that are associated with graphs that remain invariant
under graph automorphisms. In fact, topological indices in graph theory are numerical
measures that capture the structural and connectivity properties of graphs. They have a
wide range of applications in the field of chemistry, biology, and medicine. In particular,
they help in the study of certain physical characteristics of chemical compounds such as
the boiling point, ash point, density, stability, and many more. They also serve as powerful
tools to execute biological network analysis, and also to determine the physical features
and the chemical reactions associated with various drugs without having to carry out the
actual experiment, for instance, see [15,16].

Taking motivation from the above cited work, in this research article, we examine the
characteristics of the weakly zero-divisor graph of the ring Zp ×Zt ×Zs, using p, t, and s as
prime numbers that are not necessarily distinct and greater than 2. We focus on analyzing
its degree sequence, irregularity index, and maximum and minimum degree. Additionally,
we explore various topological indices, including the first and second Zagreb indices, first
and second Zagreb coindices, first and second multiplicative Zagreb indices, and first and
second multiplicative Zagreb coindices index of WΓ(Zp×Zt×Zs). Before delving into this,
it is essential to revisit some fundamental graph theory definitions. By establishing a solid
foundation in graph theory, we can then seamlessly delve into our investigation, leveraging
these innovative graph lenses to unveil previously hidden structural characteristics within
finite commutative rings.

2. Preliminaries

Let G = (V, E) denote a simple graph with V(G) as the vertex set and E(G) as the
edge set. |V(G)| and |E(G)| are referred to be the order and size of the graph, respectively.
Pn and Cn denotes the path and cycle on n vertices. Kn and Km,n depicts the complete
graph and complete bipartite graph respectively. If uv is an edge of G, then u and v are
said to be adjacent in G, and we write u ∼ v; otherwise u � v. Given a graph G(V, E) with
v ∈ V(G), then deg(v) denotes the degree of vertex v in G and is defined as the number of
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vertices adjacent to it. The designations for the lowest and highest degrees are δ(G) and
∆(G), respectively. The distance between two vertices u, v ∈ V(G), denoted by d(u, v), is
the number of edges on the shortest path between them in G. The degree sequence of an
undirected graph denoted by DS(G) is the list of degrees of all the vertices of the graph.
Usually, we list the degrees in non-increasing order, that is from the largest degree to the
smallest degree. The degree sequence is a graph invariant; so, isomorphic graphs have the
same degree sequence. Also, the irregularity index t(G) of a graph represents the number
of different values present in the degree sequence of the graph. In other words, it counts
how many unique degrees are assigned to the vertices of the graph. For any undefined
notations and terminology, we refer the reader to [17].

Zagreb indices are topological indices that provide information about the degree-based
structural characteristics of a graph. Some of the Zagreb indices are defined as follows:

Definition 1 ([18]). The Zagreb group indices of a graph G denoted by M1(G) (first Zagreb index)
and M2(G) (second Zagreb index) is defined as:

M1(G) = ∑
u∈V(G)

d2(u)

and
M2(G) = ∑

uv∈E(G)

d(u)d(v),

where d(u) and d(v) stand for the degrees of the distinct vertices u and v, respectively.

Definition 2 ([19]). The Zagreb group of coindices of a graph G denoted by M1(G) (first Zagreb
coindex) and M2(G) (second Zagreb coindex) is defined as:

M1(G) = ∑
uv/∈E(G)

[d(u) + d(v)]

and
M2(G) = ∑

uv/∈E(G)

[d(u)d(v)],

where d(u) and d(v) stand for the degrees of the distinct vertices u and u, respectively.

Definition 3 ([20]). The Multiplicative Zagreb group of indices of a graph G denoted by ∏1(G)
(first multiplicative Zagreb index) and ∏2(G) (second multiplicative Zagreb index) is defined as:

∏1(G) = ∏
u∈V(G)

d(u)2

and
∏2(G) = ∏

uv∈E(G)

[d(u)d(v)],

where d(u) and d(v) stand for the degree of the distinct vertices u and v, respectively.

Definition 4 ([21]). The Multiplicative Zagreb group of coindices of a graph G denoted by ∏1(G)
(first multiplicative Zagreb coindex) and ∏2(G) (second multiplicative Zagreb coindex) is defined as:

∏1(G) = ∏
uv/∈E(G)

[d(u) + d(v)]

and
∏2(G) = ∏

uv/∈E(G)

[d(u)d(v)],
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where d(u) and d(v) denote the degree of the distinct vertices u and v1, respectively.

This research article aims to investigate various properties and some topological in-
dices related to this graph. In the Section 1, the article discusses the fundamental properties
of the weakly zero-divisor graph of the ring WΓ(Zp × Zt × Zs), including the adjacency
relations between vertices, the degree of each vertex, the degree sequence, the maximum
and minimum degrees, and the irregularity index. In the Section 2, the research focuses
on Zagreb indices and coindices within the context of WΓ(Zp × Zt × Zs). Specifically, it
explores the first and second Zagreb indices and coindices, as well as the first and sec-
ond multiplicative Zagreb indices and coindices. The Section 5 contains the conclusions.
Overall, the article delves into both the structural properties of the graph and its algebraic
characteristics, providing a comprehensive understanding of this specific ring and its
associated weakly zero-divisor graph.

3. Properties of WΓ(Zp ×Zt ×Zs)

This section is dedicated to outlining several foundational properties of WΓ(Zp×Zt×
Zs), starting with the definition of adjacent and nonadjacent vertices. Before delving into
this, it is necessary to state a lemma that is used in our subsequent discussion.

Lemma 1. If u and v are adjacent in Γ(R), for distinct u, v ∈ Z(R)∗, then u and v are also
adjacent in WΓ(R).

Proof. Suppose that u and v are adjacent in Γ(R), for distinct vertices u, v ∈ Z(R)∗. Thus,
uv = 0, and clearly u ∈ ann(v) and v ∈ ann(u). Hence, u and v are also adjacent in
WΓ(R).

Definition 5. The adjacent and nonadjacent vertices of WΓ(Zp ×Zt ×Zs) are as follows:
•(i) (xi, 0, 0) ∼ (0, yj, 0), where 0 6= xi ∈ Zp and 0 6= yj ∈ Zt,
•(ii) (xi, 0, 0) ∼ (0, 0, dk), where 0 6= xi ∈ Zp and 0 6= dk ∈ Zs,
•(iii) (xi, 0, 0) ∼ (0, yj, dk), where 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs,
•(iv) (xi, 0, 0) ∼ (x

′
i , 0, 0), where 0 6= xi, x

′
i ∈ Zp and xi 6= x

′
i ,

•(v) (xi, 0, 0) ∼ (xi, yj, 0), where 0 6= xi ∈ Zp and 0 6= yj ∈ Zt,
•(vi) (xi, 0, 0) ∼ (xi, 0, dk), where 0 6= xi ∈ Zp and 0 6= dk ∈ Zs,
•(vii) (0, yj, 0) ∼ (0, 0, dk), where 0 6= yj ∈ Zt and 0 6= dk ∈ Zs,
•(viii) (0, yj, 0) ∼ (xi, 0, dk), where 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs,
•(ix) (0, yj, 0) ∼ (0, yj, dk), where 0 6= yj ∈ Zt and 0 6= dk ∈ Zs,
•(x) (0, yj, 0) ∼ (xi, yj, 0), where 0 6= xi ∈ Zp and 0 6= yj ∈ Zt,
•(xi) (0, yj, 0) ∼ (0, y

′
j, 0), where 0 6= yj, y

′
j ∈ Zt and yj 6= y

′
j,

•(xii) (0, 0, dk) ∼ (xi, yj, 0), where 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs,
•(xiii) (0, 0, dk) ∼ (xi, 0, dk), where 0 6= xi ∈ Zp and 0 6= dk ∈ Zs,
•(xiv) (0, 0, dk) ∼ (0, yj, dk), where 0 6= yj ∈ Zt and 0 6= dk ∈ Zs,
•(xv) (0, 0, dk) ∼ (0, 0, d

′
k), where 0 6= dk, d

′
k ∈ Zs and dk 6= d

′
k,

•(xvi) (xi, 0, dk) ∼ (xi, yj, 0), where 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs,
•(xvii) (xi, 0, dk) ∼ (0, yj, dk), where 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs,
•(xviii) (xi, yj, 0) ∼ (0, yj, dk), where 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs,
•(xix) (xi, yj, 0) � (x

′
i , yj
′, 0), where xi 6= x

′
i or yj 6= y

′
j, with 0 6= xi, x

′
i ∈ Zp and

0 6= yj, y
′
j ∈ Zt,

•(xx) (xi, 0, dk) � (x
′
i , 0, dk

′), where xi 6= x
′
i or dk 6= d

′
k, with 0 6= xi, x

′
i ∈ Zp and

0 6= dk, d
′
k ∈ Zs,

•(xxi) (0, yj, dk) � (0, y
′
j, dk

′), where yj 6= y
′
j or dk 6= d

′
k, with 0 6= yj, y

′
j ∈ Zt and 0 6= dk,

d
′
k ∈ Zs.
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The following result shows the calculation of the degree for each vertex in the graph
WΓ(Zp ×Zt ×Zs). This means that the number of edges connected to each possible vertex
in the graph has been determined.

Theorem 1. The graph WΓ(Zp ×Zt ×Zs) exhibits vertex degrees that are given by

(1) deg(xi, 0, 0) = pt + ts + sp− p− t− s− 1, where 0 6= xi ∈ Zp,
(2) deg(0, yj, 0) = pt + ts + sp− p− t− s− 1, where 0 6= yj ∈ Zt,
(3) deg(0, 0, dk) = pt + ts + sp− p− t− s− 1, where 0 6= dk ∈ Zs,
(4) deg(xi, yj, 0) = ps + ts− s− 1, where 0 6= xi ∈ Zp and 0 6= yj ∈ Zt,
(5) deg(0, yj, dk) = ps + pt− p− 1, where 0 6= yj ∈ Zt and 0 6= dk ∈ Zs,
(6) deg(xi, 0, dk) = pt + ts− t− 1, where 0 6= xi ∈ Zp and 0 6= dk ∈ Zs.

Proof. (1) We have (xi, 0, 0) · (0, yj, dk) = (0, 0, 0) for 0 6= xi ∈ Zp, 0 6= yj ∈ Zt and
0 6= dk ∈ Zs, which implies (xi, 0, 0) ∼ (0, yj, dk) in Γ(Zp × Zt × Zs). So, by Lemma 1,
(xi, 0, 0) ∼ (0, yj, dk) in WΓ(Zp × Zt × Zs). Similarly, for 0 6= xi ∈ Zp and 0 6= yj ∈ Zt,
(xi, 0, 0) ∼ (0, yj, 0) in Γ(Zp ×Zt ×Zs) as (xi, 0, 0) · (0, yj, 0) = (0, 0, 0). Thus, by Lemma 1,
(xi, 0, 0) ∼ (0, yj, 0) in WΓ(Zp ×Zt ×Zs). Also, (xi, 0, 0) ∼ (0, 0, dk) as (xi, 0, 0) · (0, 0, dk) =
(0, 0, 0) for 0 6= xi ∈ Zp and 0 6= dk ∈ Zs; then, by Lemma 1, (xi, 0, 0)∼ (0, 0, dk) in WΓ(Zp×
Zt × Zs). Further, (xi, 0, 0) ∼ (xi, 0, dk) because there exists x = (0, 0, 1) ∈ ann(xi, 0, 0)∗

and y = (0, 1, 0) ∈ ann(xi, 0, dk)
∗, such that xy = 0. Moreover, (xi, 0, 0) ∼ (xi, yj, 0), as

there exist x = (0, 1, 0) ∈ ann(xi, 0, 0)∗ and y = (0, 0, 1) ∈ ann(xi, yj, 0)∗, such that xy = 0.
Again, (xi, 0, 0) ∼ (xi

′, 0, 0), 0 6= xi, x
′
i ∈ Zp, and xi 6= x

′
i , since there exist x = (0, 1, 0)

∈ ann(xi, 0, 0)∗ and y = (0, 0, 1) ∈ ann(x
′
i , 0, 0)∗, such that xy = 0. Hence, the degree of the

vertex (xi, 0, 0) becomes

deg(xi, 0, 0) = (t− 1)(s− 1) + (t− 1) + (s− 1) + (p− 1)(s− 1) + (p− 1)(t− 1)

+ (p− 2)

= pt + ts + sp− p− t− s− 1.

(2) (0, yj, 0) ∼ (xi, 0, 0) in Γ(Zp ×Zt ×Zs) as (0, yj, 0) · (xi, 0, 0) = (0, 0, 0) for 0 6= xi ∈ Zp,
0 6= yj ∈ Zt. Therefore, they are adjacent in WΓ(Zp × Zt × Zs) by Lemma 1. Similarly,
for 0 6= yj ∈ Zt and 0 6= dk ∈ Zs, (0, yj, 0) ∼ (0, 0, dk), since (0, yj, 0) · (0, 0, dk) = (0, 0, 0).
Hence, by Lemma 1, (0, yj, 0) ∼ (0, 0, dk) in WΓ(Zp ×Zt ×Zs). Also, (0, yj, 0) ∼ (xi, 0, dk),
as (0, yj, 0) · (xi, 0, dk) = (0, 0, 0) for 0 6= xi ∈ Zp and 0 6= yj ∈ Zt, 0 6= dk ∈ Zs. Therefore,
(0, yj, 0) ∼ (xi, 0, dk) in WΓ(Zp × Zt × Zs) by Lemma 1. Further, (0, yj, 0) ∼ (0, yj, dk),
because there exist x = (0, 0, 1) ∈ ann(0, yj, 0)∗ and y = (1, 0, 0) ∈ ann(0, yj, dk)

∗, such
that xy = 0. Moreover, (0, yj, 0) ∼ (xi, yj, 0), since there exist x = (1, 0, 0) ∈ ann(0, yj, 0)∗

and y = (0, 0, 1) ∈ ann(xi, yj, 0)∗, such that xy = 0. Finally, (0, yj, 0) ∼ (0, y
′
j, 0), because

there exist x = (1, 0, 0) ∈ ann(0, yj, 0)∗ and y = (0, 0, 1) ∈ ann(0, yj
′, 0)∗, such that xy = 0,

for 0 6= yj, y
′
j ∈ Zt and yj 6= y

′
j. Hence, the degree of the vertex (0, yj, 0) becomes

deg(0, yj, 0) = (p− 1) + (s− 1) + (p− 1)(s− 1) + (t− 1)(s− 1) + (p− 1)(t− 1)

+ (t− 2)

= pt + ts + sp− p− t− s− 1.

(3) We have (0, 0, dk) ∼ (xi, 0, 0), because (0, 0, dk) · (xi, 0, 0) = (0, 0, 0) for 0 6= xi ∈ Zp,
0 6= dk ∈ Zs. Therefore, they are adjacent in both Γ(Zp ×Zt ×Zs) and WΓ(Zp ×Zt ×Zs)
by Lemma 1. Similarly, (0, 0, dk) · (0, yj, 0) = (0, 0, 0) for 0 6= yj ∈ Zt and 0 6= dk ∈ Zs;
so, (0, 0, dk) ∼ (0, yj, 0) in WΓ(Zp × Zt × Zs), by Lemma 1. Also, (0, 0, dk) ∼ (xi, yj, 0),
for 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs, because there exist x = (1, 0, 0)
∈ ann(0, 0, dk)

∗ and y = (0, 1, 0) ∈ ann(xi, yj, 0)∗, such that xy = 0. Further, for 0 6= xi ∈ Zp
and 0 6= dk ∈ Zs, (0, 0, dk) ∼ (xi, 0, dk), since there exist x = (1, 0, 0) ∈ ann(0, 0, dk)

∗ and
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y = (0, 1, 0) ∈ ann(xi, 0, dk)
∗, such that xy = 0. Similarly (0, 0, dk) ∼ (0, yj, dk) as there

exists x = (0, 1, 0) ∈ ann(0, 0, dk)
∗ and y = (1, 0, 0) ∈ ann(0, yj, dk)

∗ such that xy = 0.
Finally, (0, 0, dk) ∼ (0, 0, d

′
k) for 0 6= dk, d

′
k ∈ Zs and dk 6= d

′
k, because there exist x = (0, 1, 0)

∈ ann(0, 0, dk)
∗ and y = (1, 0, 0) ∈ ann(0, 0, d

′
k)
∗, such that xy = 0. This implies that

the degree of the vertex (0, 0, dk) becomes

deg(0, 0, dk) = (p− 1) + (t− 1) + (p− 1)(t− 1) + (p− 1)(s− 1) + (t− 1)(s− 1)

+ (s− 2)

= pt + ts + sp− p− t− s− 1.

(4) For 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs, we have (xi, yj, 0) ∼ (0, 0, dk) as
(xi, yj, 0) · (0, 0, dk) = (0, 0, 0). Therefore, by Lemma 1, (xi, yj, 0) ∼ (0, 0, dk) in WΓ(Zp ×
Zt ×Zs). Further, (xi, yj, 0) ∼ (xi, 0, 0), because there exist x = (0, 0, 1) ∈ ann(xi, yj, 0)∗ and
y = (0, 1, 0) ∈ ann(xi, 0, 0)∗, such that xy = 0. Similarly, (xi, yj, 0) ∼ (0, yj, 0), since there
exist x = (0, 0, 1) ∈ ann(xi, yj, 0)∗ and y = (1, 0, 0) ∈ ann(0, yj, 0)∗, such that xy = 0. Also,
(xi, yj, 0) ∼ (xi, 0, dk) in WΓ(Zp ×Zt ×Zs), because there exist x = (0, 0, 1) ∈ ann(xi, yj, 0)∗

and y = (0, 1, 0) ∈ ann(xi, 0, dk)
∗, such that xy = 0. Finally, (xi, yj, 0) ∼ (0, yj, dk), since

there exist x = (0, 0, 1) ∈ ann(xi, yj, 0)∗ and y = (1, 0, 0) ∈ ann(0, yj, dk)
∗, such that xy = 0.

Hence, the degree of the vertex (xi, yj, 0) becomes

deg(xi, yj, 0) = (s− 1) + (p− 1) + (t− 1) + (p− 1)(s− 1) + (t− 1)(s− 1)

= ps + ts− s− 1.

(5) For 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs, we have (0, yj, dk) ∼ (xi, 0, 0)
as (0, yj, dk) · (xi, 0, 0) = (0, 0, 0). Therefore, by Lemma 1, adjacency is also followed
in WΓ(Zp × Zt × Zs). Also, (0, yj, dk) ∼ (0, yj, 0), because there exist x = (1, 0, 0) ∈
ann(0, yj, dk)

∗ and y = (0, 0, 1) ∈ ann(0, yj, 0)∗, such that xy = 0. Similarly, (0, yj, dk)
∼ (0, 0, dk), since there exist x = (1, 0, 0) ∈ ann(0, yj, dk)

∗ and y = (0, 1, 0) ∈ ann(0, 0, dk)
∗,

such that xy = 0. Further, (0, yj, dk) ∼ (xi, 0, dk) in WΓ(Zp × Zt × Zs), since there exist
x = (1, 0, 0) ∈ ann(0, yj, dk)

∗ and y = (0, 1, 0) ∈ ann(xi, 0, dk)
∗, such that xy = 0. Finally,

(0, yj, dk) ∼ (xi, yj, 0) in WΓ(Zp×Zt×Zs), because there exist x = (1, 0, 0) ∈ ann(0, yj, dk)
∗

and y = (0, 0, 1) ∈ ann(0, yj, dk)
∗, such that xy = 0. Hence, the degree of the vertex

(0, yj, dk) becomes

deg(0, yj, dk) = (p− 1) + (t− 1) + (s− 1) + (p− 1)(s− 1) + (p− 1)(t− 1)

= ps + pt− p− 1.

(6) For 0 6= xi ∈ Zp, 0 6= yj ∈ Zt, and 0 6= dk ∈ Zs, we have (xi, 0, dk) ∼ (xi, 0, 0)
in WΓ(Zp × Zt × Zs), since there exist x = (0, 1, 0) ∈ ann(xi, 0, dk)

∗ and y = (0, 0, 1)
∈ ann(xi, 0, 0)∗, such that xy = 0. Also, (xi, 0, dk) ∼ (0, yj, 0) as (xi, 0, dk) · (0, yj, 0) =
(0, 0, 0). So, by using Lemma 1, (xi, 0, dk) ∼ (0, yj, 0) in WΓ(Zp × Zt × Zs). Further,
(xi, 0, dk) ∼ (0, 0, dk), because there exist x = (0, 1, 0) ∈ ann(xi, 0, dk)

∗ and y = (1, 0, 0)
∈ ann(0, 0, dk)

∗, such that xy = 0. Moreover, (xi, 0, dk) ∼ (xi, yj, 0), since there exist
x = (0, 1, 0) ∈ ann(xi, 0, dk)

∗ and y = (0, 0, 1) ∈ ann(xi, yj, 0)∗, such that xy = 0. Fi-
nally, (xi, 0, dk) ∼ (0, yj, dk), as there exist x = (0, 1, 0) ∈ ann(xi, 0, dk)

∗ and y = (0, 0, 1)
∈ ann(0, yj, dk)

∗, such that xy = 0. Hence, the degree of the vertex (xi, 0, dk) becomes

deg(xi, 0, dk) = (p− 1) + (t− 1) + (s− 1) + (p− 1)(t− 1) + (t− 1)(s− 1)

= pt + ts− t− 1.
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Theorem 2. The maximum degree of the graph WΓ(Zp ×Zt ×Zs) is given by

∆(WΓ(Zp ×Zt ×Zs)) = pt + ts + sp− p− t− s− 1.

Proof. In view of Theorem 1, we have deg(xi, 0, 0) = deg(0, yj, 0) = deg(0, 0, dk) = pt +
ts + sp− p− t− s− 1. Also, deg(xi, yj, 0) = ps + ts− s− 1, deg(0, yj, dk) = ps + pt− p− 1,
and deg(xi, 0, dk) = pt + ts− t− 1, where 0 6= a ∈ Zp, 0 6= b ∈ Zt and 0 6= c ∈ Zs. Hence,
the maximum degree of the graph WΓ(Zp ×Zt ×Zs) is

∆(WΓ(Zp ×Zt ×Zs)) = pt + ts + sp− p− t− s− 1.

Example 1. The maximum degree of the graph WΓ(Z3×Z3×Z3) is given by ∆(WΓ(Z3×Z3×
Z3)) = 3× 3 + 3× 3 + 3× 3− 3− 3− 3− 1 = 17. The verification is also shown in Example 3.

Theorem 3. The minimum degree of the graph WΓ(Zp ×Zt ×Zs) is given by

δ(WΓ(Zp ×Zt ×Zs)) = min{ps + ts− s− 1, ps + pt− p− 1, pt + ts− t− 1}.

Proof. By employing Theorem 1, we obtain deg(xi, yj, 0) = ps + ts− s− 1, deg(0, yj, dk) =
ps + pt− p− 1, and deg(xi, 0, dk) = pt + ts− t− 1, where 0 6= xi ∈ Zp, 0 6= yj ∈ Zt and
0 6= dk ∈ Zs. Hence, the minimum degree of the graph WΓ(Zp ×Zt ×Zs) is

δ(WΓ(Zp ×Zt ×Zs)) = min{ps + ts− s− 1, ps + pt− p− 1, pt + ts− t− 1}.

Example 2. The minimum degree of the graph WΓ(Z3 ×Z3 ×Z3) is given by δ(WΓ(Z3 ×Z3 ×
Z3)) = min{3 × 3 + 3 × 3 − 3 − 1, 3 × 3 + 3 × 3 − 3 − 1, 3 × 3 + 3 × 3 − 3 − 1} = 14.
The result is also verified by Example 3.

Theorem 4. The degree sequence and irregularity index for WΓ(Zp ×Zt ×Zs), where p, t, and s
are distinct prime numbers greater than 2, is given by

DS(WΓ(Zp ×Zt ×Zs)) =

{
pt + ts + ps− s− p− t− 1︸ ︷︷ ︸

(p−1)times

, pt + ts + ps− s− p− t− 1︸ ︷︷ ︸
(t−1)times

,

pt + ts + ps− s− p− t− 1︸ ︷︷ ︸
(s−1)times

, ps + ts− s− 1︸ ︷︷ ︸
(p−1)(t−1)times

,

ps + pt− p− 1︸ ︷︷ ︸
(t−1)(s−1)times

, pt + ts− t− 1︸ ︷︷ ︸
(p−1)(s−1)times

}
,

and
t(WΓ(Zp ×Zt ×Zs)) = 4.

Proof. From Theorem 1, we see that deg(xi, 0, 0) = pt + ts + ps− p− t− s− 1, and the
vertices of type (xi, 0, 0) are p− 1, where 0 6= xi ∈ Zp. Also, deg(0, yj, 0) = pt + ts + ps−
p− t− s− 1, and the number of these types of vertices are t− 1, for 0 6= yj ∈ Zt. Moreover,
the vertices of the form (0, 0, dk) are s− 1 having degree pt + ts + ps− p− t− s− 1, where
0 6= dk ∈ Zs.

Again, by Theorem 1, for 0 6= xi ∈ Zp and 0 6= yj ∈ Zt, deg(xi, yj, 0) = ps + ts− s− 1,
and the number of these type of vertices is (p − 1)(t − 1). Similarly, for 0 6= yj ∈ Zt
and 0 6= dk ∈ Zs, deg(0, yj, dk) = ps + pt − p − 1, and the number of vertices of the
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form (0, yj, dk) is (t− 1)(s− 1). Moreover, the number of vertices of the type (xi, 0, dk) is
(p− 1)(s− 1) and deg(xi, 0, dk) = pt + ts− t− 1, where 0 6= xi ∈ Zp and 0 6= dk ∈ Zs;
hence, we obtain the desired result. Also, it is clear that the irregularity index of the graph
WΓ(Zp ×Zt ×Zs) is 4.

Remark 1. t(WΓ(Zp ×Zt ×Zs)) = 2 when the prime numbers p, t, and s are equal.

The following example shows the degree sequence, maximum and minimum de-
gree, and irregularity index of WΓ(Z3 ×Z3 ×Z3), which is helpful for the verification of
our results.

Example 3. WΓ(Z3×Z3×Z3) is shown in Figure 1, and some properties of WΓ(Z3×Z3×Z3)
are as follows:

(1) ∆(Γ(Z3 ×Z3 ×Z3)) = 17,
(2) δ(Γ(Z3 ×Z3 ×Z3)) = 14,
(3) DS(Γ(Z3 ×Z3 ×Z3)) = {17, 17, 17, 17, 17, 17, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14},
(4) t(Γ(Z3 ×Z3 ×Z3)) = 2.

(1,0,0)

(2,0,0)

(1,0,2)

(1,1,0)

(1,0,1)

(2,2,0)

(2,1,0)

(1,2,0)

(0,1,0)

(0,2,0)

(2,0,2)

(0,2,1)

(2,0,1)

(0,2,2)

(0,1,1)

(0,1,2)

(0,0,1)

(0,0,2)

Figure 1. WΓ(Z3 ×Z3 ×Z3).

4. Some Topological Indices of WΓ(Zp ×Zt ×Zs)

In the subsequent section, we delve into distinct attributes of the graph WΓ(Zp ×
Zt × Zs), known as topological indices. The numerical value Top(G), referred to as the
topological index of a graph G, remains constant for all graphs H that exhibit isomorphism
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with G. In essence, the topological index serves as an unchanging attribute of a graph,
maintaining its consistency across isomorphic instances. We discuss some of the specific
topological indices associated with the graph WΓ(Zp ×Zt ×Zs).

Theorem 5. The first Zagreb index of the graph WΓ(Zp ×Zt ×Zs) is given by

M1(WΓ(Zp ×Zt ×Zs)) = ∑
i,j,k∈{p,t,s}

i 6=j 6=k

(i− 1)(k− 1)(ij + jk− j− 1)2

+ (pt + ts + ps− p− t− s− 1)2(p + t + s− 3).

Proof. From Theorem 4 and Definition 1, we have

M1(WΓ(Zp ×Zt ×Zs)) = ∑
u∈V(G)

d2(u)

= (p− 1)(pt + ts + ps− p− t− s− 1)2

+ (t− 1)(pt + ts + ps− p− t− s− 1)2

+ (s− 1)(pt + ts + ps− p− t− s− 1)2

+ (p− 1)(t− 1)(ps + ts− s− 1)2

+ (t− 1)(s− 1)(ps + pt− p− 1)2

+ (s− 1)(p− 1)(pt + ts− t− 1)2

= ∑
i,j,k∈{p,t,s}

i 6=j 6=k

(i− 1)(k− 1)(ij + jk− j− 1)2

+ (pt + ts + sp− p− t− s− 1)2(p + t + s− 3).

Theorem 6. The second Zagreb index of the graph WΓ(Zp ×Zt ×Zs) is given by

M2(WΓ(Zp ×Zt ×Zs)) = A3
1 − 2A2

1 + A0 A1(A2 + A4 + A5) + A2 A3 + A4 A5,

where
A0 = p + t + s− 3, A1 = pt + ts + sp− p− t− s− 1,

A2 = (ps + pt− p− 1)(t− 1)(s− 1),

A3 = 2p2ts− p2t− t2s− s2t− sp2 + pts2 + pt2s− 6pts− 3pt− 4ts− ps− 2p− 2,

A4 = (ps + ts− s− 1)(p− 1)(t− 1), A5 = (pt + ts− t− 1)(p− 1)(s− 1).

Proof. By the use of Definitions 1 and 5, we have

M2(WΓ(Zp ×Zt ×Zs)) = ∑
(i)∈E(G)

d(xi, 0, 0)d(0, yj, 0)

+ ∑
(ii)∈E(G)

d(xi, 0, 0)d(0, 0, dk)

+ ∑
(iii)∈E(G)

d(xi, 0, 0)d(0, yj, dk)

+ ∑
(v)∈E(G)

d(xi, 0, 0)d(xi, yj, 0)
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+ ∑
(vi)∈E(G)

d(xi, 0, 0)d(xi, 0, dk)

+ ∑
(iv)∈E(G), xi 6=x

′
i

d(xi, 0, 0)d(x
′
i , 0, 0)

+ ∑
(vii)∈E(G)

d(0, yj, 0)d(0, 0, dk)

+ ∑
(x)∈E(G)

d(0, yj, 0)d(xi, yj, 0)

+ ∑
(ix)∈E(G)

d(0, yj, 0)d(0, yj, dk)

+ ∑
(xiii)∈E(G)

d(0, yj, 0)d(xi, 0, dk)

+ ∑
(xi)∈E(G), yj 6=y

′
j

d(0, yj, 0)d(0, y
′
j, 0)

+ ∑
(xiii)∈E(G)

d(0, 0, dk)d(xi, 0, dk)

+ ∑
(xiv)∈E(G)

d(0, 0, dk)d(0, yj, dk)

+ ∑
(xii)∈E(G)

d(0, 0, dk)d(xi, yj, 0)

+ ∑
(xv)∈E(G), dk 6=d

′
k

d(0, 0, dk)d(0, 0, d
′
k)

+ ∑
(xvi)∈E(G)

d(xi, 0, dk)d(xi, yj, 0)

+ ∑
(xvii)∈E(G)

d(xi, 0, dk)d(0, yj, dk)

+ ∑
(xviii)∈E(G)

d(xi, yj, 0)d(0, yj, dk).

By applying Theorem 1, we obtain

M2(WΓ(Zp ×Zt ×Zs)) = (pt + ts + sp− p− t− s− 1)(p− 1)

(pt + ts + sp− p− t− s− 1)(t− 1)

+ (pt + ts + sp− p− t− s− 1)(p− 1)

(pt + ts + sp− p− t− s− 1)(s− 1)

+ (pt + ts + sp− p− t− s− 1)(p− 1)

(ps + pt− p− 1)(t− 1)(s− 1)

+ (pt + ts + sp− p− t− s− 1)(p− 1)

(ps + ts− s− 1)(p− 1)(t− 1)

+ (pt + ts + sp− p− t− s− 1)(p− 1)

(pt + ts− t− 1)(p− 1)(s− 1)

+ (pt + ts + sp− p− t− s− 1)1

(pt + ts + sp− p− t− s− 1)(p− 2)

+ (pt + ts + sp− p− t− s− 1)(t− 1)

(pt + ts + sp− p− t− s− 1)(s− 1)

+ (pt + ts + sp− p− t− s− 1)(t− 1)

(ps + ts− s− 1)(p− 1)(t− 1)
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+ (pt + ts + sp− p− t− s− 1)(t− 1)

(ps + pt− p− 1)(t− 1)(s− 1)

+ (pt + ts + sp− p− t− s− 1)(t− 1)

(pt + ts− t− 1)(p− 1)(s− 1)

+ (pt + ts + sp− p− t− s− 1)1

(pt + ts + sp− p− t− s− 1)(t− 2)

+ (pt + ts + sp− p− t− s− 1)(s− 1)

(pt + ts− t− 1)(p− 1)(s− 1)

+ (pt + ts + sp− p− t− s− 1)(s− 1)

(ps + pt− p− 1)(t− 1)(s− 1)

+ (pt + ts + sp− p− t− s− 1)(s− 1)

(ps + ts− s− 1)(p− 1)(t− 1)

+ (pt + ts + sp− p− t− s− 1)1

(pt + ts + sp− p− t− s− 1)(s− 2)

+ (pt + ts− t− 1)(p− 1)(s− 1)(ps + ts− s− 1)(p− 1)(t− 1)

+ (pt + ts− t− 1)(p− 1)(s− 1)(ps + pt− p− 1)(t− 1)(s− 1)

+ (ps + ts− s− 1)(p− 1)(t− 1)(ps + pt− p− 1)(t− 1)(s− 1).

On solving and taking

A0 = p + t + s− 3, A1 = pt + ts + sp− p− t− s− 1,

A2 = (ps + pt− p− 1)(t− 1)(s− 1),

A3 = 2p2ts− p2t− t2s− s2t− sp2 + pts2 + pt2s− 6pts− 3pt− 4ts− ps− 2p− 2,

A4 = (ps + ts− s− 1)(p− 1)(t− 1), A5 = (pt + ts− t− 1)(p− 1)(s− 1),

we obtain

M2(WΓ(Zp ×Zt ×Zs)) = A3
1 − 2A2

1 + A0 A1(A2 + A4 + A5) + A2 A3 + A4 A5.

Theorem 7. The first Zagreb coindex of the graph WΓ(Zp ×Zt ×Zs) is given as

M1(WΓ(Zp ×Zt ×Zs)) = 2(P + Q + R),

where P = (p − 1)(t − 1)(ps + ts − s − 1), Q = (t − 1)(s − 1)(ps + pt − p − 1), and
R = (s− 1)(p− 1)(pt + ts− t− 1).

Proof. From Definition 5, we have, (xi, yj, 0) � (x
′
i , y
′
j, 0), (0, yj, dk) � (0, y

′
j, d
′
k), and

(xi, 0, dk) � (x
′
i , 0, d

′
k). Therefore, using Definition 2, we obtain

M1(WΓ(Zp ×Zt ×Zs)) = ∑
(xi ,yj ,0)�(x

′
i ,y
′
j ,0), xi 6=x

′
i or yj 6=y

′
j

[d(xi, yj, 0) + d(x
′
i , y
′
j, 0)]

+ ∑
(0,yj ,dk)�(0,y

′
j ,d
′
k), yj 6=y

′
j or dk 6=d

′
k

[d(0, yj, dk) + d(0, y
′
j, d
′
k)]

+ ∑
(xi ,0,dk)�(x

′
i ,0,dk

′), xi 6=x
′
i or dk 6=d

′
k

[d(xi, 0, dk) + d(xi
′, 0, dk

′)].
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Using Theorem 4, we have

M1(WΓ(Zp ×Zt ×Zs)) = (ps + ts− s− 1)(p− 1)(t− 1)

+ (ps + ts− s− 1)(p− 1)(t− 1)

+ (ps + pt− p− 1)(t− 1)(s− 1)

+ (ps + pt− p− 1)(t− 1)(s− 1)

+ (pt + ts− t− 1)(p− 1)(s− 1)

+ (pt + ts− t− 1)(p− 1)(s− 1).

On taking P = (p − 1)(t − 1)(ps + ts − s − 1), Q = (t − 1)(s − 1)(ps + pt − p − 1),
R = (s− 1)(p− 1)(pt + ts− t− 1), we obtain

M1(WΓ(Zp ×Zt ×Zs)) = 2(P + Q + R).

This completes the proof.

Theorem 8. The second Zagreb coindex of the graph WΓ(Zp ×Zt ×Zs) is given by

M2(WΓ(Zp ×Zt ×Zs)) = (A2 + B2 + C2),

where A = (p − 1)(t − 1)(ps + ts − s − 1), B = (t − 1)(s − 1)(ps + pt − p − 1), and
C = (s− 1)(p− 1)(pt + ts− t− 1).

Proof. From Definition 5, we have, (xi, yj, 0) � (x
′
i , y
′
j, 0), (0, yj, dk) � (0, y

′
j, d
′
k), and

(xi, 0, dk) � (x
′
i , 0, d

′
k). Therefore, using Definition 2, we have

M1(WΓ(Zp ×Zt ×Zs)) = ∑
(xi ,yj ,0)�(x

′
i ,y
′
j ,0), xi 6=x

′
i or yj 6=y

′
j ,

[d(xi, yj, 0) d(x
′
i , y
′
j, 0)]

+ ∑
(0,yj ,dk)�(0,y

′
j ,d
′
k), yj 6=y

′
j or dk 6=d

′
k

[d(0, yj, dk) d(0, y
′
j, d
′
k)]

+ ∑
(xi ,0,dk)�(x

′
i ,0,dk

′), xi 6=x
′
i or dk 6=d

′
k ,

[d(xi, 0, dk) d(xi
′, 0, dk

′)].

Using Theorem 4, we have

M1(WΓ(Zp ×Zt ×Zs)) = (ps + ts− s− 1)(p− 1)(t− 1) (ps + ts− s− 1)(p− 1)(t− 1)

+ (ps + pt− p− 1)(t− 1)(s− 1) (ps + pt− p− 1)(t− 1)(s− 1)

+ (pt + ts− t− 1)(p− 1)(s− 1) (pt + ts− t− 1)(p− 1)(s− 1).

On taking A = (p − 1)(t − 1)(ps + ts − s − 1), B = (t − 1)(s − 1)(ps + pt − p − 1) and
C = (s− 1)(p− 1)(pt + ts− t− 1), we obtain

M2(WΓ(Zp ×Zt ×Zs)) = (A2 + B2 + C2).

Hence, the proof is complete.

Theorem 9. The first multiplicative Zagreb index of the graph WΓ(Zp ×Zt ×Zs) is given by

∏1(WΓ(Zp ×Zt ×Zs)) = (p− 1)3(t− 1)3(s− 1)3(pt + ts + sp− p− t− s− 1)6

(ps + ts− s− 1)2(ps + pt− p− 1)2(pt + ts− t− 1)2.
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Proof. From Theorem 4 and Definition 3, we have

∏1(WΓ(Zp ×Zt ×Zs)) = ∏
v∈V(G)

d(v)2

= (pt + ts + sp− p− t− s− 1)2(p− 1)

× (pt + ts + sp− p− t− s− 1)2(t− 1)

× (pt + ts + sp− p− t− s− 1)2(s− 1)

× (ps + ts− s− 1)2(p− 1)(t− 1)

× (ps + pt− p− 1)2(t− 1)(s− 1)

× (pt + ts− t− 1)2(s− 1)(p− 1)

= (p− 1)3(t− 1)3(s− 1)3(pt + ts + sp− p− t− s− 1)6

(ps + ts− s− 1)2(ps + pt− p− 1)2(pt + ts− t− 1)2.

Theorem 10. The second multiplicative Zagreb index of the graph WΓ(Zp ×Zt ×Zs) is given as

∏2(WΓ(Zp ×Zt ×Zs)) = (p− 1)15(t− 1)15(s− 1)15(p− 2)(t− 2)(s− 2)

(pt + ts + sp− p− t− s− 1)15(ps + pt− p− 1)5

(ps + ts− s− 1)5(pt + ts− t− 1)5.

Proof. From Definition 3, we have

∏2(WΓ(Zp ×Zt ×Zs)) = ∏
(i)∈E(G)

d(xi, 0, 0)d(0, yj, 0)

× ∏
(ii)∈E(G)

d(xi, 0, 0)d(0, 0, dk)

× ∏
(iii)∈E(G)

d(xi, 0, 0)d(0, yj, dk)

× ∏
(v)∈E(G)

d(xi, 0, 0)d(xi, yj, 0)

× ∏
(vi)∈E(G)

d(xi, 0, 0)d(xi, 0, dk)

× ∏
(iv)∈E(G), xi 6=x

′
i

d(xi, 0, 0)d(x
′
i , 0, 0)

× ∏
(vii)∈E(G)

d(0, yj, 0)d(0, 0, dk)

× ∏
(x)∈E(G)

d(0, yj, 0)d(xi, yj, 0)

× ∏
(ix)∈E(G)

d(0, yj, 0)d(0, yj, dk)

× ∏
(viii)∈E(G)

d(0, yj, 0)d(xi, 0, dk)

× ∏
(xi)∈E(G), yj 6=y

′
j

d(0, yj, 0)d(0, y
′
j, 0)
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× ∏
(xiii)∈E(G)

d(0, 0, dk)d(xi, 0, dk)

× ∏
(xiv)∈E(G)

d(0, 0, dk)d(0, yj, dk)

× ∏
(xii)∈E(G)

d(0, 0, dk)d(xi, yj, 0)

× ∏
(xv)∈E(G), dk 6=d

′
k

d(0, 0, dk)d(0, 0, d
′
k)

× ∏
(xvi)∈E(G)

d(xi, 0, dk)d(xi, yj, 0)

× ∏
(xvii)∈E(G)

d(xi, 0, dk)d(0, yj, dk)

× ∏
(xviii)∈E(G)

d(xi, yj, 0)d(0, yj, dk).

By applying Theorem 1, we obtain

∏2(WΓ(Zp ×Zt ×Zs)) = (pt + ts + ps− p− t− s− 1)(p− 1)

(pt + ts + ps− p− t− s− 1)(t− 1)

× (pt + ts + ps− p− t− s− 1)(p− 1)

(pt + ts + ps− p− t− s− 1)(s− 1)

× (pt + ts + ps− p− t− s− 1)(p− 1)

(ps + pt− p− 1)(t− 1)(s− 1)

× (pt + ts + ps− p− t− s− 1)(p− 1)

(ps + ts− s− 1)(p− 1)(t− 1)

× (pt + ts + ps− p− t− s− 1)(p− 1)

(pt + ts− t− 1)(p− 1)(s− 1)

× (pt + ts + ps− p− t− s− 1)1

(pt + ts + ps− p− t− s− 1)(p− 2)

× (pt + ts + ps− p− t− s− 1)(t− 1)

(pt + ts + ps− p− t− s− 1)(s− 1)

× (pt + ts + ps− p− t− s− 1)(t− 1)

(ps + ts− s− 1)(p− 1)(t− 1)

× (pt + ts + ps− p− t− s− 1)(t− 1)

(ps + pt− p− 1)(t− 1)(s− 1)

× (pt + ts + ps− p− t− s− 1)(t− 1)

(pt + ts− t− 1)(p− 1)(s− 1)

× (pt + ts + ps− p− t− s− 1)1

(pt + ts + ps− p− t− s− 1)(t− 2)

× (pt + ts + ps− p− t− s− 1)(s− 1)

(pt + ts− t− 1)(p− 1)(s− 1)

× (pt + ts + ps− p− t− s− 1)(s− 1)

(ps + pt− p− 1)(t− 1)(s− 1)

× (pt + ts + ps− p− t− s− 1)(s− 1)
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(ps + ts− s− 1)(p− 1)(t− 1)

× (pt + ts + ps− p− t− s− 1)1

(pt + ts + ps− p− t− s− 1)(s− 2)

× (pt + ts− t− 1)(p− 1)(s− 1)(ps + ts− s− 1)(p− 1)(t− 1)

× (pt + ts− t− 1)(p− 1)(s− 1)(ps + pt− p− 1)(t− 1)(s− 1)

× (ps + ts− s− 1)(p− 1)(t− 1)(ps + pt− p− 1)(t− 1)(s− 1).

On solving, we obtain

∏2(WΓ(Zp ×Zt ×Zs)) = (p− 1)15(t− 1)15(s− 1)15(p− 2)(t− 2)(s− 2)

(pt + ts + ps− p− t− s− 1)15(ps + pt− p− 1)5

(ps + ts− s− 1)5(pt + ts− t− 1)5.

Theorem 11. The first multiplicative Zagreb coindices index of the graph WΓ(Zp ×Zt ×Zs) is
given by

∏1(WΓ(Zp ×Zt ×Zs)) = 2(P×Q× R),

where P = (ps + ts − s − 1)(p − 1)(t − 1), Q = (ps + pt − p − 1)(t − 1)(s − 1), and
R = (pt + ts− t− 1)(p− 1)(s− 1).

Proof. From Definition 5, clearly the nonadjacent vertices are (xi, yj, 0) � (x
′
i , y
′
j, 0), (0, yj, dk)

� (0, y
′
j, d
′
k), and (xi, 0, dk) � (x

′
i , 0, dk

′). Therefore, using Definition 4, we have

∏1(WΓ(Zp ×Zt ×Zs)) = ∏
(xi ,yj ,0)�(x

′
i ,y
′
j ,0), xi 6=x

′
i or yj 6=y

′
j

[d(xi, yj, 0) + d(x
′
i , y
′
j, 0)]

× ∏
(0,yj ,dk)�(0,y

′
j ,d
′
k), yj 6=y

′
j or dk 6=d

′
k

[d(0, yj, dk) + d(0, y
′
j, d
′
k)]

× ∏
(xi ,0,dk)�(x

′
i ,0,dk

′), xi 6=x
′
i or dk 6=d

′
k

[d(xi, 0, dk) + d(x
′
i , 0, dk

′)].

Now using Theorem 4, we obtain

∏1(WΓ(Zp ×Zt ×Zs)) = [(ps + ts− s− 1)(p− 1)(t− 1) + (ps + ts− s− 1)(p− 1)(t− 1)]

×[(ps + pt− p− 1)(t− 1)(s− 1) + (ps + pt− p− 1)(t− 1)(s− 1)]

×[(pt + ts− t− 1)(p− 1)(s− 1) + (pt + ts− t− 1)(p− 1)(s− 1)].

On taking P = (ps + ts− s− 1)(p− 1)(t− 1), Q = (ps + pt− p− 1)(t− 1)(s− 1), and
R = (pt + ts− t− 1)(p− 1)(s− 1), we obtain

∏1(WΓ(Zp ×Zt ×Zs)) = 2(P×Q× R).

Theorem 12. The second multiplicative Zagreb coindices index of the graph WΓ(Zp ×Zt ×Zs)
is given by

∏2(WΓ(Zp ×Zt ×Zs)) = (p− 1)4(t− 1)4(s− 1)4(ps + ts− s− 1)2(ps + pt− p− 1)2

(pt + ts− t− 1)2.
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Proof. From Definition 5, it is clear that the nonadjacent vertices of WΓ(Zp ×Zt ×Zs) are
(xi, yj, 0) � (x

′
i , y
′
j, 0), (0, yj, dk) � (0, y

′
j, d
′
k), and (xi, 0, dk) � (x

′
i , 0, dk

′). Therefore, using
Definition 4, we have

∏2(WΓ(Zp ×Zt ×Zs)) = ∏
(xi ,yj ,0)�(x

′
i ,y
′
j ,0), xi 6=x

′
i or yj 6=y

′
j

[d(xi, yj, 0) d(x
′
i , y
′
j, 0)]

× ∏
(0,yj ,dk)�(0,y

′
j ,d
′
k), yj 6=y

′
j ,dk 6=dk

′

[d(0, yj, dk) d(0, y
′
j, d
′
k)]

× ∏
(xi ,0,dk)�(x

′
i ,0,dk

′), xi 6=x
′
i or dk 6=d

′
k

[d(xi, 0, dk) d(x
′
i , 0, dk

′)].

Now using Theorem 4, we obtain

∏2(WΓ(Zp ×Zt ×Zs)) = [(ps + ts− s− 1)(p− 1)(t− 1)× (ps + ts− s− 1)(p− 1)(t− 1)]

×[(ps + pt− p− 1)(t− 1)(s− 1)× (ps + pt− p− 1)(t− 1)(s− 1)]

×[(pt + ts− t− 1)(p− 1)(s− 1)× (pt + ts− t− 1)(p− 1)(s− 1)].

On solving, we obtain

∏2(WΓ(Zp ×Zt ×Zs)) = (p− 1)4(t− 1)4(s− 1)4(ps + ts− s− 1)2

(ps + pt− p− 1)2(pt + ts− t− 1)2.

Hence, the proof is complete.

Remark 2. From Example 3, the graph structures like WΓ(Z3 × Z3 × Z3), are similar to an
important class of carbon compounds in chemistry called fullerenes. Fullerenes are the compounds
in which carbon atoms are arranged in a cage-like or spherical structure. The study of fullerenes
is closely related to mathematical concepts such as topology and geometry. The unique structure
of fullerenes with carbon atoms forming polygons on the surface of a sphere is of great interest
for mathematicians. We can analyze some mathematical properties such as topological indices
of these complicated compounds by these formulae, and our results are more general than the
previous studies.

5. Conclusions

The study has delved into the examination of various graph indices and coindices
within this unique mathematical structure, including the first and second Zagreb indices
and coindices, as well as the first and second multiplicative Zagreb indices and coindices.
This research is significant for several reasons: it provides valuable insights into the struc-
ture and properties of the weakly zero-divisor graph, extending our understanding of
this mathematical concept in the context of ring theory. The study reinforces the connec-
tions between ring theory and graph theory, highlighting the usefulness of graph theory
in representing and analyzing algebraic structures. By examining Zagreb indices and
coindices, this research offers a quantitative approach to characterizing the topology of
WΓ(Zp ×Zt ×Zs). Such numerical descriptors have practical applications in various fields,
including chemistry and molecular research. The work discussed here can potentially
find applications in chemical graph theory, where graph theory concepts are employed to
solve molecular problems. The study of Zagreb indices can aid in predicting molecular
properties, contributing to drug design, compound screening, and material science research.
The approach taken in this research is versatile, as it can be applied to a wide range of
ring structures, offering potential extensions and applications in diverse mathematical and
scientific contexts.
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11. Das, K.C.; Akgüneş, N.; Togan, M.; Yurttas, A.; Cangul, I.N.; Çevik, A.S. On the first Zagreb index and multiplicative Zagreb

coindices of graphs. Analele Stiint. Univ. Ovidius Constanta Ser. Mat. 2016, 24, 153–176. [CrossRef]
12. Sharma, P.; Sharma, A.; Vats, R.K. Analysis of adjacency matrix and neighborhood associated with zero divisor graph of finite

commutative rings. Int. J. Comput. Appl. 2011, 14, 38–42. [CrossRef]
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