
Citation: Rogacheva, N.; Sidorov, V.;

Zheglova, Y. Passive Damping of

Longitudinal Vibrations of a Beam in

the Vicinity of Natural Frequencies

Using the Piezoelectric Effect. Axioms

2023, 12, 981. https://doi.org/

10.3390/axioms12100981

Academic Editor: Nhon

Nguyen-Thanh

Received: 27 June 2023

Revised: 11 September 2023

Accepted: 22 September 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Passive Damping of Longitudinal Vibrations of a Beam in the
Vicinity of Natural Frequencies Using the Piezoelectric Effect
Nelly Rogacheva, Vladimir Sidorov and Yulia Zheglova *

Institute of Digital Technologies and Modeling in Construction, Moscow State University of Civil Engineering,
Yaroslavskoye Shosse, 26, 129337 Moscow, Russia; rogachevann@mgsu.ru (N.R.); sidorovvn@mgsu.ru (V.S.)
* Correspondence: jeglovayug@mgsu.ru; Tel.: +8-905-739-62-95

Abstract: To significantly reduce the amplitude of longitudinal vibrations of the beam in the vicinity of
its natural frequencies, a fundamentally new method of damping vibrations is used. For this purpose,
the beam surfaces are covered with layers of polarized piezoceramics with a strong piezoelectric
effect. We will use two types of electrical conditions on the electrodes of the piezoelectric layers:
short-circuited electrodes and disconnected electrodes. On short-circuited electrodes, the electric
potential is zero. As a result of the piezoelectric effect, an electric charge appears on the disconnected
electrodes when the beam is deformed. The electroelastic state of a beam with different electrical
conditions is described by different boundary value problems. A new approach to damping vibrations
in the vicinity of natural frequencies is based on the following rule for controlling the dynamic
characteristics of a structure: when the beam vibration frequency approaches its natural vibration
frequency, we change the electrical conditions on the electrodes of the piezoelectric layers, thereby
changing the spectrum of its natural frequencies. Let, for example, the vibration frequency of a beam
with short-circuited electrodes approach its natural frequency. In this case, the amplitudes of the
sought quantities grow without limit. The natural frequency spectrum of a beam with disconnected
electrodes will differ from the spectrum of a beam with short-circuited electrodes. As a result,
the amplitudes of the sought quantities will decrease. It is shown that the efficiency of vibration
damping can be significantly increased by choosing the direction of the preliminary polarization
of the piezoelectric material and the location of its electrodes. Numerical examples are given that
demonstrate the effectiveness of the proposed method. The advantage of the method lies in its
simplicity and the low cost of the piezoelectric material, which serves as a non-inertial damper.

Keywords: passive damping of vibrations; piezoelectric effect; natural frequency spectrum; polarized
piezoceramics

1. Introduction

Vibration damping in various fields of technology, such as building structures, ma-
chines, military equipment, electronics, is an urgent scientific and technical problem. For
example, in construction, the level of vibration significantly affects the durability of various
structures, such as high-rise and large-span structures, chimneys, television towers, bridges,
etc., which are subjected to wind and seismic loads.

In modern practice, active vibration damping, passive vibration damping and their
combinations are widely used.

With active damping of vibrations, force effects are applied to the object, causing
vibrations in the antiphase of its vibrations and thus reducing the amplitude of vibrations.
For this purpose, active power devices (actuators) are widely used, which use mechanical,
hydraulic, electrodynamic, piezoelectric and other types of drives to actively suppress
vibrations [1–6].

The passive system controls vibration through the use of special materials in the
construction, while the active system usually uses a special type of moving mechanism.
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Passive vibration damping does not require energy sources. For passive damping,
inertial dampers are used, the devices built into the building structure and designed to
reduce the amplitude of its mechanical vibrations. The use of these devices in structures
can reduce the discomfort of people from vibrations of the building, as well as prevent
its destruction in the event of earthquakes, hurricanes and other extreme impacts. For
this purpose, structural vibration control devices are used to dissipate the huge energy
entering the structures, including active, passive, semi-active and hybrid vibration control
systems [7–13].

For passive vibration damping of a structure in the vicinity of its natural frequencies,
this paper proposes a new method based on the use of the piezoelectric effect [14]. The
method is based on the following well-known position of mathematics: when the boundary
conditions of the boundary value problem change, the spectrum of natural frequencies also
changes. In order to control the spectrum of natural frequencies, we supplement the design
with elements of pre-polarized piezoceramics with electrodes. With passive damping of
vibrations, the piezoceramic electrodes can be either short-circuited or disconnected. The
spectrum of natural frequencies of the design with short-circuited electrodes differs from
the spectrum of natural frequencies of the design with disconnected electrodes. To dampen
vibrations near natural frequencies, we will use a simple idea: if the vibration frequency
of a structure with piezoelectric elements, the electrodes of which are short-circuited,
approaches its natural frequency, we will disconnect the electrodes. The new boundary
value problem has other eigenfrequencies; its eigenfrequency is no longer equal to the
vibration frequency, and the amplitudes of the sought quantities will decrease significantly.
Conversely, when the oscillation frequency of a structure with open electrodes approaches
its natural frequency, the electrodes should be closed.

The proposed article is the first of a forthcoming series of works on active and passive
vibration damping of structures using the piezoelectric effect.

It should be noted that piezoelectric materials are widely used in modern technol-
ogy. There are piezoelectric transformers, bandpass filters, sound emitters and receivers,
ultrasonic delay lines, piezoelectric sensors, piezoelectric motors, piezoelectric elements
of gyroscopes, piezoelectric elements of computer technology—this is not a complete list
of devices based on the piezoelectric effect. Piezoelectric materials are distinguished by
the stability of their properties in wide temperature and time ranges, low costs, and the
manufacturability of their application.

2. Passive Vibration Damping of a Beam with Piezoelectric Layers with
Transverse Polarization
2.1. Piezoelectric Layers with Continuous Electrodes

A three-layer beam with one elastic layer and two piezoelectric layers located symmet-
rically with respect to the elastic layer is considered. The middle layer is elastic, the outer
layers are made of a piezoelectric material. The number of the elastic layer is (1), and the
numbers of the upper and lower layers are (±2), respectively. The thickness of the elastic
layer is equal to 2h1, the thickness of each piezoelectric layer is equal to h2, the length of
the beam is l, and the width of the beam is g (Figure 1). The total thickness of the beam is
2h = 2h1 + 2h2. In Figure 1, the electrodes are drawn with a thick line.

The longitudinal section of the beam in Cartesian coordinates and the values of the
electrical potential are schematically shown in Figure 1.

The axis x1 is directed along the length of the beam; the axis x2 is directed along the
width of the beam; the axis x3 is orthogonal to them.

It is assumed that the piezoelectric layers are pre-polarized in the direction of the
x3-axis. In [14,15], we constructed the theory of the multilayer electroelastic beam. Here we
briefly present the results for a particular case of a three-layer beam.

In the case of thin-walled beams in the equations of state, the stresses σ22 and σ33 can
be neglected compared to the stresses σ11. In addition, it is assumed that the electroelastic
state does not depend on the coordinate x2.
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Figure 1. Schematic representation of the structure of the layered beam with continuous electrodes.

Taking into account the assumptions made, the equations for the elastic and electroe-
lastic layers will be written as

Motion equation:

∂σ(k)

∂x1
= ρ(k)

∂2u(k)

∂ t2 , k = −2, 1, 2 (1)

Strain—displacement formulas:

e(k) =
∂u(k)

∂x1
, k = −2, 1, 2 (2)

Equation of state (Hooke’s law) for the elastic layer:

σ(1) = Ee(1) (3)

Equations of state for piezoelectric layers:

σ(±2) =
1

sE
11

e(±2) − d31

sE
11

E(±2)
3 (4)

D(±2)
3 = εT

33E(±2)
3 + d31σ(±2) (5)

where

E(±2)
3 = −∂φ(±2)

∂x3
(6)

The electroelastic state of piezoelectric layers is described by a coupled electroelastic
problem. Formulas (4) and (5) are well-known formulas [16]. Since the problem is electroe-
lastic, Formulas (4) and (5) simultaneously contain mechanical and electrical quantities.

In Formulas (1)–(6), σ is the stress component in the direction x1; u and e are the dis-
placement and deformation in the direction x1, respectively; E3 and D3 are the components
of the electric field vector and electric induction vector in the direction x3; E is the modulus
of elasticity of elastic layer; φ is the electric potential; sE

11 is the elastic compliance at zero
electric field; d31 is the piezoelectric constant; and εT

33 is the dielectric constant at zero
voltages. The notation used is the same as that used in [15].

For our purposes, we will consider piezoelectric layers, in which the faces x3 = ±h and
x3 = ±h1 (Figure 1) are completely covered with electrodes. Here we will consider only two
kinds of conditions on the electrodes:

- the electrodes are short-circuited. On short-circuited electrodes, the electric potential
is zero

φ(±2)
∣∣∣
x3=±h

= φ(±2)
∣∣∣
x3=±h 1

= 0 (7)



Axioms 2023, 12, 981 4 of 14

- the electrodes are disconnected. On disconnected electrodes, the electric potential is
not zero. It is equal to

φ(±2)
∣∣∣
x3=±h

= ±V(±2), φ(±2)
∣∣∣
x3=±h1

= ∓V(±2) (8)

where the values V(±2) are determined from the following integral condition:

I =
∫
Ω

∂D3
∂t

dΩ = 0 (9)

Here I is the electricity. The integral is evaluated over the surface Ω of one of the
electrodes and t denotes the time.

On the surfaces of the beam, the mechanical surface load is usually specified as

σ
(±2)
13

∣∣∣
x3=±h

= ±q±1 , σ
(±2)
33

∣∣∣
x3=±h

= ±q±3 , σ
(±2)
33

∣∣∣
x3=±h

= ±q±3 (10)

The superscript in parentheses indicates the layer number. Hereinafter, each formula
with double signs ±, ∓ contains two formulas. To obtain one formula, the upper signs
must be selected; to obtain the second formula, only the lower signs must be considered.

For simplicity, we consider the damping of harmonic vibrations of a three-layer beam
(all values vary with time t according to the law e−iω t, where ω is the circular frequency).
Therefore, we will write down all the equations and boundary conditions with respect to
the amplitude values of the unknown quantities.

The transition from three-dimensional Equations (1)–(10) to the theory of multilayer
electroelastic beams was made in [15].

We write the equations for the plane problem for the beam with short-circuited elec-
trodes in the notation accepted in the theory of beams:

dT
dx1

+ X + 2hρω2u = 0, T = Aε, ε =
du
dx1

(11)

X = q+1 + q−1 , A = 2h1E +
2h2

sE
11

, ρ(k) =
1
h
(ρ(1)h1 + ρ(2)h2)

σ(±2) =
1

sE
11

ε, E(±2)
3,0 = 0, D(±2)

3,0 =
d31

sE
11

ε (12)

The equations for the plane problem for the beam with disconnected electrodes are
written as

dT
dx1

+ X + 2hρω2u = 0, T = Aε + P, ε =
du
dx1

P =
2

sE
11

h2

l
k2

31
1− k2

31

(
u|x1=l − u|x1=0

)
(13)

σ(±2) =
1

sE
11

ε +
2d31

h2sE
11

V(±2), E3,0 = −2V
h2

, P = 4
d31

sE
11

V = −2
d31h2

sE
11

E3,0

D(±2)
3,0 = εT

33(1− k31
2)E(±2)

3,0 +
d31

sE
11

ε, V =
h2

2ld31

k2
31

1− k2
31

(
u|x1=l − u|x1=0

)
(14)

Here, ε is the strain and T =
h∫

h1

σ(2)dx +
h1∫
−h1

σ(1)dx +
−h1∫
−h

σ(−2)dx is the total longitudi-

nal force acting in the beam.
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We will consider the forced harmonic vibrations of the beam under the action of a
constant distributed load with the following boundary conditions:

u|x1=0 = 0, T|x1=l = 0 (15)

For numerical examples, we introduce dimensionless coordinates and dimensionless
quantities.

ξ =
x1

l
, u∗ =

u
l

, T∗ =
T
A

, X∗ =
X · l

A
, ε = ε∗, D3∗ =

sE
11

d31
D3, E3∗ = d31E3 (16)

Let the beam electrodes be short-circuited. Substituting Formula (16) into Equation (13),
we obtain the following system of equations:

dT∗
dξ

+ X∗ + λ2u∗ = 0, T∗ = ε∗, ε∗ =
du∗
dξ

, λ2 =
2hρω2l2

A
(17)

Here λ2 is the dimensionless frequency parameter.
The resulting governing equation is

d2u∗
dξ2 + λ2u∗ + X∗ = 0 (18)

Its solution is

u∗ = c1 sin λξ + c2 cos λξ − 1
λ2 X∗T∗ = λ(c1 cos λξ − c2 sin λξ) (19)

Arbitrary integration constants c1 and c2 are determined from the conditions at the
ends of the beam

u∗|ξ=0 = 0, T∗|ξ=1 = 0 (20)

Satisfying condition (20), we obtain

c1 =
sin λ

λ2 cos λ
X∗, c2 =

1
λ2 X∗ (21)

The natural frequencies are determined from the equation cos λ = 0 and they are
equal to

nπ + π/2, n = 0, 1, 2, 3, . . . (22)

Consider now the plane problem for the beam with disconnected electrodes. Note
that the electric potential is an odd function in the plane problem.

V(2) = V(−2) = V

The system of equations in terms of the dimensionless sought quantities has the form

dT∗
dξ + X∗ + λ2u∗ = 0, T∗ = ε∗ + P∗, ε∗ =

du∗
dξ , λ2 = 2hρω2l2

A

P∗ = r u∗|ξ=1, r = 2h2
AsE

11

k2
31

1−k2
31

, k2
31 =

d2
31

sE
11εT

33

(23)

σ(±2) = 1
sE

11
ε + 2d31

h2sE
11

V(±2), E3,0 = − 2V
h2

, P = 4 d31
sE

11
V = −2 d31h2

sE
11

E3,0

D(±2)
3,0 = εT

33(1− k31
2)E(±2)

3,0 + d31
sE

11
ε, V = h2

2ld31

k2
31

1−k2
31

(
u|x1=l − u|x1=0

) (24)
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The resulting governing equation has the form (18). The force T∗ is determined by
the formula

T∗ = λ(c1 cos λξ − c2 sin λξ) + P∗ = λ(c1 cos λξ − c2 sin λξ) + r(c1 sin λ + c2 cos λ) (25)

Arbitrary integration constants c1 and c2 are determined from the conditions at the
ends of the beam (15):

c1 =
X∗
λ2

λ sin λ− r(cos λ− 1)
λ cos λ + r sin λ

, c2 =
X∗
λ2 (26)

The natural frequencies are determined from the equation

λ cos λ + r sin λ = 0

Let us introduce the concept of efficiency f of passive damping of vibrations using
the piezoelectric effect. We assume that the damping efficiency is equal to the ratio of
the absolute value of the difference of resonant frequencies, with the same numbers, for
the beam with disconnected and short-circuited electrodes, respectively, as the resonant
frequencies of the beam with short-circuited electrodes

f =

∣∣∣ω(sh) −ω(d)
∣∣∣

ω(sh)
=

∣∣∣λ(sh) − λ(d)
∣∣∣

λ(sh)
(27)

Here the subscripts (sh) and (d) mean that the quantity belongs to the electroelastic
state with short-circuited and disconnected states, respectively.

It is clear that the damping efficiency increases when the relative difference between the
absolute values of resonant frequencies for a beam with disconnected and short-circuited
electrodes gets larger.

In Table 1, we list the vibration damping efficiency for the cantilever beam
considered above.

Table 1. Values of the dimensionless frequency parameter at resonances of a beam with continuous
electrodes and the efficiency of vibration damping for the first five resonant frequencies.

n 1 2 3 4 5

λ(sh) 1.5708 4.7124 7.8540 10.9956 14.1372
λ(d) 1.6648 4.7454 7.8738 11.0098 14.1482

f 0.0598 0.0070 0.0025 0.0013 0.0008

Here, n is the number of the resonant vibration frequency, λ(sh) and λ(d) are the values
of the dimensionless frequency parameter at the beam resonances. The calculation was
performed for a beam made of reinforced concrete with layers of polarized piezoceramics
with a strong piezoelectric effect PZ29 [17], h2/h1 = 0.1.

From Table 1 it can be seen that the highest efficiency in the case of continuous
electrodes is achieved at the main (lower) resonant frequency of the beam vibrations and
rapidly decreases with increasing resonant frequency numbers.

2.2. Piezoelectric Layers with Split Electrodes

Consider a beam with piezoelectric layers having a pair of electrodes on each surface.
The length of each electrode is equal to half the length of the beam. Let us perform the
calculation for this beam as it was performed in Section 2.1. The calculation results are
summarized in Table 2.
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Table 2. Values of the dimensionless frequency parameter at resonances of a beam with a pair of
electrodes on each surface and the efficiency of vibration damping at the first five resonances.

n 1 2 3 4 5

λ(sh) 1.5708 4.7124 7.8540 10.9956 14.1372
λ(d) 1.6281 4.8205 7.9229 11.0039 14.1437

f 0.0365 0.0229 0.0088 0.0008 0.0005

It can be seen from the table that in the presence of a pair of electrodes on each surface
of the piezoelectric layers, the efficiency is lower and decreases with increasing resonant
frequency numbers.

We will now show that the use of a large number of split electrodes will be more
effective for passive vibration damping.

Consider a beam with m electrodes on each surface of the piezoelectric layers x3 = ±h
and x3 = ±h1. The length of each electrode is δ = l/m. We choose m such that the length of
the electrode is less than or equal to the thickness of the beam h (Figure 2).
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In the case of short-circuited electrodes, it does not matter if the electrodes are con-
tinuous or cut since in this case, the electric potential on the electrodes is zero. If all
electrodes are short-circuited, then for the electroelastic state of the beams, Equation (17)
and solution (19) remain valid.

Consider a beam with disconnected electrodes. Let us find the value of the electric
potential on the i-th electrode using Formula (9). As a result of integration over the surface
of the i-th electrode, we obtain

Vi =
h2

2ld31

k2
31

1− k2
31

(
u|x1=x1,i+1

− u|x1=x1,i

)
δ

(28)

Let us move on from the finite displacement differences along the length of the beam
to the derivative with respect to the variable x and obtain an approximate expression for
the electric field strength E3.

E3 = − d31

sE
11εT

33
(
1− k2

31
) du

dx
(29)

Taking into account Formula (29), the elasticity relation for the force T will be written
in the form

T = Bε (30)
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Using Formula (30), we write the following system of equations for the dimensionless
quantities for the beam with disconnected electrodes:

dT∗
dξ

+ X∗ + λ1
2u∗ = 0, T∗ = ε∗, ε∗ =

du∗
dξ

, λ1
2 =

2hρω2l2

B
(31)

X = q+1 + q−1 , B = 2h1E + 2h2
sE

11
(1 + k2

31
1−k2

31
), ρ = 1

h (ρ1h1 + ρ2h2)

u∗ = u
l , T∗ = T

B , X∗ = X·l
B

(32)

The general solution of Equation (31) has the form

u∗ = c1 sin λ1ξ + c2 cos λ1ξ − 1
λ2

1
X∗T∗ = λ1(c1 cos λ1ξ − c2 sin λ1ξ)

Arbitrary integration constants c1 and c2 are determined from the conditions at the
ends of the beam

u∗|ξ=0 = 0, T∗|ξ=1 = 0 (33)

Satisfying condition (32), we get

c1 =
sin λ1

λ1
2 cos λ1

X∗, c2 =
1

λ1
2 X∗

The natural frequencies are determined from the equation cos λ1 = 0 and they are
equal to nπ + π/2, n = 0, 1, 2, 3, . . .

2.3. Numerical Example

Let us perform the analysis of a cantilever beam with a large number of split electrodes.
To dampen the vibrations of the beam as the vibration frequency approaches the resonant
frequency, we change the electrical conditions. The calculation is made for the same
materials as in Section 2.1. The results are presented in Table 3.

Table 3. Values of the dimensionless frequency parameter at resonances of a beam with a large number
of split electrodes and the efficiency of vibration damping for the first five resonant frequencies.

n 1 2 3 4 5

λ(sh) 1.5708 4.7124 7.8540 10.9956 14.1372
λ(d) 1.6897 5.0691 8.4485 11.8280 15.2074

f 0.0704 0.0757 0.0757 0.0757 0.0757

It should be noted that for a beam with a large number of electrodes, the efficiency is
higher than for a beam with continuous electrodes or for a beam with two electrodes on
each surface of the piezoceramic layer (Tables 1 and 2). We especially note that for a beam
with a large number of electrodes, the damping efficiency is approximately the same for all
resonant frequencies.

In Section 2.2, the dimensional quantities were replaced by dimensionless ones. The
formulas for the dimensionless desired values for a beam with short-circuited electrodes
(16) and for a beam with split electrodes (32) are different. To compare the values of the
dimensionless sought values for different electrical conditions on the electrodes, we write
out formulas that relate the dimensionless sought values of the beam with disconnected
electrodes with the corresponding values of the beam with short-circuited electrodes:

λ2
1 =

A
B

λ2, X(d)
∗ =

A
B

X(sh)
∗ , T(d)

∗ =
A
B

T(sh)
∗ (34)
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Let us compare the results of the calculation of forces and displacements and resonant
frequencies of a beam with short-circuited electrodes and a beam with disconnected split
electrodes. Let us show on the graphs the efficiency of vibration damping by the proposed
method (Figure 3).
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less frequency parameter; (b) force T∗ (x1 = 0) for a beam with disconnected electrodes as a function
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frequency parameter as a result of vibration damping in the vicinity of resonances; (d) dependence of
the displacement u∗ (x1 = l) on the free edge of the beam on the dimensionless frequency parameter
as a result of vibration damping in the vicinity of resonances.

From graphs Figure 3a,b it can be seen that the resonant frequencies of the beam
with short-circuited electrodes are less than the corresponding resonant frequencies of
the beam with disconnected electrodes. Graphs Figure 3c,d show how the amplitudes of
force and displacement vibrations at resonant frequencies have decreased as a result of
vibration damping.

3. Passive Vibration Damping of a Beam with Piezoelectric Layers with Longitudinal
Pre-Polarization
3.1. Construction of the Theory of Structurally Anisotropic Beams

Consider a beam with piezoceramic layers with longitudinal pre-polarization in the
x1 direction. The schematic structure of the beam is shown in Figure 4. The arrows
on the sections of the piezoelectric layers show the direction of the pre-polarization of
the piezoelectric ceramics. Composite piezoceramics of this structure are widely used in
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electronics, robotics, measuring devices, etc., since its electromechanical coupling coefficient
is large and reaches the values of the order of 0.75, for example, for PZ29 piezoceramics [17].
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The equations of motion and the equations for the elastic middle layer of the beam,
presented in Section 2.1, remain valid.

The electrical conditions are the same as for the beams with piezoceramic layers with
transverse polarization: on short-circuited electrodes, the electric potential is zero; on
disconnected electrodes, the integral over the electrode surface of the component D1 of the
electric induction vector is zero.

As a result of simple transformations similar to those performed above, we obtain the
following equations for a beam with short-circuited electrodes:

dT∗
dξ + X∗ + λ2u∗ = 0, T∗ = ε∗, ε∗ =

du∗
dξ , λ2 = 2hρω2l2

A

X = q+1 + q−1 , A = 2h1E + 2h2
sE

33
, ρ = 1

h (ρ1h1 + ρ2h2)

ξ = x1
l , u∗ = u

l , T∗ = T
A

(36)

The system of Equation (36) is reduced to the following equation:

d2u∗
dξ2 + λ2u∗ + X∗ = 0

Its solution has the form (19).
For the beam with disconnected electrodes, the equations are written as

dT∗
dξ + X∗ + λ2

1u∗ = 0, T∗ = ε∗, ε∗ =
du∗
dξ , λ2

1 = 2hρω2l2

B

X = q+1 + q−1 , B = 2h1E + 2h2
sE

33
(1 + k2

33
1−k2

33
), ρ = 1

h (ρ1h1 + ρ2h2)

u∗ = u
l , T∗ = T

B , X∗ = X·l
B

(37)

Its solution has the form (33).

3.2. Numerical Example

Let us analyze a cantilever beam with piezoceramic layers with polarization in the di-
rection of the beam axis. The results of calculating the dimensionless frequency parameters



Axioms 2023, 12, 981 11 of 14

at the beam resonances for short-circuited λ(sh) and disconnected electrodes λ(d) and the
values of the vibration damping efficiency are presented in Table 4.

Table 4. Values of the dimensionless frequency parameter at beam resonant frequencies and vibration
damping efficiency for the first five resonant frequencies.

n 1 2 3 4 5

λ(sh) 1.5708 4.7124 7.8540 10.9956 14.1372
λ(d) 2.3669 7.1006 11.8344 16.5682 21.3019

f 0.5068 0.5068 0.5068 0.5068 0.5068

It can be seen from the calculation results that the resonant frequencies with short-
circuited and disconnected electrodes are very different and the oscillation damping effi-
ciency is high. The damping efficiency is the same at all resonant frequencies.

In the calculation, we use Formula (34), which relates the dimensionless quantities for
the problems of vibrations of a beam with short-circuited and disconnected electrodes. The
values A and B included in (34) for a beam with longitudinal polarization of piezoceramics
are determined by Formulas (36) and (37).

The calculation results are presented in the form of graphs (Figure 5).
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Figure 5. (a) Force T∗ (x1 = 0) for a beam with short-circuited electrodes as a function of a dimension-
less frequency parameter; (b) force T∗ (x1 = 0) for a beam with disconnected electrodes as a function
of a dimensionless frequency parameter; (c) dependence of the force T∗ (x1 = 0) on the dimensionless
frequency parameter as a result of vibration damping in the vicinity of resonances; (d) dependence of
the displacement u∗ (x1 = l) on the free edge of the beam on the dimensionless frequency parameter
as a result of vibration damping in the vicinity of resonant frequencies.
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From graphs Figure 5a,b, it can be seen that the resonant frequencies of the beam with
short-circuited electrodes differ significantly from the corresponding resonant frequencies
of the beam with disconnected electrodes. Graphs Figure 5c,d show how the amplitudes of
force and displacement fluctuations at resonant frequencies have significantly decreased as
a result of vibration damping.

4. Discussion

In this paper, a new method for passive damping of structure vibrations in the vicin-
ity of resonant vibration frequencies using the piezoelectric effect is proposed. We have
considered in detail the passive damping of longitudinal vibrations of a beam with layers
of polarized piezoelectric ceramics. The performed study shows that the method allows
one to significantly reduce the value of the sought values in the vicinity of the resonant
vibration frequencies. A new concept of the efficiency of passive damping of oscillations in
the vicinity of resonant frequencies is introduced. It is shown that the vibration damping ef-
ficiency can be significantly increased by choosing the direction of preliminary polarization
of the piezoceramics and using a sufficient number of electrodes.

The results of the passive damping of a longitudinally polarized beam with a large
number of electrodes are shown in Figure 6. The graphs show the dependence of forces T∗
and displacements u∗ on the dimensionless frequency coordinate ξ and the dimensionless
frequency parameter. The graphical representation of the solution shows that the amplitude
of the desired quantities near the resonances is small.
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The performed calculations confirm the possibility of passive damping of the longitu-
dinal vibrations of the beam near resonant frequencies using the piezoelectric effect.

We are currently conducting further research on active and passive damping of vibra-
tions using the piezoelectric effect.

Estimates of the effectiveness of active and passive vibration damping are completely
different. In the case of active vibration damping, piezoelements work as actuators. As a
rule, in modern works, the efficiency of active vibration damping is not calculated since
this is a complex problem.

The efficiency of active vibration damping is usually determined as the electrome-
chanical coupling coefficient (EMCC). The EMCC has nothing to do with passive vibration
damping. The EMCC is an important characteristic of the performance of piezoceramic
elements. The concept of the EMCC is as follows: the EMCC is the ratio of electrical (me-
chanical) energy stored in the volume of a piezoceramic body and capable of conversion
into the total mechanical (electrical) energy supplied to the body. This determination is the
most complete one, but it is difficult to understand what “capable of conversion” means.
The electromechanical coupling coefficient depends on many parameters—the geometry of
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the structure, the properties of the materials from which this structure is made, mechanical
and electrical load, boundary conditions, vibration frequency. For some parameter values,
the EMCC may be zero. This means that the piezo actuator does not convert energy and
active damping does not occur. In [18], it was shown that the EMCC ke is determined
according to the following formula

ke =

√
U(d) −U(sh)

U(d)
(38)

where U(d) is the internal energy of the body when the electrodes are disconnected and
U(sh) is the internal energy for short-circuit electrodes. Our earlier investigations [18] have
shown that this formula is general and it is true for any static and dynamic state for any
electroelastic structure. Our previous published results will make it possible to correctly
calculate the EMCC.

5. Conclusions

The studies performed have shown that the efficiency of vibration damping depends
significantly on the direction of pre-polarization of the piezoceramic layers and on the
number and location of its electrodes.

To dampen longitudinal vibrations of the beam near its resonant frequencies, we used
piezoelectric layers on the faces of the beam. Since the properties of a piezoelectric material
significantly depend on the direction of its pre-polarization, we considered different direc-
tions of pre-polarization—transverse along the x3 axis (Figures 1 and 2) and longitudinal
along the x1 axis (Figure 4). In addition, the location of the electrodes plays an important
role in our study. In order to evaluate the vibration damping ability of the new method, we
introduced the concept of damping efficiency. According to the definition, the damping
efficiency is equal to the ratio of the absolute value of the difference of resonant frequencies,
with the same numbers, for the beam with disconnected and short-circuited electrodes,
respectively, as the resonant frequencies of the beam with short-circuited electrodes. Our
research has shown that damping vibrations near the resonant frequencies of a beam with
layers of piezoelectric material with transverse pre-polarization completely covered with
electrodes (Figure 1) has low efficiency, which decreases with the increasing number of
the resonant frequencies (Table 1). It is shown that if a large number of split electrodes
are used for the same composite beam (Figure 2), then the damping efficiency remains
small and is of the same order of magnitude for all resonant frequencies (Table 3). The
highest damping efficiency was obtained when using piezoceramics with longitudinal
pre-polarization with a large number of electrodes (Figure 4, Table 4). It is piezoceramics
with longitudinal pre-polarization with a large number of electrodes that we recommend
using to dampen beam vibrations near its resonant frequencies.

In the case of using piezoceramics with transverse pre-polarization of the beam, the
face surfaces of which are covered with continuous electrodes (Table 1), the efficiency of
damping is low. This is explained by:

(1) the direction of polarization is orthogonal to the direction of longitudinal vibrations,
and the main role in damping vibrations is played by that part of the electroelastic
state, which is a consequence of the Poisson effect and operates in the longitudinal
direction;

(2) the use of continuous electrodes makes it possible to dampen vibrations only at the
first resonant frequency.

To control the process of closing and opening electrodes, dynamic strain sensors (for
example, piezoelectric sensors [19,20]) and a special program that processes sensor readings
should be used. As the beam vibration frequency approaches the resonant frequency, the
rate of change in deformations increases sharply. At this point, the program should provide
a change in the electrical conditions on the electrodes.
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The advantages of using the piezoelectric effect for passive damping of vibrations at
resonances consist in its simplicity—the absence of the need for inertial operation of the
vibration damper, the same intensity of damping at all resonant frequencies, as well as the
stability of the properties of the piezoelectric damper material in wide temperature and
time ranges and its low cost.
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