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1. Introduction

Nonlinear fractional systems are a rapidly growing field of research, motivated by
the desire to use their unique properties to solve real-world problems. These systems are
ubiquitous in nature, from the viscoelastic behavior of polymers to the anomalous diffusion
of particles in fluids. Fractional calculus provides a powerful framework for modeling and
understanding these complex systems [1–3]. Recent advances in fractional calculus (FC)
have led to the development of new theories and models with far-reaching implications in
diverse scientific disciplines. In biomathematics, fractional calculus is used to model the
dynamics of populations, the spread of diseases, and the transport of nutrients through
biological tissues [4]. In viscoelasticity, fractional calculus is used to model the behavior of
materials such as polymers and rubber, which exhibit both elastic and viscous properties [5].
In non-Newtonian fluid mechanics, fractional calculus is used to model the behavior of
fluids that do not obey Newton’s law of viscosity, such as blood and polymers [6]. In the
characterization of anomalous diffusion, fractional calculus is used to model the transport
of particles in fluids that do not obey the classical diffusion equation, such as proteins in
cells and pollutants in the environment [7].

The development of new fractional calculus-based technologies has the potential to
revolutionize many aspects of our lives. For example, fractional calculus could be used to
design new materials with improved properties, develop more efficient control systems, and
create new diagnostic tools and treatments for diseases [8]. Here are some specific examples
of how fractional calculus is being used to solve real-world problems. Bioengineering:
Fractional calculus is used to model the dynamics of complex biological systems such as
the immune system and the brain. This knowledge can be used to develop new diagnostic
tools and treatments for diseases [9,10]. Materials science: Fractional calculus is used to
design new materials with improved properties, such as polymers that are stronger and
more durable, and rubbers that are more elastic and less prone to fatigue [11,12]. Control
engineering: Fractional calculus is used to develop more efficient control systems for a
variety of applications, including robotics, aircraft, and power plants [13,14]. Fractional
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calculus is a powerful tool with the potential to revolutionize many different fields. As
research in this area continues to grow, we can expect to see even more innovative and
groundbreaking applications of fractional calculus in the years to come.

The study of positive solutions of fractional order boundary value problems (FBVPs) is
a rapidly growing field of research, and new results are being developed all the time [15–27].
This research has important applications in a variety of fields, including biology, physics,
engineering, and finance. For example, positive solutions of FBVPs can be used to model
the dynamics of populations of cells or bacteria [9], the transport of heat or diffusion of
particles in a medium [11], the design of control systems [13], and the pricing of options [14].
Recently, Samadi et al. [28] studied the following system of nonlinear differential equations
consisting of the Caputo fractional order derivatives of the form

CDρ1
(
φp1

(CDµ1 σ1(ω)
))

= κ1(ω, σ1(ω), σ2(ω)), ω ∈ [c1, d1],
CDρ2

(
φp2

(CDµ2 σ2(ω)
))

= κ2(ω, σ1(ω), σ2(ω)), ω ∈ [c1, d1],

σ1(c1) =
CDµ1 σ1(c1) = 0, σ1(d1) =

m

∑
i=1

λiσ2(ηi),

σ2(c1) =
CDµ2 σ2(c1) = 0, σ2(d1) =

m

∑
i=1

λiσ1(ηi),

(1)

and established the existence and uniqueness of solutions to (1) by aplying fixed point
theory. Motivated by [28], in this study, our primary objective is to investigate the following
system of fractional differential equations that incorporate (r1, r2, r3)-Laplacian operators.
We aim to provide a comprehensive analysis of these equations, considering their potential
implications and applications:

−Dp1
h+
(
φr1

(
Dq1

h+v(ξ)
))

= f1(ξ, v(ξ), ϑ(ξ), ω(ξ)), ξ ∈ (h, k),
−Dp2

h+
(
φr2

(
Dq2

h+ϑ(ξ)
))

= f2(ξ, v(ξ), ϑ(ξ), ω(ξ)), ξ ∈ (h, k),
−Dp3

h+
(
φr3

(
Dq3

h+ω(ξ)
))

= f3(ξ, v(ξ), ϑ(ξ), ω(ξ)), ξ ∈ (h, k),
(2)

where h and k are real numbers with h < k. The operators Dh+qi,Dh+pi,Dh+αi correspond
to standard Riemann–Liouville fractional order derivatives. Additionally, qi ∈ (1, 2], pi,
αi ∈ (0, 1], and φri (ζ) = |ζ|ri−1ζ, with ri > 1, and φ−1

ri
= φϕi , where 1

ϕi
+ 1

ri
= 1 for

i = 1, 2, 3.
The boundary conditions for this system are given as

v(h) = 0, φr1

(
Dq1

h+v(h)
)
= 0, µ1 Dα1

h+v(k) = ψ1 + λ1 Dα1
h+v(η1),

ϑ(h) = 0, φr2

(
Dq2

h+ϑ(h)
)
= 0, µ2 Dα2

h+ϑ(k) = ψ2 + λ2 Dα2
h+ϑ(η2),

ω(h) = 0, φr3

(
Dq3

h+ω(h)
)
= 0, µ3 Dα3

h+ω(k) = ψ3 + λ3 Dα3
h+ω(η3).

(3)

Here, µi, λi are positive constants, and ηi are real numbers within the interval (h, k). It
is essential that the conditions µi(k− h)qi−αi−1 > λi(ηi − h)qi−αi−1 hold for all i = 1, 2, 3.

To ensure the existence of positive solutions to Systems (2) and (3), we make the
following assumptions:

(B1) The functions f1, f2, and f3 are continuous on the specified domains.
(B2) The parameters αi, qi, µi, λi, and ηi satisfy certain inequalities, ensuring the conditions

required for the existence of solutions.
(B3) We introduce positive constants Φ1, Φ2, Φ3, Θ1, Θ2, and Θ3 with the constraint that

1
Φ1

+ 1
Φ2

+ 1
Φ3

+ 1
Θ1

+ 1
Θ2

+ 1
Θ3
≤ 1.

The study of fractional differential equations is a rapidly expanding field with nu-
merous applications in various domains. Our paper provides essential conditions for
functions f1, f2, and f3, as well as intervals for parameters (ψ1, ψ2, ψ3), guaranteeing the
existence of at least one and three positive solutions for specified boundary value Problems
(2) and (3). A positive solution is defined as a triplet of functions (v(ξ), ϑ(ξ), ω(ξ)) in
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space (C[h, k], [0, ∞))3 that satisfies (2) and (3) with non-negative values for all ξ ∈ [h, k],
and where (v(ξ), ϑ(ξ), ω(ξ)) is not equal to (0, 0, 0). Tripled fractional order systems in
boundary value problems offer unique advantages in various scientific and engineering
applications. Here are some notable applications:

• Tripled fractional order systems can be used to design more sustainable and efficient
energy systems. For example, these models could be used to optimize the operation of
renewable energy sources such as solar and wind power, and to develop more efficient
storage and transmission technologies [29].

• These systems can also be used to develop new and improved diagnostic and therapeu-
tic tools for a variety of diseases. For example, fractional order models of physiological
systems could be used to design more effective drug delivery systems and to develop
new treatments for chronic diseases such as cancer and diabetes [30].

• In addition, tripled fractional order systems can be used to create new and innovative
materials with unique properties. For example, these models could be used to design
materials with improved thermal conductivity, electrical conductivity, and mechanical
strength [31].

Overall, we believe that tripled fractional order systems have the potential to make
a significant impact on a wide range of industries and scientific disciplines. For further
insights into the applications of fractional calculus in various fields and related literature
on positive solutions with different boundary conditions, we recommend reading the
referenced books [32–34] and exploring the cited papers [35–53].

This paper is organized into four sections. Section 2 introduces the foundational
concepts and key lemmas essential to our main results. Section 3 employs various method-
ological approaches, including cone expansion and compression of functional type, and
the Leggett–Williams fixed point theorem, to present our main results. Section 4 provides
two illustrative examples that demonstrate the application and relevance of our main
results. Finally, Section 5 provides concluding remarks and highlights potential directions
for future research.

2. Preliminaries

In this section, we provide some definitions and important lemmas related to fractional
calculus theory, which are readily available in the current literature [1,2].

Definition 1. For a function f given on the interval [h, k], the αth Riemann–Liouville fractional
order derivative of f is defined by

(
Dα

h+ f
)
(ξ) =

1
Γ(n− α)

( d
dξ

)α ∫ ξ

h
(ξ − s)n−α−1 f (s)ds;

here, n = [α] + 1 and [α] denote the integral part of α.

Definition 2. The functional (arbitrary) order integral of the function f ∈ L1([h, k], R+
)

of order
α ∈ R+ is defined by (

Iα
h+ f
)
(ξ) =

1
Γ(α)

∫ ξ

h
(ξ − s)α−1 f (s)ds,

where Γ is the Gamma function.

Lemma 1. Assume that Dσ
h+ ∈ L1[h, k] with a fractional derivative of order σ > 0; then,

Iσ
h+D

σ
h+u(t) = u(ξ) + c1(ξ − h)σ−1 + c2(ξ − h)σ−2 + · · · · · ·+ cn(ξ − h)σ−n

for some ci ∈ R, i = 1, 2, 3, · · · , n where n is the smallest integer greater than or equal to σ.



Axioms 2023, 12, 974 4 of 17

Definition 3. Let ϕ be a cone in the real Banach space S . Map σ : ϕ → [0, ∞) is said to be
nonnegative continuous concave functional on ϕ if σ is continuous and σ(λu + (1− λ)v) ≥
λσ(u) + (1− λ)σ(v) for all u, v ∈ ϕ and λ ∈ [0, 1].

Definition 4. Let ϕ be a cone in the real Banach space S . Map ρ : ϕ → [0, ∞) is said to be
nonnegative continuous convex functional on ϕ if ρ is continuous and ρ(λu + (1 − λ)v) ≤
λρ(u) + (1− λ)ρ(v) for all u, v ∈ ϕ and λ ∈ [0, 1].

Rule S1: Let κ be a cone in a Banach space D and x be a bounded open subset of D and
0 ∈ x. Then, a continuous functional σ : κ → [0, ∞) is said to satisfy Rule S1 if one of the
following conditions hold:

(i) σ is convex, σ(0) = 0, σ(t) 6= 0 if t 6= 0 and inft∈κ∩∂x σ(t) > 0,
(ii) σ is sublinear, σ(0) = 0, σ(t) 6= 0 if t 6= 0 and inft∈κ∩∂x σ(t) > 0,
(iii) σ is concave and unbounded.

Rule S2: Let κ be a cone in a Banach space D and x be a bounded open subset of D and
0 ∈ x. Then, a continuous functional ρ : κ → [0, ∞) is said to satisfy Rule S2 if one of the
following conditions hold:

(i) ρ is convex, ρ(0) = 0, ρ(t) 6= 0 if t 6= 0,
(ii) ρ is sublinear, ρ(0) = 0, ρ(t) 6= 0 if t 6= 0,
(iii) ρ(t + s) ≥ ρ(t) + ρ(s) for all t, s ∈ κ, ρ(0) = 0, ρ(t) 6= 0 if t 6= 0.

Theorem 1 ([35]). Consider two bounded open subsets, Ω1 and Ω2, within a Banach space denoted
as D. It is assumed that 0 belongs to Ω1, and Ω1 is a subset of Ω2. Furthermore, let κ represent
a cone within the same Banach space D. Introduce operator L, which maps from κ ∩ (Ω2\Ω1)
to κ and is characterized as completely continuous. Alongside this, two non-negative continuous
functionals, σ and ρ, are defined on κ. The main result is contingent upon one of the following two
conditions being satisfied:

(a) σ adheres to Rule S1 with σ(Lt) ≥ σ(t) for all t belonging to κ ∩ ∂Ω1, and ρ adheres to
Rule S2 with ρ(Lt) ≤ ρ(t) for all t in κ ∩ ∂Ω2.

(b) Conversely, ρ follows Rule S2 with ρ(Lt) ≤ ρ(t) for all t in κ ∩ ∂Ω1, and σ conforms to
Rule S1 with σ(Lt) ≥ σ(t) for all t in κ ∩ ∂Ω2.

In either case, the conclusion is that the operator L possesses at least one fixed point within the
set κ ∩ (Ω2\Ω1).

Theorem 2 (Leggett–Williams [36]). Let p, q, r and s be positive real numbers, let κ be a cone in
a real Banach space D, κs = {t ∈ κ : ‖t‖ < s}, ψ be a nonnegative continuous concave functional
on κ such that ψ(t) ≤ ‖t‖, ∀t ∈ κs and κ(ψ, q, r) = {t ∈ κ; q ≤ ψ(t), ‖t‖ ≤ r}. Suppose that
L : κs → κs is a completely continuous operator and there exist constants 0 < p < q < r ≤ s such
that

(i) {t ∈ κ(ψ, q, r) | ψ(t) > q} 6= ∅ and ψ(Lt) > q for t ∈ κ(ψ, q, r),
(ii) ‖Lt‖ < p for ‖t‖ ≤ p,
(iii) ψ(Lt) > q for t ∈ κ(ψ, q, s) with ‖Lt‖ > r.

Then, L has at least three fixed points t1, t2 and t3 in κs satisfying ‖t1‖ < p, q < ψ(t2), p < ‖t3‖
and ψ(t3) < q.

In what follows, we calculate the Green’s function associate with (2) and (3). We
consider the homogeneous boundary value problem

−Dq1
h+v(ξ) = 0, ξ ∈ (h, k), (4)

v(h) = 0; µ1 Dα1
h+v(k) = ψ1 + λ1 Dα1

h+v(η1). (5)
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Lemma 2. Let ∆1 6= 0. If x(ξ) ∈ C[h, k] and 1 < q1 ≤ 2; then, the boundary value problem,

Dq1
h+v(ξ) + x(ξ) = 0, h < ξ < k, (6)

satisfying Boundary condition (5), has a unique solution

v(ξ) =
∫ k

h
H1(ξ, ζ)x(ζ)dζ +

ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1
, ξ ∈ [h, k],

whereH1(ξ, ζ) is the Green’s function for the BVP (6) and (5) and is given by

H1(ξ, ζ) = h1(ξ, ζ) +
λ1(ξ − h)q1−1

N1
h2(η1, ζ).

Here, ∆1 = Γ(q1)N1 6= 0; N1 = µ1(k− h)q1−α1−1 − λ1(η1 − h)q1−α1−1 and

h1(ξ, ζ) =
1

Γ(q1)


(ξ−h)q1−1(k−ζ)q1−α1−1

(k−h)q1−α1−1 − (ξ − ζ)q1−1, h ≤ ζ ≤ ξ ≤ k,
(ξ−h)q1−1(k−ζ)q1−α1−1

(k−h)q1−α1−1 , h ≤ ξ ≤ ζ ≤ k,

h2(ξ, ζ) =
1

Γ(q1)


(ξ−h)q1−α1−1(k−ζ)q1−α1−1

(k−h)q1−α1−1 − (ξ − ζ)q1−α1−1, h ≤ ζ ≤ ξ ≤ k,
(ξ−h)q1−α1−1(k−ζ)q1−α1−1

(k−h)q1−α1−1 , h ≤ ξ ≤ ζ ≤ k.

(7)

Proof. Assume that v ∈ C[q1]+1[h, k] is a solution of fractional order Boundary value
problem (6) and (5) and is uniquely expressed by

v(ξ) = −
∫ ξ

h

(ξ − ζ)q1−1

Γ(q1)
x(ζ)dζ + c1(ξ − h)q1−1 + c2(ξ − h)q1−2.

In view of Condition (5), we can obtain c2 = 0 and

c1 =
1

∆1

[
µ1

∫ k

h
(k− h)q1−α1−1x(ζ)dζ − λ1

∫ η1

h
(η1 − ζ)q1−α1−1x(ζ)dζ

]
+

ψ1Γ(q1 − α1)

∆1
.

Hence, we have

v(ξ) =
−1

Γ(α1)

∫ ξ

h
(ξ − ζ)q1−1x(ζ)dζ +

(ξ − h)q1−1

∆1

∫ k

h
(k− ζ)q1−µ1−1x(ζ)dζ

− λ1(ξ − h)q1−1

∆1

∫ η1

h
(η1 − ζ)q1−α1−1x(ζ)dζ +

ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1

=
−1

Γ(q1)

∫ ξ

h
(ξ − ζ)q1−1x(ζ)dζ +

(ξ − h)q1−1

Γ(q1)

∫ k

h

(k− ζ)q1−α1−1

(k− h)q1−α1−1 x(ζ)dζ

+
λ1(ξ − h)q1−1

N

∫ k

h

(η1 − h)q1−α1−1(k− ζ)q−1−α1−1

Γ(q1)(k− h)q1−α1−1 x(ζ)dζ

− λ1(ξ − h)q1−1

N

∫ η1

h

(η1 − ζ)q1−α1−1

Γ(q1)
x(ζ)dζ +

ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1

=
∫ k

h
H1(ξ, ζ)x(ζ)dζ +

ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1
.

Lemma 3. Let 1 < q1 ≤ 2, 0 < p1 ≤ 1. Then, the FBVP{
Dp1

h+

(
φr1

(
Dq1

h+v(ξ)
))

+ f1(ξ, v(ξ), ϑ(ξ), ω(ξ)) = 0, h < ξ < k,

v(h) = 0, Dq1
h+v(h) = 0, µ1 Dα1

h+v(k) = ψ1 + λ1 Dα1
h+v(η1)

(8)
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has a unique solution

v(ξ) =
∫ k

h
H1(ξ, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
f1
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1
, ξ ∈ [h, k].

Proof. It follows from Lemma 1 and 0 < p1 ≤ 1 that

φr1

(
Dq1

h+v(ξ)
)
= −

∫ ξ

h

(ξ − τ)p1−1

Γ(p1)
f1(τ, v(τ), ϑ(τ), ω(τ))dτ + c1(ξ − h)p1−1.

By Dq1
h+v(h) = 0, we have c1 = 0. Therefore,

Dq1
h+v(ξ) + φϕ1

( ∫ t

h

(ξ − τ)p1−1

Γ(p1)
f1(τ, v(τ), ϑ(τ), ω(τ))dτ

)
= 0.

Thus, the BVP (8) is equal to the following problem:

Dq1
h+v(ξ) + φϕ1

( ∫ ξ

h

(ξ − τ)p1−1

Γ(p1)
f1(τ, v(τ), ϑ(τ), ω(τ))dτ

)
= 0; h < ξ < k;

v(h) = 0; µ1 Dα1
h+v(k) = ψ1 + λ1 Dα1

h+v(η1).

By Lemma 2, Boundary value problem (8) has a unique solution:

v(ξ) =
∫ k

h
H1(ξ, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
f1
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1
, ξ ∈ [h, k].

Lemma 4 ([43]). Suppose that condition (B2) holds; then, Green’s functionH1 has the following
properties:
(i) H1(ξ, ζ) ≥ 0 for all (ξ, ζ) ∈ (h, k)× (h, k),
(ii) H1(ξ, ζ) ≤ H1(k, ζ), for all (ξ, ζ) ∈ [h, k]× [h, k],

(iii) H1(ξ, ζ) ≥
( 1

4
)q1−1H1(k, ζ), for all (ξ, ζ) ∈ I × (h, k), where I =

[
3h+k

4 , h+3k
4

]
.

Remark 1. In a similar manner , the results of Green’s function H2(ξ, ζ) and H3(ξ, ζ) for the
homogeneous BVP corresponding to the fractional differential equation are obtained. Consider the
following condition:

Hi(ξ, ζ) ≥ ℵHi(k, ζ) for all (ξ, ζ) ∈ I × (h, k); i = 1, 2, 3,

where I =
[

3h+k
4 , h+3k

4

]
and ℵ = min

{( 1
4
)q1−1,

( 1
4
)q2−1,

( 1
4
)q3−1

}
.

We consider the Banach space X = C[h, k] with the supremum norm ‖ · ‖ and the
Banach space Y = X ×X ×X with the norm ‖(v, ϑ, ω)‖ = ‖v‖+ ‖ϑ‖+ ‖ω‖. We define
the cone

P =
{
(v, ϑ, ω) ∈ Y : v(ξ), ϑ(ξ), ω(ξ) ≥ 0, ∀ξ ∈ [h, k], and

min
ξ∈ I

[v(ξ) + ϑ(ξ) + ω(ξ)] ≥ ℵ ‖ (v, ϑ, ω) ‖
}

,

where I =
[

3h+k
4 , h+3k

4

]
and ℵ = min

{( 1
4
)q1−1,

( 1
4
)q2−1,

( 1
4
)q3−1

}
.



Axioms 2023, 12, 974 7 of 17

We consider the coupled system of integral equations

v(ξ) =
∫ k

h
H1(ξ, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
f1
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1
, ξ ∈ [h, k],

ϑ(ξ) =
∫ k

h
H2(ξ, ζ)φϕ2

( ∫ ζ

h

(ζ − τ)p2−1

Γ(p2)
f2
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ2Γ(q2 − α2)(ξ − h)q2−1

∆2
, ξ ∈ [h, k],

ω(ξ) =
∫ k

h
H3(ξ, ζ)φϕ3

( ∫ ζ

h

(ζ − τ)p3−1

Γ(p3)
f3
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ3Γ(q3 − α3)(ξ − h)q3−1

∆3
, ξ ∈ [h, k].

By Lemma 2, (v, ϑ, ω) ∈ P is a solution of Boundary value problems (2) and (3) if and
only if it is a solution of the system of integral equations.

We define operators T1, T2, T3 : P → X by

T1(v, ϑ, ω)(ξ) =
∫ k

h
H1(ξ, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
f1
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1
, ξ ∈ [h, k],

T2(v, ϑ, ω)(ξ) =
∫ k

h
H2(ξ, ζ)φϕ2

( ∫ ζ

h

(ζ − τ)p2−1

Γ(p2)
f2
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ2Γ(q2 − α2)(ξ − h)q2−1

∆2
, ξ ∈ [h, k],

T3(v, ϑ, ω)(ξ) =
∫ k

h
H3(ξ, ζ)φϕ3

( ∫ ζ

h

(ζ − τ)p3−1

Γ(p3)
f3
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ3Γ(q3 − α3)(ξ − h)q3−1

∆3
, ξ ∈ [h, k],

and operator T : Y → Y as

T (v, ϑ, ω) =
(
T1(v, ϑ, ω), T2(v, ϑ, ω), T3(v, ϑ, ω)

)
, (v, ϑ, ω) ∈ Y .

It is clear that the existence of a positive solution to Systems (2) and (3) is equivalent
to the existence of a fixed points of operator T .

3. Main Results

In this section, we employ cone expansion and compression of functional type and
the Leggett–Williams fixed point theorem to study the existence of positive solutions to
Equations (2) and (3).

We denote the following notations for our convenience:
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D = max
{

φϕ1

(4p1 Γ(p1 + 1)
(k− h)p1

) ∫ h+3k
4

3h+k
4

H1(k, ζ)dζ, φϕ2

(4p2 Γ(p2 + 1)
(k− h)p2

) ∫ h+3k
4

3h+k
4

H2(k, ζ)dζ,

φϕ3

(4p3 Γ(p3 + 1)
(k− h)p3

) ∫ h+3k
4

3h+k
4

H3(k, ζ)dζ

}
,

C = min
{ ∫ k

h
H1(k, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
dτ
)

dζ,
∫ k

h
H2(k, ζ)φϕ2

( ∫ ζ

h

(ζ − τ)p2−1

Γ(p2)
dτ
)

dζ,

∫ k

h
H3(k, ζ)φϕ3

( ∫ ζ

h

(ζ − τ)p3−1

Γ(p3)
dτ
)

dζ

}
.

Let us define two continuous functionals α and β on the cone P by

α(v, ϑ, ω) = min
ξ∈I

{
|v|+ |ϑ|+ |ω|

}
and

β(v, ϑ, ω) = max
ξ∈[h,k]

{
|v|+ |ϑ|+ |ω|

}
= v(k) + ϑ(k) + ω(k) = ‖(v, ϑ, ω)‖.

It is clear that α(v, ϑ, ω) ≤ β(v, ϑ, ω), for all (v, ϑ, ω) ∈ P .

Lemma 5. T : P → P is completely continuous.

Proof. We let (v, ϑ, ω) ∈ P . By Lemma 3, we have

‖T1(v, ϑ, ω)‖ ≤
∫ k

h
H1(k, ζ)φϕ1

( ∫ ζ

h

(s− τ)p1−1

Γ(p1)
f1
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ1Γ(q1 − α1)(k− h)q1−1

∆1
,

‖T2(v, ϑ, ω)‖ ≤
∫ k

h
H2(k, ζ)φϕ2

( ∫ ζ

h

(ζ − τ)p2−1

Γ(p2)
f2
(
τ, v(τ), ϑ(τ), ω(τ))

)
dτ
)

dζ

+
ψ2Γ(q2 − α2)(k− h)q2−1

∆2
,

‖T3(v, ϑ, ω)‖ ≤
∫ k

h
H3(k, ζ)φϕ3

( ∫ ζ

a

(ζ − τ)p3−1

Γ(p3)
f3
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ3Γ(q3 − α3)(k− h)q3−1

∆3
,

and

min
ξ∈I
T1(v, ϑ, ω)(ξ) = min

ξ∈I

[ ∫ k

h
H1(ξ, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
f1
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ1Γ(q1 − α1)(ξ − h)q1−1

∆1

]
,

≥
(1

4

)q1−1[ ∫ k

h
H1(k, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
f1
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψ1Γ(q1 − α1)(k− h)q1−1

∆1

]
,

≥ ℵ‖T1(v, ϑ, ω)‖.
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Similarly, min
ξ∈I
T2(v, ϑ, ω)(ξ) ≥ ℵ‖T2(v, ϑ, ω)‖ and min

ξ∈I
T3(v, ϑ, ω)(ξ) ≥ ℵ‖T3(v, ϑ, ω)‖.

Therefore,
min
ξ∈I

{
T1(v, ϑ, ω)(ξ) + T2(v, ϑ, ω)(ξ) + T3(v, ϑ, ω)(ξ)

}
≥ ℵ‖T1(v, ϑ, ω)‖+ ℵ‖T2(v, ϑ, ω)‖+ ℵ‖T3(v, ϑ, ω)‖
= ℵ‖

(
T1(v, ϑ, ω), T2(v, ϑ, ω), T3(v, ϑ, ω)

)
‖

= ℵ‖T (v, ϑ, ω)‖.

Thus, we obtain T (P) ⊂ P . Using standard arguments involving the Arzela–Ascoli
theorem, we can easily show that T1, T2 and T3 are completely continuous operators.
Therefore, T is a completely continuous operator from P to P .

Theorem 3. Assume that conditions (B1) − (B3) hold and suppose that there exist positive
real numbers r,R with r < ηR and ψj <

r∆j

ΘjΓ(qj−αj)(k−h)qj−1 ≤
R∆j

ΘjΓ(qj−αj)(k−h)qj−1 such that

f j; j = 1, 2, 3 satisfying the following conditions:

(C1) fj(ξ, v, ϑ, ω) ≥ φrj

( 1
3

r
ℵD
)
, ξ ∈ I and (v, ϑ, ω) ∈ [r,R],

(C2) fj(ξ, v, ϑ, ω) ≤ φrj

( 1
Φj
R
C
)
, ξ ∈ [h, k] and (v, ϑ, ω) ∈ [0,R].

Then, the system of fractional order Boundary value problems (2) and (3) has at least one positive
and nondecreasing solution (v?, ϑ?, ω?) satisfying r ≤ α(v?, ϑ?, ω?) with β(v?, ϑ?, ω?) ≤ R.

Proof. Let Ω1 = {(v, ϑ, ω); α(v, ϑ, ω) < r} and Ω2 = {(v, ϑ, ω); β(v, ϑ, ω) < R}. It is
easy to see that 0 ⊂ Ω1, and Ω1, Ω2 are bounded open subsets of E . Letting (v, ϑ, ω) ∈ Ω,
obtain

r > α(v, ϑ, ω) = min
ξ∈I
{v(ξ) + ϑ(ξ) + ω(ξ)} ≥ ℵ{‖v‖+ ‖ϑ‖+ ‖ω‖} = ℵβ(v, ϑ, ω).

Thus,R > r
ℵ > β(v, ϑ, ω), i.e (v, ϑ, ω) ∈ Ω2, so Ω1 ⊆ Ω2.

Claim 1: If (v, ϑ, ω) ∈ P ∩ ∂Ω1, then α(T (v, ϑ, ω)) ≥ α(v, ϑ, ω) = r, for ζ ∈ I . It follows
from (C1) and Lemma 4 that

α(T (v, ϑ, ω)) = min
ξ∈I

3

∑
j=1

[ ∫ k

h
Hj(ξ, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(ξ − h)qj−1

∆j
,
]

≥
3

∑
j=1

[ ∫ h+3k
4

3h+k
4

(1
4

)qj−1
Hj(k, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
φrj

(1
3

r
ℵD

)
dζ

+
ψjΓ(qj − αj)

( 1
4
)qj−1

(k− h)qj−1

∆j

]
≥

3

∑
j=1

φϕj

( (k− h)pj

4pj Γ(pj + 1)

) ∫ h+3k
4

3h+k
4

ℵHj(k, ζ)
(1

3
r
ℵD

)
dζ

≥ r
3Dφϕ1

( (k− h)p1

4p1 Γ(p1 + 1)

) ∫ h+3k
4

3h+k
4

H1(k, ζ)dζ +
r

3Dφϕ2

( (k− h)p2

4p2 Γ(p2 + 1)

) ∫ h+3k
4

3h+k
4

H2(k, ζ)dζ

+
r

3Dφϕ3

( (k− h)p3

4p3 Γ(p3 + 1)

) ∫ h+3k
4

3h+k
4

H3(k, ζ)dζ

=
r
3
+

r
3
+

r
3
= r = α(v, ϑ, ω).
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Claim 2: If (v, ϑ, ω) ∈ P ∩ ∂Ω2, then β(T (v, ϑ, ω)) ≤ β(v, ϑ, ω). Then,[
v(ζ) + ϑ(ζ) + ω(ζ)

]
≤ β(v, ϑ, ω) = R,

for ζ ∈ [h, k]. It follows from (C2) and Lemma 4 that

β(T (v, ϑ, ω)) = max
ξ∈[h,k]

3

∑
j=1

[ ∫ k

h
Hj(ξ, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(ξ − h)qj−1

∆j

]
≤

3

∑
j=1

[ ∫ k

h
Hj(k, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(k− h)qj−1

∆j

]

<
R

Φ1C

∫ k

h
H1(k, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
dτ
)

dζ +
R

Φ2C

∫ k

h
H2(ξ, ζ)φϕ2

( ∫ ζ

h

(ζ − τ)p2−1

Γ(p2)
dτ
)

dζ

+
R

Φ3C

∫ ζ

h
H3(ξ, ζ)φϕ3

( ∫ ζ

h

(ζ − τ)p3−1

Γ(p3)
dτ
)

dζ +
R
Θ1

+
R
Θ2

+
R
Θ3

=
R
Φ1

+
R
Φ2

+
R
Φ3

+
R
Θ1

+
R
Θ2

+
R
Θ3

= R
[ 1

Φ1
+

1
Φ2

+
1

Φ3
+

1
Θ1

+
1

Θ2
+

1
Θ3

]
≤ R = β(v, ϑ, ω).

Clearly, α satisfies (iii) of Rule (S1) and β satisfies (i) of Rule (S2). Therefore, condition
(a) of Theorem 1 is satisfied, and hence T has at least one fixed point (v?, ϑ?, ω?) ∈
P ∩

(
Ω2 \Ω1

)
, i.e, the system of fractional order Boundary value problems (2) and (3) has

at least one positive and nondecreasing solution (v?, ϑ?, ω?) satisfying r ≤ α(v?, ϑ?, ω?)
and β(v?, ϑ?, ω?) ≤ R.

Theorem 4. Assume that conditions (B1) − (B3) hold and suppose that there exist positive
real numbers r,R with r < R and ψj <

r∆j

ΘjΓ(qj−αj)(k−h)qj−1 ≤
R∆j

ΘjΓ(qj−αj)(k−h)qj−1 such that

fj; j = 1, 2, 3 satisfying the following conditions:

(C3) fj(ξ, v, ϑ, ω) ≤ φrj

( 1
Φj

r
D
)
, ξ ∈ [h, k] and (v, ϑ, ω) ∈ [0, r],

(C4) fj(ξ, v, ϑ, ω) ≥ φrj

( 1
Φj
R
ℵC
)
, ξ ∈ I and (v, ϑ, ω) ∈ [R, Rℵ ].

Then, the system of fractional order Boundary value problems (2) and (3) has at least one positive
and nondecreasing solution (v?, ϑ?, ω?) satisfying r ≤ β(v?, ϑ?, ω?) with α(v?, ϑ?, ω?) ≤ R.

Proof. We let Ω3 = {(v, ϑ, ω); β(v, ϑ, ω) < r} and Ω4 = {(v, ϑ, ω); α(v, ϑ, ω) < R}. We
have 0 ∈ Ω3. We set Ω3 ⊂ Ω4; Ω3 and Ω4 are bounded open subsets of E .
Claim 1: If (v, ϑ, ω) ∈ P ∩ ∂Ω3, then β(T (v, ϑ, ω)) ≤ β(v, ϑ, ω). To see this, we let
(v, ϑ, ω) ∈ P ∩ ∂Ω3. Then, [v(ζ) + ϑ(ζ) + ω(ζ)] ≤ β(v, ϑ, ω) = r, for ζ ∈ [h, k]. It follows
from (C3) and Lemma 4 that
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β(T (v, ϑ, ω)) = max
ξ∈[h,k]

3

∑
j=1

[ ∫ k

h
Hj(ξ, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(ξ − h)qj−1

∆j

]
≤

3

∑
j=1

[ ∫ k

h
Hj(k, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(k− h)qj−1

∆j

]

<
r

Φ1D

∫ k

h
H1(k, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
dτ
)

dζ +
r

Φ2D

∫ k

h
H2(k, ζ)φϕ2

( ∫ ζ

h

(ζ − τ)p2−1

Γ(p2)
dτ
)

dζ

+
r

Φ3D

∫ k

h
H3(k, ζ)φϕ3

( ∫ ζ

h

(ζ − τ)p3−1

Γ(p3)
dτ
)

dζ +
r

Θ1
+

r
Θ2

+
r

Θ3

=
r

Φ1
+

r
Φ2

+
r

Φ3
+

r
Θ1

+
r

Θ2
+

r
Θ3

= r
[ 1

Φ1
+

1
Φ2

+
1

Φ3
+

1
Θ1

+
1

Θ2
+

1
Θ3

]
≤ r = β(v, ϑ, ω).

Claim 2: If (v, ϑ, ω) ∈ P ∩ ∂Ω4, then α(T (v, ϑ, ω)) ≥ α(v, ϑ, ω). To see this, we let
(v, ϑ, ω) ∈ P ∩ ∂Ω4. Then, Rℵ = α(v,ϑ,ω)

η ≥ β(v, ϑ, ω) ≥ [v(ζ) + ϑ(ζ) + ω(ζ)] ≥
α(v, ϑ, ω) = R for ζ ∈ I . It follows from (C4) and Lemma 4 that

α(T (v, ϑ, ω)) = min
ξ∈I

3

∑
j=1

[ ∫ k

h
Hj(ξ, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(ξ − h)qj−1

∆j

]
≥

3

∑
j=1

[ ∫ h+3k
4

3h+k
4

(1
4

)qj−1
Hj(k, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
φrj

(1
3
R
ℵC

)
dζ

+
ψjΓ(qj − αj)

( 1
4
)qj−1

(k− h)qj−1

∆j

]
≥

3

∑
j=1

φϕj

( (k− h)pj

4pj Γ(pj + 1)

) ∫ h+3k
4

3h+k
4

ℵHj(k, ζ)
(1

3
R
ℵC

)
dζ

≥ R
3 C φϕ1

( (k− h)p1

4p1 Γ(p1 + 1)

) ∫ h+3k
4

3h+k
4

H1(k, ζ)dζ +
R
3 C φϕ2

( (k− h)p2

4p2 Γ(p2 + 1)

) ∫ h+3k
4

3h+k
4

H2(k, ζ)dζ

+
R

3 C φϕ3

( (k− h)p3

4p3 Γ(p3 + 1)

) ∫ h+3k
4

3h+k
4

H3(k, ζ)dζ

=
R
3
+
R
3
+
R
3

= R = α(v, ϑ, ω).

Clearly, α satisfies (iii) of Rule (S1) and β satisfies (i) of Rule (S2). Therefore, condition
(a) of Theorem 1 is satisfied, and hence T has at least one fixed point (v?, ϑ?, ω?) ∈
P ∩

(
Ω4 \Ω2

)
, i.e, the system of fractional order Boundary value problems (2) and (3) has

at least one positive and nondecreasing solution (v?, ϑ?, ω?) satisfying r ≤ β((v?, ϑ?, ω?))
and α(v?, ϑ?, ω?) ≤ R.
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Theorem 5. Assume that (B1)− (B3) hold and suppose that there exist 0 < k < l < ℵd and

0 < ψj <
k∆j

ΘjΓ(qj−αj)(k−h)qj−1 ≤
d∆j

ΘjΓ(qj−αj)(k−h)qj−1 such that fj(j = 1, 2, 3) satisfies the following

conditions:

(C5) fj(ξ, v, ϑ, ω) < φrj

( d
ΦjC
)
, for all ξ ∈ [h, k], (v, ϑ, ω) ∈ [0, d],

(C6) fj(ξ, v, ϑ, ω) > φrj

( l
3ℵD

)
, for all ξ ∈ I , (v, ϑ, ω) ∈ [l, l

ℵ ],
(C7) fj(ξ, v, ϑ, ω) < φrj

( k
ΦjC
)
, for all ξ ∈ [h, k], (v, ϑ, ω) ∈ [0, k].

Then, Systems (2) and (3) have at least three positive solution (v1, ϑ1, ω1), (v2, ϑ2, ω2) and
(v3, ϑ3, ω3) with ϕ(v1, ϑ1, ω1) < k, l < ψ(v2, ϑ2, ω2) < ϕ(v2, ϑ2, ω2) < d, k < ϕ(v3, ϑ3, ω3) <
d with ψ(v3, ϑ3, ω3) < l.

Proof. Firstly, if (v, ϑ, ω) ∈ Pd; then, we may assert that T : Pd → Pd is a completely
continuous operator. To see this, we suppose (v, ϑ, ω) ∈ Pd, then ‖(v, ϑ, ω)‖ ≤ d. It
follows from Lemma 4 and (C5) that

‖T (v, ϑ, ω)‖ = max
ξ∈[h,k]

{
T1(v, ϑ, ω)(ξ) + T2(v, ϑ, ω)(ξ) + T3(v, ϑ, ω)(ξ)

}
= max

ξ∈[h,k]

3

∑
i=1

[ ∫ k

h
Hj(ξ, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(ξ − h)qj−1

∆j

]
≤

3

∑
j=1

[ ∫ k

h
Hj(k, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(k− h)qj−1

∆j

]
<

1
Φ1

d
C

∫ k

h
H1(k, ζ)φϕ1

( ∫ ζ

h

(ζ − τ)p1−1

Γ(p1)
dτ
)

dζ +
1

Φ2

d
C

∫ k

h
H2(k, ζ)φϕ2

( ∫ ζ

h

(ζ − τ)p2−1

Γ(p2)
dτ
)

dζ

+
1

Φ3

d
C

∫ k

h
H3(k, ζ)φϕ3

( ∫ ζ

h

(ζ − τ)p3−1

Γ(p3)
dτ
)

dζ +
d

Θj
+

d
Θj

+
d

Θj

= d
[ 1

Φ1
+

1
Φ2

+
1

Φ3
+

1
Θ1

+
1

Θ2
+

1
Θ3

]
≤ d.

Therefore, T : Pd → Pd. This, together with Lemma 5, implies that T : Pd → Pd is a
completely continuous operator. Similarly, if (v, ϑ, ω) ∈ Pk, then, from (C7), it follows
that ‖T (v, ϑ, ω)‖ < k. This shows that condition (ii) of Theorem 2 is fulfilled.

Now, we let v(ξ) + ϑ(ξ) + ω(ξ) = l
ℵ for ξ ∈ [h, k]. It is easy to verify that v(ξ) +

ϑ(ξ) + ω(ξ) = l
ℵ ∈ P

(
ψ, l, l

ℵ
)

and ψ(v, ϑ, ω) = l
ℵ > l, and so {(v, ϑ, ω) ∈ P(ψ, l, l

ℵ );
ψ(v, ϑ, ω) > l} 6= ∅. Thus, for all (v, ϑ, ω) ∈ P(ψ, l, l

ℵ ), we have that l ≤ v(ξ) + ϑ(ξ) +

ω(ξ) ≤ l
ℵ for ξ ∈ I and T (v, ϑ, ω) ∈ P , from (C6), we have
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ψ
(
T (v, ϑ, ω)(ξ)

)
= min

ξ∈I

{
T1(v, ϑ, ω)(t) + T2(v, ϑ, ω)(ξ) + T3(v, ϑ, ω)(ξ)

}
= min

ξ∈I

3

∑
i=1

[ ∫ k

h
Hj(ξ, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
fj
(
τ, v(τ), ϑ(τ), ω(τ)

)
dτ
)

dζ

+
ψjΓ(qj − αj)(t− h)qj−1

∆j

]
≥ ℵ

3

∑
i=1

[ ∫ h+3k
4

3h+k
4

(1
4

)qj−1
Hj(k, ζ)φϕj

( ∫ ζ

h

(ζ − τ)pj−1

Γ(pj)
φrj

( l
3ℵD

))
dζ

+
ψjΓ(qj − αj)

( 1
4
)qj−1

(k− h)qj−1

∆j

]
≥

3

∑
j=1

φϕj

( (k− h)pj

4pj Γ(pj + 1)

) ∫ h+3k
4

3h+k
4

ℵHj(k, ζ)
( l

3ℵD

)
dζ

≥ l
3 Dφϕ1

( (k− h)p1

4p1 Γ(p1 + 1)

) ∫ h+3k
4

3h+k
4

H1(k, ζ)dζ +
l

3 Dφϕ2

( (k− h)p2

4p2 Γ(p2 + 1)

) ∫ h+3k
4

3h+k
4

H2(k, ζ)dζ

+
l

3 Dφϕ3

( (k− h)p3

4p3 Γ(p3 + 1)

) ∫ h+3k
4

3h+k
4

H3(k, ζ)dζ

=
l
3
+

l
3
+

l
3
= l.

Hence, condition (i) of Theorem 2 is verified. Next, we prove that (iii) of Theorem 2 is
satisfied. By Lemma 5, we have min

ξ∈I
|T1(v, ϑ, ω)(ξ) + T2(v, ϑ, ω)(ξ) + T3(v, ϑ, ω)(t)| >

ℵ‖T (v, ϑ, ω)‖ > d for (v, ϑ, ω) ∈ P(ψ, l, d) with ‖T (v, ϑ, ω)‖ > l
ℵ . To sum up, all the

conditions of Theorem 2 are satisfied; then, there exist three positive solutions (v1, ϑ1, ω1),
(v2, ϑ2, ω2) and (v3, ϑ3, ω3) with ϕ(v1, ϑ1, ω1) < k, l < ψ(v2, ϑ2, ω2) < ϕ(v2, ϑ2, ω2) <
d, k < ϕ(v3, ϑ3, ω3) < d, and ψ(v3, ϑ3, ω3) < l.

4. Examples

We let h = 1, k = 2, p1 = 0.5, p2 = 0.6, p3 = 0.7, q1 = 1.5, q2 = 1.6, q3 = 1.7, α1 =
0.5, α2 = 0.6, α3 = 0.7, η1 = 1.5, η2 = 1.6, η3 = 1.7, µ1 = 2, µ2 = 3, µ3 = 4, λ1 = 1, λ2 =
2, λ3 = 3, r1 = 2, r2 = 2, r3 = 2.

We consider the system of fractional differential equations
−D0.5

1+
(
φ2
(
D1.5

1+ v(ξ)
))

= f1(ξ, v(ξ), ϑ(ξ), ω(ξ)), ξ ∈ (1, 2),
−D0.6

1+
(
φ2
(
D1.6

1+ ϑ(ξ)
))

= f2(ξ, v(ξ), ϑ(ξ), ω(ξ)), ξ ∈ (1, 2),
−D0.7

1+
(
φ2
(
D1.7

1+ ω(ξ)
))

= f3(ξ, v(ξ), ϑ(ξ), ω(ξ)), ξ ∈ (1, 2),
(9)


v(1) = 0; φ2

(
D1.5

1+ v(1)
)
= 0; 2 D0.5

1+ v(2) = ψ1 + 1 D0.5
1+ v(1.5),

ϑ(1) = 0; φ2
(
D1.6

1+ ϑ(1)
)
= 0; 3 D0.6

1+ ϑ(2) = ψ2 + 2 D0.6
1+ ϑ(1.6),

ω(1) = 0; φ2
(
D1.7

1+ ω(1)
)
= 0; 4 D0.7

1+ ω(2) = ψ3 + 3 D0.7
1+ ω(1.7),

(10)

where ψ1, ψ2, ψ3 are parameters. We have ℵ = 0.378929; ∆1 = 0.886227 > 0;
∆2 = 0.893515; ∆3 = 0.908639, so Assumption (A2) satisfied. In addition, we found
D = max{2.0, 3.446, 5.278} = 5.278; C = min{1.858929, 2.620029, 3.237839} = 1.858929.
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Example 1. We consider the functions

f1(ξ, v, ϑ, ω) =

{
1

18 e−(v+ϑ+ω) + sin ξ, 0 ≤ v, ϑ, ω < 5,
1
2 (e
−(v+ϑ+ω) + 1) + 1

3 log ξ, 5 ≤ v, ϑ, ω ≤ 10,

f2(ξ, v, ϑ, ω) =

{
1
3 (e
−(v+ϑ+ω) + 1) + t

7 sin ξ, 0 ≤ v, ϑ, ω < 5,
1
2 (e
−ξ + 1) + 1

ξ+1 (e
−(v+ϑ+ω) log ξ), 5 ≤ v, ϑ, ω ≤ 10,

f3(ξ, v, ϑ, ω) =

{ 1
ξ+1 + log ξ(e−(v+ϑ+ω) + 2)−1, 0 ≤ v, ϑ, ω < 5,

1
ξ+1 (log ξ + 1) + ξe−ξ

v+ϑ+ω + 10
119 , 5 ≤ v, ϑ, ω ≤ 10.

Choosing r = 1, R = 10, with 1
Φ1

= 1
Φ2

= 1
Φ3

= 1
Θ1

= 1
Θ2

= 1
Θ3

= 1
6 then r < ℵR and

fi(i = 1, 2, 3) fulfilling the following conditions:

(C1) fi(ξ, v, ϑ, ω) ≥ 0.166668 = φri

( 1
3

r
ℵD
)
, ξ ∈ [2.25, 2.75] and (v, ϑ, ω) ∈ [1, 10]

(C2) fi(ξ, v, ϑ, ω) ≤ 0.896574 = φri

( 1
Φj
R
C
)
, ξ ∈ [1, 2] and (v, ϑ, ω) ∈ [0, 10].

Thus, all conditions of Theorem 3 are fulfilled. Hence, for ψ1 ≤ 1.47705, ψ2 ≤ 1.489192, ψ3 ≤
1.514398, the system of (9) and (10) has at least three positive solutions.

Example 2. We consider the functions

f1(ξ, v, ϑ, ω) =


1

ξ+25 log(v + ϑ + ω + 1) + e−ξ

12 , 0 ≤ v, ϑ, ω ≤ 1,
2

ξ2+1 +
log ξ+1
e−ξ+5 , 1 < v, ϑ, ω ≤ 10,

1
5 (ξ + e−(v+ϑ+ω)) + 1

9 (ξ + sin ξ), 10 < v, ϑ, ω ≤ 20,

f2(ξ, v, ϑ, ω) =


1

40+ξ5 e(v+ϑ+ω) +
log ξ

10 , 0 ≤ v, ϑ, ω ≤ 1,
1

ξ+1 [log ξ + e−(v+ϑ+ω)] + e−ξ

u+v+w + 9
24 , 1 < v, ϑ, ω ≤ 10,

log ξ+1
v+ϑ+ω + eξ

ξ2+1 − sin ξ, 10 < v, ϑ, ω ≤ 20,

f3(ξ, v, ϑ, ω) =


1

ξ+6 [e
−(v+ϑ+ω) log ξ], 0 ≤ v, ϑ, ω ≤ 1,

1
2 [e
−(v+ϑ+ω) + 1] + 2

ξ+1 [e
−ξ sin ξ], 1 < v, ϑ, ω ≤ 10,

log ξ + 2
5 (1 + ξ)− 2

v+ϑ+ω , 10 < v, ϑ, ω ≤ 20.

Choosing k = 4, l = 5, d = 727.55, 1
=1

= 1
=2

= 1
=3

= 1
<1

= 1
<2

= 1
<3

= 1
6 then 0 < k < l <

ℵd and fi(i = 1, 2, 3) fulfilling the following conditions:

(C5) fi(ξ, v, ϑ, ω) < 1.793147 = φrj

( d
ΦjC
)
, for all ξ ∈ [1, 2], (v, ϑ, ω) ∈ [0, 20],

(C6) fi(ξ, v, ϑ, ω) > 0.333335 = φrj

( l
3ℵD

)
, for all ξ ∈ [2.25, 2.75], (v, ϑ, ω) ∈ [2, 5.278034],

(C7) fi(ξ, v, ϑ, ω) < 0.089657 = φrj

( k
ΦjC
)
, for all ξ ∈ [1, 2], (v, ϑ, ω) ∈ [0, 1].

Thus, all conditions of Theorem 5 are fulfilled. Hence, for σ1 ≤ 2.95409, σ2 ≤ 2.978384,
σ3 ≤ 3.028796, the system of (9) and (10) has at least three positive solutions.

5. Conclusions

In this study, we established the existence of positive solutions to a system of three-
point Riemann–Liouville fractional order boundary value problems with (r1, r2, r3)-Laplacian
operator. Our approach involved employing techniques such as cone expansion and com-
pression of the functional type and the Leggett–Williams fixed point theorem.

Our results have important implications for the field of fractional differential equations
and its applications. For example, our results could be used to develop new models of
biological systems, physical phenomena, and engineering systems, including fractional
multi-energy groups of neutron diffusion equations [8,9,13,54,55]. Additionally, our re-
sults could be used to develop new numerical methods for solving fractional differential
equations [56].

For future research, we propose to investigate the following directions:
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1. Establish necessary conditions for the existence of an infinite number of solutions to
the system.

2. Study infinite systems of sequential hybrid fractional order boundary value problems.
3. Extend the idea used in this paper to study fractional difference equations and dynamic

equations on time scales.
4. Explore the implications of our results for fractional multi-energy groups of neu-

tron diffusion equations and develop new models and numerical methods for this
important application.

We believe that our work has the potential to improve the field of fractional calculus
and its applications, especially in the area of fractional multi-energy groups of neutron dif-
fusion equations. Our results could be used to develop more accurate and efficient models
of neutron diffusion in nuclear reactors, which could lead to safer and better performing
reactors. Additionally, our results could be used to develop new numerical methods for
solving fractional multi-energy groups of neutron diffusion equations, which could make it
possible to solve these problems faster and more accurately on large computers. We are
excited to explore these future research directions and contribute to the advancement of
fractional calculus and its applications in nuclear physics and reactor engineering.
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