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Abstract: Many phenomena can be described by random variables that follow asymmetrical distri-
butions. In the context of regression, when the response variable Y follows such a distribution, it
is preferable to estimate the response variable for predictor values using the conditional median.
Quantile regression models can be employed for this purpose. However, traditional models do not
incorporate a distributional assumption for the response variable. To introduce a distributional as-
sumption while preserving model flexibility, we propose new varying-coefficients quantile regression
models based on the family of log-symmetric distributions. We achieve this by reparametrizing the
distribution of the response variable using quantiles. Parameter estimation is performed using a
maximum likelihood penalized method, and a back-fitting algorithm is developed. Additionally,
we propose diagnostic techniques to identify potentially influential local observations and leverage
points. Finally, we apply and illustrate the methodology using real pollution data from Padre Las
Casas city, one of the most polluted cities in Latin America and the Caribbean according to the World
Air Quality Index Ranking.

Keywords: local influence techniques; log-symmetric distributions family; PM2.5 levels; quantile
regression; semiparametric models

MSC: 62J20

1. Introduction

In the process of data modeling, it is common to utilize regression models that assume
that the response variable follows a normal distribution, as this is well-established in theory.
However, there are situations where using such models may not be appropriate, particularly
when the response variable exhibits an asymmetric distribution and is restricted to the
positive real line. Failing to account for this behavior can introduce bias in parameter
estimates and the estimation of associated measures of variability; see [1]. To address the
limitations associated with the assumption of normality, several authors have proposed
alternative approaches that employ more flexible distributional assumptions. This allows
for a better representation of the underlying data. Some examples of such approaches
include the works of [2–7].

Vanegas and Paula [8] proposed a family of log-symmetric distributions, which are
obtained by transforming symmetric distributed random variables whose probability
density functions involve the exponential function. Some examples of log-symmetric dis-
tributions are the log-normal, log-power-exponential, log-Laplace, log-logistic, log-slash,
log-hyperbolic, Birnbaum–Saunders (BS), and log-Student-t cases. This family of distribu-
tions includes special cases that exhibit bimodal behavior, as well as distributions with tails
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that are either lighter or heavier than the log-normal distribution. Regression models based
on log-symmetric distributions have been studied by Vanegas and Paula [1,9,10].

In many real-life phenomena, the focus of interest is often on modeling a specific
quantile of the response variable rather than the mean, as commonly done in classical
regression models. This is particularly relevant when the distribution of the response
variable exhibits asymmetry, where the median becomes a more appropriate measure of
central tendency for estimating the response. Another reason is that our interest can be
to model the relation between another non-central position measure and the covariates.
This happens, for example, when we want to analyze the relationship between the greater
(or lower) values of the response variable and the covariates; see [11]. Therefore, quantile
regression models are useful for modeling the relationship between a set of predictor
variables and specific quantiles of a response variable. Unlike traditional regression models,
quantile regression does not assume a specific distribution for the response variable [11,12].
However, if we introduce a distributional assumption, it is possible to formulate quantile
regression models based on the reparameterization of the distribution using a quantile.
This approach has been successfully applied by [5,6,13]. Quantile regression models based
on reparametrized log-symmetric distributions by quantiles (QLS) have been recently
developed by Saulo et al. [7], albeit from a purely parametric perspective.

Considering the inclusion of nonparametric functions in the modeling, it becomes
possible to incorporate the nonlinear effects of covariates. Semiparametric models have
been developed to address this, where linear structures are described by parametric com-
ponents and nonlinear structures are described by nonparametric components. Therefore,
these models offer better flexibility for modeling data than those using only a parametric
approach. Semiparametric structures have been effectively utilized to represent nonlin-
ear components, as demonstrated in previous studies such as [1,14–21]. Based on our
literature review, it appears that no semiparametric quantile regression models based on
log-symmetric distributions have been developed thus far.

For over 30 years, Chile has been grappling with a significant public health issue
related to the contamination of respirable particulate matter, particularly during winter
periods. In the context of Latin America and the Caribbean, Chile currently ranks second,
following Peru, in terms of cities with the highest levels of fine particulate matter (PM2.5),
as reported by the World Air Quality Index Ranking (https://bit.ly/3MXVP38; accessed
on 20 August 2023). It is concerning to note that these levels often exceed both national and
international regulations, highlighting the severity of the problem in terms of public health.
Statistical models provide a valuable approach to understanding and describing air quality,
enabling us to study the relative impact of atmospheric contaminants on human health and
the urban environment. Periodic episodes of extreme air pollution concentrations can occur
with certain atmospheric contaminants, varying with geographical and meteorological
factors and dependent on changes in emission sources and types; see [22]. Considering this
variability, air pollutant concentrations are treated as non-negative random variables. In
general, the distribution of these variables is asymmetrical and exhibits positive skewness,
aligning with the characteristics of log-symmetric distributions.

The primary aim of this article is to develop varying-coefficients quantile regression
models based on the family of log-symmetric distributions. Our secondary objectives
encompass the following: (i) to estimate the parameters of the model using the maximum
penalized likelihood (MPL) technique and a back-fitting algorithm; (ii) to incorporate the
nonparametric structure through natural cubic smoothing splines (iii) to calculate local
influence techniques for model diagnostics by assess the normal curvatures under different
perturbation scenarios; (iv) to implement the obtained outcomes computationally within
the R programming environment; and (v) to apply these results to real data related to
atmospheric pollutants in Padre Las Casas, a city in Chile recognized as one of the most
contaminated cities in Latin America and the Caribbean, as per the World Air Quality Index
Ranking (https://www.iqair.com/; accessed on 20 August 2023).

https://bit.ly/3MXVP38
https://www.iqair.com/
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The remainder of this work is organized as follows. Section 2 presents the proposed
model for varying-coefficients quantile regression based on log-symmetric distributions.
In Section 3, we explain the parameter estimation procedure utilizing the MPL method
and a back-fitting algorithm. Section 4 extends the local influence method to assess the
potential impact of specific observations on the proposed model, including the derivation
of the generalized leverage matrix. In Section 5, we apply the proposed model to analyze
a real dataset, demonstrating its potential applications. Finally, in Section 6, we provide
concluding remarks and suggestions for future research.

2. Log-Symmetric Varying-Coefficient Quantile Regression Models

In this section, we introduce the varying-coefficients quantile regression models based
on the log-symmetric distribution family.

2.1. Formulation

Let q ∈ (0, 1) be a fixed number. We will denote by Y ∼ QLS(Q, φ, g) to the log-
symmetric distribution reparametrized by the q-quantile of Y (Q), where φ > 0 is a
power parameter and g(·) is the probability density function generator kernel; see [7].
Let Y1, Y2, . . . , Yn be independent random variables such that Yi ∼ QLS(Qi, φ, g), for
i ∈ {1, 2, . . . , n}. We assume the semiparametric additive structure for Qi given by

h(Qi) = w>i α + x1i β1(t1i) + · · ·+ xsi βs(tsi), i ∈ {1, 2, . . . , n}, (1)

where w>i = (1, w1i, . . . , wpi), α is a (p + 1)× 1 unknown regression coefficients vector,
with p + 1 < n, β1, . . . , βs are unspecified smooth real functions of the explanatory variable
Tk that do not depend on α or some other parameter. Also, xji, wji and tji are the values of
covariates Xj, Wj and Tj for the ith observation, respectively. The function h has positive
support and is at least twice differentiable, called the link function. The structure of the right
side in Equation (1) defines the so-called partially varying-coefficients regression models;
see [23]. Therefore, we have defined a partially varying-coefficient quantile regression
model based on the family of log-symmetric distributions. Equation (1) can be written as

h(Qi) = w>i α + ñ>1i β1 + · · ·+ ñ>si βs, i ∈ {1, 2, . . . , n},

where ñ>ki denote the ith row of the matrix Ñk = X(k) Nk, X(k) = diag{xk1, , . . . , xkn},
Nk is the incidence matrix n× rk whose (i, l)-th element equals to the indicator function
I(tki = t0

kl), βk = (ζk1, . . . , ζkrk
)> is a rk × 1 vector called a vector of spline coefficients such

that ζkl = βk(t0
kl), with t0

kl for l ∈ {1, . . . , rk} representing the distinct and ordered values
of the explanatory variable Tk usually called knots. For a similar formulation, see [16].

2.2. Penalized Log-Likelihood Function

The log-likelihood function for the proposed model in Equation (1) is given by

`(θ) =
n

∑
i=1

log
(

ξnc

yi

)
+ log(g(v2

i ))−
1
2

log(φ),

where θ = (α>, β>1 , . . . , β>s , φ)> and vi = (log(yi)− log(Qi) +
√

φzq)/
√

φ. To address
the identifiability issues of the regression coefficient α and mitigate overfitting in the
semiparametric modeling process, penalties are commonly incorporated into the smooth
functions. The MPL method, initially introduced by Good and Gaskins [24] for estimating
probability density curves, has been extended to the nonparametric regression context by
researchers such as [25,26]. These extensions have provided effective solutions to handle the
challenges of identifiability and overfitting in semiparametric models. This same approach
is used to fit our model, optimizing the penalized log-likelihood function expressed as

`p(θ, λ) = `(θ)−
s

∑
k=1

λ∗k J(βk), (2)
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where J(βk) corresponds to a penalty function on the function βk that regulates the lack
of smoothness of the estimated curve. Assuming that the design points t0

k belong to the
compact set [ak, bk] and that the functions βk’s belongs to the Sobolev function space [27]

W[ak ,bk ]
=
{

βk : βk and β
′
k are absolutely continuous on [ak, bk], and

∫ bk

ak

[β
′′
k(tk)]

2 dtk < ∞
}

,

Then one way to measure the roughness of the function βk over the interval [ak, bk]

is by their squared norm given by J(βk) = ‖βk‖2 =
∫ bk

ak
[β
′′
k(tk)]

2 dtk. Green and Silver-

man [15] showed that J(βk) = β>k Kkβk, where Kk is a rk × rk non-negative definite ma-
trix. Please note that both βk and Kk are evaluated at the values belonging to the set of
knots {t0

k1, t0
k2, . . . , t0

krk
}, for k ∈ {1, 2, . . . , s}, and therefore have finite dimensions. Tak-

ing λ∗k = λk/2, we can obtain the maximum penalized likelihood estimator (MPLE) of θ,
denoted by θ̂, maximizing

`p(θ, λ) = `(θ)−
s

∑
k=1

λk
2

β>k Kkβk, (3)

where λ = (λ1, . . . , λs)> denotes an s× 1 vector of smoothing parameters. Each λk ≥ 0
measures the “rate of exchange” between goodness-of-fit and variability of the function βk.
In this scenario, the estimators of βk’s result in a cubic spline that is completely determined
by the finite-dimensional set of knots {t0

k1, t0
k2, . . . , t0

krk
}.

3. Parameter Estimation and Inference

In this section, we focus on estimating the parameters of the model described in
Equation (1) and discuss aspects of statistical inference. We also provide a brief discussion
on calculating the effective degrees of freedom and selecting smoothing parameters. To
facilitate the parameter estimation process and associated inference, we have developed a
routine in the R-project (https://www.r-project.org/; accessed on 15 May 2023).

3.1. Penalized Score Vector

First, we make the assumption that the function `p(θ, λ) given in Equation (2) is
regular, meaning that it has first and second partial derivatives with respect to the elements
of the parameter vector θ. By performing partial derivative operations, we can express the
score function for θ in matrix form as follows:

U>p (θ) =
∂`p(θ)

∂θ
=
(

Uα>
p (θ) Uβ>1

p (θ) . . . Uβ>s
p (θ) Uφ>

p (θ)

)>
,

where Uα
p (θ) = W>Daz, Uβk

p (θ) = Ñ>k Daz − λkKkβk, for k ∈ {1, . . . , s}, and Uφ
p (θ) =

tr(Db), with Da = diag{a1, . . . , an}, Db = diag{b1, . . . , bn}, z = (z1, . . . , zn)>, zi =
vir(vi)/Qi

√
φ, bi = r(vi) φ−3/2vi[log(yi)− log(Qi)]/2− 1/2φ and ai = 1/h′(Qi), being

r(vi) = −2g′(v2
i )/g(v2

i ). Please note that g′ represents the derivative of the function g.

3.2. Penalized Hessian Matrix

To obtain the penalized Hessian matrix, we need to compute the second derivate of
`p(θ, λ) with respect to each element of θ, i.e., ∂2`p(θ, λ)/∂θj∗∂θl∗ for j∗, l∗ ∈ {1, . . . , p∗}
and p∗ = 2 + p + ∑s

k=1 rk. After performing some algebraic manipulations, we obtain the
penalized Hessian matrix in the following form:

https://www.r-project.org/
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L̈p(θ) =
∂2`p(θ, λ)

∂θ∂θ>
=



L̈αα
p L̈αβ1

p · · · L̈αβs
p L̈αφ

p

L̈αβ>1
p L̈β1 β1

p · · · L̈β1 βs
p L̈β1φ

p
...

...
. . .

...
...

L̈αβ>s
p L̈β1 β>s

p · · · L̈βs β>s
p L̈βsφ

p

L̈αφ>

p L̈β1φ>

p · · · L̈βsφ>

p L̈φφ
p


, (4)

with L̈αα
p = W>DcW , L̈αβk

p = W>DcÑk, L̈αφ
p = W>Dam, L̈βkφ

p = Ñ>k Dam, for

k ∈ {1, . . . , s}, L̈φφ
p = tr(Dd), and

L̈
βk β>k′
p =

{
Ñ>k DcÑk − λkKk, k = k′

Ñ>k DcÑk′ , k 6= k′

where the matrices Dc = diag{c1, . . . , cn}, Da = diag{a1, . . . , an} and vector m = (m1, . . . ,
mn)>, with ci, ai and mi defined in Appendix A. The Hessian matrix presented in this
section will be used in the construction of the normal curvature for the local influence
method developed in Section 4.

3.3. Penalized Fisher Information Matrix

By taking the expectation of the matrix −L̈p(θ) given in Equation (4), we derive the
p∗ × p∗ penalized expected information matrix given by

Jp(θ) =



Jαα
p Jαβ1

p · · · Jαβs
p Jαφ

p

Jαβ>1
p Jβ1 β1

p · · · Jβ1 βs
p Jβ1φ

p
...

...
. . .

...
...

Jαβ>s
p Jβ1 β>s

p · · · Jβs β>s
p Jβsφ

p

Jαφ>

p Jβ1φ>

p · · · Jβsφ>

p Jφφ
p


, (5)

whose elements can be expressed as Jαα
p = W>DvW , Jαβk

p = W>DvÑk, Jαφ
p = W>Das,

Jβkφ
p = Ñ>k Das, for k ∈ {1, . . . , s}, Jφφ

p = tr(Du), and

J
βk β>k′
p =

{
Ñ>k DvÑk + λkKk, k = k′

Ñ>k DvÑk′ , k 6= k′,

where Dv = diag{e1, . . . , en}, Du = diag{u1, . . . , un} and s = (s1, . . . , sn)>, being
ei = E[−ci], si = E[−mi] and ui = E[−di], with E[·] denoting the expected value op-
erator. This matrix will be utilized to approximate the variance-covariance matrix of θ̂, as
discussed in Section 3.5.

3.4. Iterative Process

The MPLE of θ is obtained by maximizing the penalized log-likelihood function
presented in Equation (3). Since the resulting estimation equation Up(θ) = 0 is nonlinear,
an iterative process is necessary to solve it. In this regard, we propose to employ the Fisher
scoring algorithm, which updates θ using the matrix equation

Jp(θ)
[
θ(m+1) − θ(m)

]
= Up(θ)

(m), m = 0, 1, . . . . (6)

3.4.1. φ Unknown

After some algebraic operations, we obtain the following expressions for the iterative
solutions for the case where φ unknown:
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α(m+1) = (W>D(m)
v W)−1W>D(m)

v

[
ψ
(m)
α − D(m)

v,a sΦ
(m+1,m)
φ −

s

∑
k=1

ÑkΦ
(m+1,m)
βk

]
,

β
(m+1)
` = (Ñ>D(m)

v Ñ + λkK)−1Ñ>D(m)
v

[
ψ
(m)
β`
− D(m)

v,a sΦ
(m+1,m)
φ −WΦ

(m+1,m)
α

−
s

∑
k=1,k 6=`

ÑkΦ
(m+1,m)
βk

]
, ` ∈ {1, . . . , s} and

φ(m+1) = tr−1(D(m)
u

[
tr(D(m)

b ) + tr(D(m)
u )φ(m) − s>D(m)

a WΦ
(m+1,m)
α

−s>D(m)
a

s

∑
k=1

ÑkΦ
(m+1,m)
βk

]
,

where ψ
(m)
α = D(m)

v,a z(m)+Wα(m) and ψ
(m)
β`

= D(m)
v,a z(m)+ Ñ`β

(m)
` , with D(m)

v,a = D(m)−1

v D(m)
a .

3.4.2. φ Known

When φ is known, it is possible to obtain simplified expressions for the iterative
solutions of α(m+1) and β

(m+1)
` . In this case, we have that

α(m+1) = (W>D(m)
v W)−1W>D(m)

v

[
r(m)

v,a −
s

∑
k=1

Ñkβ
(m+1)
k

]
, and

β
(m+1)
` = (Ñ>D(m)

v Ñ + λkK)−1Ñ>D(m)
v

[
r(m)

v,a −Wα(m+1) −
s

∑
k=1,k 6=`

Ñkβ
(m+1)
k

]
,

for ` ∈ {1, . . . , s}, where r(m)
v,a = D(m)

(v,a)z
(m) + η(m), with η(m) = Wα(m) + ∑s

k=1 Ñkβ
(m)
k . It is

possible to prove that these expressions correspond to the weighted back-fitting (Gauss-
Seidel) iterations considering r(m)

v,a as dependent modified variable and Dv as a matrix of
weights that changes with each iteration of the process; see, for instance [28]. A general
expression for these iterations is as follows:

β
(m+1)
` = S(m)

`

[
r(m)

v,a −
s

∑
k=0,k 6=`

Ñkβ
(m+1)
k

]
, ` ∈ {1, . . . , s} , (7)

where r(m)
v,a = D(m)

v,a z(m) + η(m), with η(m) = ∑s
k=0 Ñkβ

(m)
k , Ñ0 = W , β0 = α, S(m)

0 =

(Ñ>0 D(m)
v Ñ0)

−1Ñ>0 D(m)
v and S(m)

k = (Ñ>k D(m)
v Ñk + λkKk)

−1Ñ>k D(m)
v . A discussion about

the consistency of the system of Equations (6) and the convergence of the back-fitting
algorithm in (7) is given, for example, in [29].

3.5. Approximate Standard Errors

In this work, we propose to approximate the variance-covariance matrix of θ̂ using
the inverse of the penalized Fisher information matrix defined in Equation (5). In effect, an
estimation of the variance-covariance matrix of θ̂ is given by

Ĉov(θ̂) ≈ Jp(θ̂)
−1 . (8)

Following [14], we can consider an approximate pointwise standard error band (SEB)
for nonparametric functions β′ks to evaluate the accuracy of the estimators β̂′ks for different
locations within the range of interest. In our case, these approximate pointwise SEBs are
provided by

SEBapprox

(
βk

(
t0
l

))
= β̂k

(
t0
l

)
± 2
√

V̂ar
(

β̂k
(
t0
l
))

,
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where Var
(

β̂k(tl)
)

is the l-th principal diagonal element of the matrix provided in Equation (8)

for l ∈ {1, 2, . . . , rk}. Please note that t0
l corresponds to the knots associated with each

variable with a nonparametric contribution to the model.

3.6. Effective Degrees of Freedom and λk’s

The calculation of the degrees of freedom associated with the parametric and non-pa-
rametric contributions is based on the iterative process used in the parameters estimation
of the proposed model. Assuming φ fixed, we have from the convergence of the iterative
process that

β̂` = (Ñ>D̂vÑ + λkK)−1Ñ>D̂v r̂∗v,a, ` ∈ {1, . . . , s},

where r̂∗v,a = r̂v,a − ∑s
k=0,k 6=` Ñk β̂k, r̂v,a = D̂(a,v)ẑ + η̂, η̂ = W α̂ + ∑s

k=1 Ñk β̂k and
ẑ = (ẑ1, . . . , ẑn)>, with zi (i ∈ {1, 2, . . . , n}) defined in Section 3.1. Note that r∗v,a can
be interpreted as a modified variable and Dv a weight matrix that is updated at each
stage of the iterative process. From this, we define the effective degrees of freedom (edf)
associated with the smooth functions as (see, for instance [14])

edf(λk) = tr
{

Ñ(Ñ>D̂vÑ + λkK)−1Ñ>D̂v
}

, ` ∈ {1, . . . , s} .

Following Ibacache-Pulgar and Reyes [23], we choose the optimal smoothing parame-
ter for each smooth function by specifying an appropriate edf(λk) value. Another way to
select the λk’s is to consider the Akaike Information Criterion (AIC). The idea is to minimize
a function with respect to λ formulated as follows:

AIC(λ) = −2`p(θ̂, λ) + 2(2 + p + edf(λ)), (9)

where `p(θ̂, λ) denotes the penalized log-likelihood function evaluated at θ̂ for a fixed λ
and edf(λ) = ∑s

k=1 edf(λk) denoting the number of effective parameters involved in the
modeling of the smooth functions. A grid for different values of λ and its corresponding
AIC(λ) are helpful to choose the suitable smoothing parameters. The criteria defined in
Equation (9) can also be used to select the best model within the class of varying coefficients
quantile regression models based on the log-symmetric family.

4. Diagnostic Analysis

In this section, we extend the local influence method for the model given in Equation (1)
and derive the generalized leverage matrix, which allows us to assess the influence of each
observed value of the response variable yi on its corresponding predicted value ŷi.

4.1. Local Influence Analysis

Let ω = (ω1, . . . , ωn)> be an n× 1 vector of perturbations restricted to some open
subset Ω ∈ Rn and `p(θ, λ |ω) be the logarithm of the perturbed penalized likelihood
function. It is assumed that exists ω0 ∈ Ω, a vector of non-perturbation, such that
`p(θ, λ|ω0) = `p(θ, λ). To assess the influence of small perturbations on the MPL es-
timate θ̂, we can consider the displacement of the penalized likelihood, which is given by
LD(ω) = 2

(
`p(θ̂, λ)− `p(θ̂ω, λ)

)
, where θ̂ω is the MPL estimate under `p(θ, λ |ω). The

measure LD(ω) is helpful for assessing the distance between θ̂ and θ̂ω . Cook [30] suggested
studying the local behavior of LD(ω) around ω0. The procedure involves selecting a unit
direction d ∈ Ω with |d| = 1 and plotting LD(ω0 + ad) against a ∈ R. This plot, known as
a lifted line, can be characterized by considering the normal curvature Cd(θ) around a = 0.
To determine the direction d = dmax that corresponds to the largest curvature Cdmax(θ),
one can examine the index plot of dmax. This plot helps identify cases that, under small
perturbations, may have a significant potential influence on LD(ω). According to Cook [30],
the normal curvature at the unit direction d can be expressed as

Cd(θ) = −2
(
d>∆>p L̈−1

p ∆pd
)
,
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with L̈p(θ) = ∂2`p(θ, λ)/∂θ∂θ> and ∆p = ∂2`p(θ, λ |ω)/∂θ∂ω> evaluated at θ = θ̂ and
ω = ω0. ∆p is called a penalized perturbation matrix. Observe that Cd(θ) denotes the local
influence on the estimate θ̂ after perturbing the model or data. Escobar and Meeker [31]
proposed to study the normal curvature at the direction d = ei, where ei is an n × 1
vector with a one at the ith position and zeros at the remaining positions. Thus, the normal
curvature, called the total local influence of the ith case, assumes the form Cei (θ) = 2|cii|, for
i ∈ {1, . . . , n}, where cii is the ith principal diagonal element of the matrix C = ∆>p L̈−1

p ∆p.
Next, we present the perturbed penalized log-likelihood function for four perturba-

tion schemes, namely case weight, response variable, power parameter, and explanatory
variable perturbation. The matrix ∆p for each case is presented in Appendix B.

1. The case-weight perturbation scheme considers the perturbed penalized log-likelihood
function as

`p(θ, λ |ω) =
n

∑
i=1

ωi`i(Qi, φ; yi)−
s

∑
k=1

λk
2

β>k Kkβk,

where ω = (ω1, . . . , ωn)> is the vector of weights, with 0 ≤ ωi ≤ 1 for i ∈ {1, . . . , n}.
2. Regarding the response variable perturbation scheme, we consider an additive type

of perturbation weighted by a scaling factor on the ith response variable, i.e., yi(ωi) =
yi + ωisYi , where sYi is a scale factor that can be the sample standard deviation of Yi
and ωi ∈ R, for i ∈ {1, . . . , n}. Then, the perturbed penalized log-likelihood function
is written as

`p(θ, λ |ω) =
n

∑
i=1

`i(Qi, φ; yi(ωi))−
s

∑
k=1

λk
2

β>k Kkβk.

3. Initially, the model given in Equation (1) assumes that the power parameter is constant
across observations. However, we can introduce a perturbation in the power param-
eter such that it is not constant between the observations, i.e., Yi ∼ QLS

(
Qi, φi, g

)
,

where φi = φ/ωi, with ωi > 0 for i ∈ {1, . . . , n}. Under this perturbation scheme,
the perturbed penalized log-likelihood function is constructed from the expression
defined in Equation (3) with φ being replaced by φi.

4. The last perturbation scheme considered in this work consists of incorporating an
additive type perturbation on one of the covariates X1, . . . , Xs, say Xl , given by
xli(ωi) = xli + ωisxl , where sxl is a scale factor that can be the sample standard
deviation of Xl and ωi ∈ R, for i ∈ {1, . . . , n}. In this case, the perturbed penalized
log-likelihood function can be expressed as

`p(θ, λ |ω) =
n

∑
i=1

`i(Qi(ωi), φ; yi)−
s

∑
k=1

λk
2

β>k Kkβk,

where Qi(ωi) is as given in Equation (1) replacing wli for wli(ωi).

4.2. Generalized Leverage Matrix

The generalized leverage (GL) measures the influence of the observed value of the
response variable yi on its corresponding predicted value ŷi based on the model given
in Equation (1). Following the approach proposed by Wei et al. [32], the GL for θ̂ can be
computed using the lemma they provided. The expression for the GL is given by ∂ŷ/∂y> =

Hθ(−L̈p(θ))−1 ῭
θy

∣∣∣
θ=θ̂

, where Hθ = ∂µ/∂θ>, L̈p(θ) = ∂2`p(θ)/∂θ∂θ>, ῭
θy = ∂2`p(θ)/

∂θ∂y>, y = (y1, . . . , yn)> and µ = (µ1, . . . , µn)>, with µi being the mean of the Yi. Using
the chain rule, we have

∂ŷ
∂y>

=
∂µ

∂Q>
∂Q
∂θ>

(−L̈p(θ))
−1 ῭

θy

∣∣∣
θ=θ̂

.
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Because of µ = log(λ) and Q = λ exp(
√

φ zq), where zq is the q-quantile of the distribu-
tion S(0, 1, g) [7], we have µ = log(Q)−√φzq. Therefore, ∂µ/∂Q> = diag{1/Q1, . . . , 1/Qn}.
Also, we can obtain the n× p∗ matrix

∂Q
∂θ>

=

(
∂Q
∂α>

,
∂Q
∂β>1

, . . . ,
∂Q
∂β>s

,
∂Q
∂φ

)
=
(

DaW DaÑ1 · · · DaÑs 0n
)
,

where 0n is the n× 1 null vector and ῭
θy =

(
DψDaW DψDaÑ1 · · · DψDaÑs τ

)
is a n× p∗

matrix. Please note that the computation of the matrix −L̈p(θ) relies on the availability of
the penalized Hessian matrix given in Equation (4). By utilizing this penalized Hessian
matrix, we have all the necessary elements to calculate the GL matrix ∂ŷ/∂y>.

5. Real Data Analysis

In this section, we apply the model proposed in Section 2 to real pollution data from
the Padre Las Casas Air Quality Monitoring Station (AQMS). The AQMS is situated in the
commune of Padre Las Casas in the Araucanía region of southern Chile, approximately
695 km away from Santiago, the capital city of Chile. Padre Las Casas has gained notoriety
for its elevated levels of pollution, particularly concerning PM2.5. It is recognized as one of
the most heavily polluted cities in Latin America and the Caribbean, as indicated by the
World Air Quality Index Ranking (https://bit.ly/3MXVP38; accessed on 20 August 2023).
The average concentration of PM2.5 in Padre Las Casas exceeds the limits set by national
and international regulations [22], highlighting the significance of analyzing this type of
data and developing models that accurately capture its behavior.

By studying the pollution data from the Padre Las Casas AQMS, we aim to gain
insights into the underlying patterns and factors contributing to pollution levels. The
proposed model will help us to describe and understand the behavior of pollution in this
area, providing valuable information for monitoring and management purposes.

5.1. Exploratory Data Analysis

The dataset used in this analysis consists of hourly (h) average values for the months
of June and July 2020, acquired from the Chilean Ministry of Environment (MMA) website
(http://sinca.mma.gob.cl; accessed on 11 January 2022). The dataset includes measure-
ments of various variables related to air pollution and meteorological conditions in Padre
Las Casas. The considered random variables in this dataset are: (i) Median of PM2.5
concentrations: this variable represents the median concentration of fine particulate matter
with a diameter less than 2.5 micrometers in micrograms per normal cubic meter (µg/Nm3).
PM2.5 is a commonly monitored pollutant and is known to have detrimental effects on
human health; (ii) Median of PM10 concentrations: this variable represents the median
concentration of particulate matter with a diameter smaller than 10 micrometers (PM10) in
µg/Nm3. PM10 includes both fine and coarse particles and is also considered a significant
air pollutant; (iii) Ambient temperature (TEMP): this variable represents the temperature
at the monitoring station in degrees Celsius. Temperature is an important meteorological
parameter that can influence air quality and pollutant levels; (iv) Wind speed (WIND): this
variable represents the speed of wind at the monitoring station in meters per second. Wind
speed plays a crucial role in the dispersion and transport of pollutants in the atmosphere;
(v) Relative air humidity (HR): this variable represents the percentage of moisture in the air at
the AQMS. Humidity can affect atmospheric stability and the formation of certain pollutants.
By analyzing these variables, we can gain insights into the relationship between air pollution
levels and meteorological conditions in Padre Las Casas during the specified period.

In the exploratory data analysis (EDA) of the median PM2.5 concentrations recorded
by the Padre Las Casas AQMS during June–July 2020, Figure 1a shows a histogram with
density kernel estimation. This plot provides an overview of the distribution of the data,
and permits us to visualize the shape of the empirical distribution. From the histogram, it
appears that the distribution of the PM2.5 concentrations has a positive skewness, indicating

https://bit.ly/3MXVP38
http://sinca.mma.gob.cl
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that most of the observations have lower values with a few extremely high values. Figure 1b
presents a boxplot for the median PM2.5 concentrations. From the boxplot, we can see
that there are some observations labeled as atypical data (#1, #3, #4, #14, #36, #45) that
lie outside the whiskers. These observations deviate from the overall pattern of the data
and may represent extreme or unusual values. This suggests that there may be some
extreme pollution events or unusual conditions during the observed period. Based on
the positive skewness of the empirical distribution and the presence of atypical data
points, it is reasonable to consider using log-symmetrical distributions to model the PM2.5
concentrations. Log-symmetrical distributions can better capture the positive skewness
and accommodate the potential presence of extreme values in the data.

PM2.5

D
e

n
s
it
y

0 20 40 60 80 100 120 140

0
.0

0
0

0
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1
0

0
.0

2
0

(a) (b)

Figure 1. Histogram with density kernel estimation (solid black line) (a) and boxplot (b) for median
PM2.5 concentrations recorded by Padre Las Casas AQMS during June–July 2020.

Table 1 provides descriptive statistics for the median PM2.5 concentrations recorded
by the Padre Las Casas AQMS during June-July 2020. These statistics include measures of
central tendency (mean, median), dispersion (range, standard deviation –SD–), as well as
coefficients of skewness (CS) and kurtosis (CK). The descriptive statistics reveal that the
median PM2.5 concentrations have a mean of 43.4 µg/Nm3 and a median of 36.0 µg/Nm3.
The SD is relatively high, with a value of 26.0 µg/Nm3, indicating substantial variability in
the data. The CS is 1.3, indicating a positive skewness and confirming the observation from
the histogram in Figure 1a. The positive skewness suggests that most of the observations
have lower values, while a few extremely high values contribute to the right tail of the
distribution. The CK is 0.8, which indicates a moderately peaked distribution compared
to a normal distribution. Furthermore, as mentioned in the text, a significant quantity of
levels that surpass the recommended Chilean thresholds for PM2.5, set at 50 µg/Nm3. This
suggests that the air pollution level in Padre Las Casas is dangerous from a toxicological
perspective, posing potential health risks for the inhabitants of this commune in southern
Chile. Overall, the descriptive statistics and Figure 1a,b provide evidence of the high
pollution levels and the need for modeling approaches that can adequately capture the
characteristics of the PM2.5 concentrations in this region.

Table 1. Descriptive statistics for median PM2.5 concentrations recorded by Padre Las Casas AQMS
during June–July 2020.

Variable n Min Max Range Mean Median SD CS CK

PM2.5 61 15 121.5 106.5 43.4 36.0 26.0 1.3 0.8

Figure 2 shows a correlation matrix for PM2.5, PM10, TEMP, WIND, and HR. From
this figure, we detect: (i) a high positive association between PM2.5 and PM10 (Pearson
coefficient of correlation equal to 0.99); (ii) medium negative association between PM2.5
and TEMP and WIND (Pearson coefficient of correlation equal to −0.70); (iii) low positive
association between PM2.5 and HR (Pearson coefficient of correlation equal to 0.38). In
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Figure 3, scatter plots depicting the explanatory variables, response variable, and potential
interactions among the explanatory variables are presented. In Figure 3a, note that the
relationship between PM2.5 and PM10 is linear, while in Figure 3b, the relationship between
PM2.5 and WIND is not linear. Furthermore, Figure 3c,d imply that the explanatory
variables TEMP and HR may be engaging with the WIND variable in a nonlinear manner.
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Figure 2. Correlation matrix displaying the respective Pearson correlation coefficient for the specified
explanatory and response variables.
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Figure 3. Scatter plots for median PM2.5 vs. PM10 concentrations (a); median PM2.5 vs. WIND (b);
median PM2.5 vs. HR*WIND (c); and, median PM2.5 vs. TEMP*WIND (d) recorded by Padre Las
Casas AQMS during June–July 2020.
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5.2. Parameter Estimation

Based on the EDA and the observed relationships between the median PM2.5 con-
centration and the variables as PM10, WIND, TEMP, and HR, we suggest the following
varying-coefficients quantile regression models to capture the trends:√

Qi = w>i α + x1iβ1(ti) + x2iβ2(ti), i ∈ {1, 2, . . . , 61} (10)

where yi ∼ QLS(Qi, φ, g) with Student-t and normal PDF generator g, β represents the
vector of regression coefficients, while w>i = (1, w1i)

> with w1i denoting the values of the
parametric covariate for the ith observation (PM10). The coefficients βk(for k ∈ {1, 2})
correspond to unknown, smooth, and arbitrary functions of the explanatory variable ti
(WIND), which are linked to the explanatory variables x1i (TEMP) and x2i (HR) from the
ith case. These varying-coefficients quantile regression models allow for a more flexi-
ble and comprehensive characterization of the relationships between the median PM2.5
concentration and the other variables, considering potential variations across quantiles.

Table 2 presents the MPL estimates for the model parameters, their approximate stan-
dard errors (SEs), p-values obtained from a z-test, the AIC, selected smoothing parameters,
and the degrees of freedom df(·) for the models defined by Equation (10). The best values
of λ1 and λ2 were selected by considering a grid of values and choosing those that yielded
a range of df(λ1) and df(λ2) within the range of (4, 12), while minimizing the AIC value.

When comparing the results reported in Table 2, we observe that the estimates for α0
and α1 show similarity between both models, but the log-t model has smaller estimated
standard errors (SEs) for these parameters compared to the log-normal model. Additionally,
the estimated value of φ in the log-t model is smaller than that in the log-normal model. It
is worth noting that based on the (AIC), the log-t model is preferred as it yields a lower
AIC value.

Table 2. MPL estimates, SEs, p-values, AIC and selected smoothing parameters and df(·) of the
indicated model.

Model Parameter Estimate SE p-Value AIC

Log-normal α0 3.072 2.2 × 10−5 <0.001 374.1
α1 0.068 1.1 × 10−3 <0.001
φ 0.013 4.1 × 10−6

λ1 4034.3
λ2 2.2 × 105

df(λ1) 4.001
df(λ2) 4.466

Log-t(ν = 4) α0 3.052 1.7 × 10−5 <0.001 361.3
α1 0.070 8.3 × 10−4 <0.001
φ 0.007 4.9 × 10−6

λ1 4034.3
λ2 5.9 × 105

df(λ1) 4.556
df(λ2) 4.198

To assess the distributional assumption made in the model, we examine the goodness-
of-fit plots based on generalized Cox-Snell (GCS) residuals, as shown in Figure 4. Ad-
ditionally, we provide the p-values associated with the Kolmogorov–Smirnov (KS) test,
which are 0.73 for the log-normal model and 0.89 for the log-t(ν = 4) model. Based on the
goodness-of-fit plots, the KS test, and the AIC, we can conclude that the log-t(ν = 4) model
provides a better fit to the dataset. The log-t model captures the underlying distribution of
the data more accurately compared to the log-normal model, as indicated by the higher
p-value and better fit observed in the goodness-of-fit plots.
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Figure 4. Goodness-of-fit plots with simulated envelope for GCS residual under the indicated model
with the analyzed data set.

Figure 5 displays the plots of the partial residuals relative to the WIND covariate, with
the superimposed estimated smooth functions β1 (on the left) and β2 (on the right). The
behavior of the partial residuals (dots) in these plots appears reasonable, indicating that the
fit of the log-t(ν = 4) varying-coefficients quantile regression model to the pollution dataset
is adequate. The dots are closely aligned with the estimated curves, as expected, suggesting
that the model captures the relationship between the WIND covariate and the partial
residuals effectively. This agreement between the partial residuals and the estimated curves
supports the appropriateness of the log-t(ν = 4) varying-coefficients quantile regression
model for analyzing the pollution data.
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Figure 5. Plots of partial residuals in relation to the WIND covariate, with the estimated smooth
functions β1 (on the left) and β2 (on the right) superimposed.

5.3. Diagnostic Analysis

In this section, we investigate the potential influence of individual observations using
the local influence method for the selected varying-coefficients quantile regression model.
We consider four perturbation schemes: case-weight perturbation, response variable pertur-
bation, power parameter perturbation, and explanatory variable perturbation. Additionally,
we examine the GL to assess the influence of each observed value on its own predicted
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value. These analyses allow us to identify potentially influential cases and understand their
impact on the selected model. Details on the local influence method and the perturbation
schemes can be found in Section 4.2.

In Figure 6, we present index plots illustrating Ci(θ) as defined in Section 4.2 for α, β1,
β2 and φ under the case-weight perturbation (a,b,c,d), under response perturbation (e,f,g,h)
and perturbation on the power parameter (i,j,k,l) schemes. Also, Figure 7 showcases the
index plots of Ci(θ) when introducing perturbations in covariates X1 (a, b, c, d) and X2 (e, f,
g, h). Despite different observations being detected as potentially influential, it is worth
noting that there are four cases (#13, #18, #31, and #45) that consistently appear as potentially
influential across multiple perturbation schemes. These cases exhibit characteristics that
make them stand out and have a notable impact on the model results.

Figure 8 displays the GL plot, which assesses the influence of each observation on
its own predicted value. From this plot, we observe that cases #45, #36, #14, #1, #3, #4 are
potentially leverage points. These observations have response variable values that can
exert a significant influence on their own predicted values. It is worth noting that these
cases correspond to the outliers identified by the boxplot in Figure 1b. Their extreme values
contribute to their influential nature within the model.
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Figure 6. Case weight (a–d), response (e–h) and on the power parameter (i–l) perturbation for α, β1,
β2 and φ.
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It is interesting to observe that the cases identified as potentially influential in the
parametric component may not necessarily be detected in the nonparametric component,
and vice versa. This indicates that different aspects of the data and model may be driving
their influence in different ways. Additionally, the local influence analysis technique has
successfully detected some atypical cases that were previously identified as outliers in
Figure 1b. This reinforces the effectiveness of the local influence method in identifying
observations that have a considerable impact on the model.

In the sense of evaluating the impact of these observations in the selected model, the
subsets of cases {#13}, {#18}, {#31}, {#45}, {#13, #18}, {#13, #31}, {#13, #45}, {#18, #31}, {#18,
#45}, {#31, #45}, and {#13, #18, #31}, {#13, #18, #45}, {#18, #31, #45} and {#13, #18, #31, #45}
are removed and the model parameters are re-estimated. To determine the variation in
the estimates of model parameters, we use the value of the relative changes (RCs) for
each parameter. The RCs for each estimated parameter are calculated using the formula:
RCθ =

∣∣(θ̂j − θ̂j(i))/θ̂j
∣∣× 100%, where θ̂j represents the MPLE of θj, and θ̂j(i) represents

the MPLE of θj after removing the subset i of observations. Here, j = 1, 2, 3 with θ1 = α0,
θ2 = α1, and θ3 = φ.
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Figure 7. Perturbationin the covariate X1 (a–d) and X2 (e–h) scheme for α, β1, β2 and φ.
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Table 3 reports the values of RCs for the varying-coefficients quantile regression model
after removing the indicated sets of cases. In this table, the individual elimination of cases
#13 and #45 produces a RC in α0 and α1 of 5.1%, 4.7% and 5.3%, 5.6%, respectively, while
the elimination of case #18 produces an RC in φ of 5.5%. In addition, note that set of cases
{#13, #18} and {#13, #18, #31} produces the largest RCs in α0, α1 and φ.

During the analyzed period, it was observed that observation #45 had particularly high
concentrations of PM2.5 and PM10 compared to other observations. On the other hand,
observation purple #31 had a very low wind speed, close to the minimum recorded during
the entire period. These observations exhibit extreme values in their respective covariates.
When the sets of potentially influential cases {#13, #18, #31, #45} are excluded from the analysis,
it is observed that their removal results in notable alterations solely in the estimation of φ,
displaying a percentage change of 21.4%. This suggests that these observations have a notable
influence on the estimation of the dispersion parameter φ in the model.

Table 3. RC (in %) on the MPL estimate of αj and φ and respective p-values (in parenthesis) for
varying-coefficients quantile regression model after removing the indicated sets of cases.

Parameters Relative Changes
Removed Case α0 α1 φ RCα0 RCα1 RCφ

none 3.052 0.069 0.007
(<0.001) (<0.001)

{#13} 3.213 0.066 0.007 5.1% 4.7% 4.0%
(<0.001) (<0.001)

{#18} 2.961 0.072 0.006 3.0% 3.4% 5.5%
(<0.001) (<0.001)

{#31} 3.095 0.069 0.007 1.4% 1.1% 3.9%
(<0.001) (<0.001)

{#45} 2.891 0.073 0.006 5.3% 5.6% 4.0%
(<0.001) (<0.001)

{#13, #18} 3.415 0.065 0.006 11.9% 6.7% 18.0%
(<0.001) (<0.001)

{#13, #31} 3.223 0.066 0.006 5.6% 4.7% 9.4%
(<0.001) (<0.001)

{#13, #45} 3.093 0.069 0.006 1.4% 0.4% 13.0%
(<0.001) (<0.001)

{#18, #31} 3.011 0.071 0.006 1.3% 2.2% 9.5%
(<0.001) (<0.001)

{#18, #45} 2.901 0.073 0.006 4.9% 5.4% 10.9%
(<0.001) (<0.001)

{#13, #18, #31} 3.488 0.064 0.005 14.3% 7.8% 20.5%
(<0.001) (<0.001)

{#13, #18, #45} 3.005 0.071 0.006 1.5% 2.8% 17.4%
(<0.001) (<0.001)

{#18, #31, #45} 2.960 0.072 0.006 3.0% 4.0% 14.5%
(<0.001) (<0.001)

{#13, #18, #31, #45} 3.046 0.071 0.005 0.2% 1.9% 21.4%
(<0.001) (<0.001)

Finally, in Table 3, while certain RCs exhibit considerable values, there are no sub-
stantial alterations in inference, as evidenced by the diminutive p-values (less than 0.001)
associated with the parameter estimates. It is important to note that when observations de-
tected as influential in the diagnostic plots are eliminated, it can lead to significant changes
in the parameter estimates. This indicates that the well-known robustness properties of
maximum likelihood estimates from Student-t models may not necessarily apply to other
perturbation schemes. Therefore, it is crucial to conduct diagnostic examinations specific to
each case to properly assess the influence of observations and ensure the reliability of the
model estimates.
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6. Discussion, Conclusions and Future Research

In this work, we propose new varying-coefficients semiparametric quantile regression
models based on the family of log-symmetric distributions, following the approach of [5–7].
By reparametrizing the family of log-symmetric distributions using a quantile, we introduce
new quantile models that offer greater flexibility in modeling data compared to the model
proposed by Saulo et al. [7], as a nonparametric component has been added (Section 2). We
develop parameter estimation based on the penalized likelihood function and propose a
back-fitting iterative algorithm implemented in the R language (Section 3). Additionally,
we discuss diagnostic techniques for detecting potentially influential local observations
and identifying leverage points (Section 4). Please note that the local influence analysis re-
inforces the need for diagnostic evaluation. It has been observed that parameter estimators
in this class of models tend to be sensitive to the presence of atypical or influential data
points. To the best of our knowledge, techniques for detecting leverage points have not
been developed for semiparametric quantile regression models.

We illustrate the methodology developed in this work using data associated with
PM2.5 pollution in Padre Las Casas city for predicting the daily median of 1-h average
values. We propose and fit two models (log-normal and log-t(ν = 4)) and evaluate them
using CGS residuals and their AIC values. The plots of CGS residuals and partial residuals
show a good fit of the selected model (log-t(ν = 4)) to the data. We also apply our diagnostic
techniques to detect potentially influential cases and leverage points (Section 4.2); however,
no inferential changes are observed in the parameter estimates.

Thus, among the accomplishments of this work, we can highlight: (i) The development
of novel quantile regression models suitable for modeling data following asymmetric
distributions, which can be added into the existing toolkit for quantile modeling; (ii) The
expansion of our model beyond the one presented in [7], incorporating nonlinear structures
arising from interaction effects. (iii) The derivation of analytical tools for identifying
potentially influential observations and leverage points.

One limitation of our study is that the proposed models may not be suitable for
describing other types of data, such as temporally or spatially correlated data, as well as
censored data. In such cases, the utilization of multivariate distributions for the response
variable, reparametrized by quantiles of marginal distributions, may be necessary. Another
area for future investigation is conducting a simulation study to evaluate the distributional
behavior of the residuals used in this study and exploring alternative types of residuals
appropriate for this type of regression. This aspect has received limited attention in the
existing literature. Furthermore, we aim to establish inferences about the model parameters
through asymptotic analysis of specific estimators. Lastly, we intend to compare our model
with others, including models proposed by [7,12]. These are additional areas that remain
unexplored, and we plan to address these open questions in our future research.
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Appendix A

Here, we present the quantities ci, mi, and di, involved in the definition of the Penalized
Hessian matrix presented in Section 3.2. In fact, we have

ci =
1√
φ

[
− r(vi)

Q2
i
√

φ
+

vi
Qi

∂ r(vi)

∂Qi
− vir(vi)

Q2
i

]
a2

i − zi ai
h′′(Qi)

(h′(Qi))2 ,

mi =
1

Qi

[
φ−2

2
(log(Qi)− log(yi)) r(vi) +

∂r(vi)

∂φ
vi φ−1/2 − 1

2
vir(vi) φ−3/2

]
, and

di =
1
2
[log(yi)− log(Qi)]φ

−3/2
[

vi
∂ r(vi)

∂φ
− 3

2
vi r(vi)φ

−1 − 1
2

r(vi)(log(yi)

− log(Qi))φ
−3/2

]
+

1
2φ2 .

In addition, the expression ∂ r(vi)/∂Qi and ∂ r(vi)/∂φ are, respectively,

∂ r(vi)

∂Qi
= 4

[
g′′(v2

i )g(v2
i )− (g′(v2

i ))
2

(g(v2
i ))

2

]
vi

Qi
√

φ
, and

∂ r(vi)

∂φ
= 2

[
g′′(v2

i )g(v2
i )− (g′(v2

i ))
2

(g(v2
i ))

2

]
viφ
−3/2[log(yi)− log(Qi)].

Appendix B

Here we present the matrix ∆p for four perturbation schemes, namely case weight,
response variable, power parameter, and explanatory variable perturbation. In general,
this matrix is defined as

∆p =
(

∆>α ∆>β1
. . . ∆>βs

∆>φ
)>

.

Appendix B.1. Case-Weight Perturbation

Here, the elements of the matrix ∆p are given by

∆α = W>D̂aD̂z,

∆βk = Ñ>k D̂aD̂z, for k ∈ {1, . . . , s},

∆φ = b̂,

with D̂a, D̂z and b̂ correspond to Da, Dz and b = (b1, . . . , bn)> evaluated at θ = θ̂ and
ω0 = (1, . . . , 1)>, respectively.

Appendix B.2. Response Variable Perturbation

Under this perturbation schemes, the elements of the matrix ∆p are given by
∆α = W>D̂aD̂ψD̂ϑ, ∆βk = Ñ>k D̂aD̂ψD̂ϑ, for k ∈ {1, . . . , s}, ∆φ = τ̂>Dϑ, with
D̂ϑ = diag{ϑ̂1, . . . , ϑ̂n}, D̂ψ = diag{ψ̂1, . . . , ψ̂n}, and τ̂ = (τ̂1, . . . , τ̂n)>, with

ϑ̂i = sYi ,

ψ̂i =
1

φ̂ Q̂i yi

[
r(v̂i) + v̂i r′(v̂i)

]
,

τ̂i = − φ̂−3/2

2

[[
vi r′(v̂i) + r(v̂i)

][ log(yi)− log(Q̂i)

yi

√
φ̂

]
+

r(v̂i) v̂i
yi

]
, i ∈ {1, . . . , n},

and r′(v̂i) = dr(v̂i)/dv̂i. In this case, v̂i, Q̂i and φ̂ are evaluated at θ = θ̂ and ω = (0, . . . , 0)>.
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Appendix B.3. Power Parameter Perturbation

Considering the power parameter perturbation, the elements of the matrix ∆p are
given by ∆βk = Ñ>k D̂aD̂v , for k ∈ {1, . . . , s}, ∆φ = ϕ̂>, where D̂v = diag{v̂1, . . . , v̂n} and
ϕ = (ϕ̂1, . . . , ϕ̂n)>, with vi = −φ̂ m̂i and ϕ̂i = −φ̂ d̂i, for i ∈ {1, . . . , n}. Here, m̂i and d̂i
correspond to mi and di evaluated at θ = θ̂ and ω0 = (1, . . . , 1)>, respectively.

Appendix B.4. Explanatory Variable Perturbation

In this case, the elements of the matrix ∆p can be expressed as follows:

(i) for l = k,

∆α = W>(D̂a′ D̂z + D̂aD̂c
)

D̂a sXl D̂Ñl fl
,

∆βl = Ñl D̂aD̂zsXl + Ñ>l D̂aD̂Ñl fl
sXl

(
D̂a′ D̂z + D̂c

)
− λlKl β̂l , for k ∈ {1, . . . , s},

∆φ = m̂> D̂aD̂Ñl fl
sXl ;

(ii) for l 6= k,

∆α = W>(D̂a′ D̂z + D̂aD̂c
)

D̂a sXl D̂Ñl · fl
,

∆βl = Ñ>1 D̂aD̂Ñl βl
sXl

(
D̂a′ D̂z + D̂c

)
− λ1K1β̂1, for k ∈ {1, . . . , s},

∆φ = m̂> D̂aD̂Ñl βl
sXl .

where Da′ = diag{a′1, . . . , a′n}, with a′i = dai/dQi, and DÑl βl
is the diagonalization of the

vector Ñl βl . Here, ω0 = (0, . . . , 0)T corresponds to the vector of no perturbation.
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