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Abstract: Recently, there has been a lot of interest in comparative life testing for items under jointly
censored schemes for products from multiple production lines. The inverse Weibull distribution
(IWD) is commonly used in life testing and reliability theory. In this paper, we address the problem of
statistical inference from comparative inverse Weibull distributions under joint samples. An adaptive
type-II hybrid progressive censoring scheme (HPCS) is used to save the balance between the ideal test
time and the number of observed failures. Under the adaptive type-II HPCS, unknown parameters
of the inverse Weibull populations are estimated using both maximum likelihood and Bayesian
approaches. Asymptotic confidence intervals are established using the observed Fisher information
matrix and bootstrap confidence intervals. We suggest using Markov chain Monte Carlo (MCMC)
techniques to compute credible intervals under independent gamma priors. Using Monte Carlo
simulations, all theoretical conclusions are tested and contrasted. For illustration purposes, an actual
sample from comparative populations is analysed.

Keywords: inverse Weibull distribution; comparative life tests; adaptive hybrid censoring scheme;
Bayes estimation; maximum likelihood estimation; bootstrap techniques
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1. Introduction

The inverse Weibull distribution (IWD) is employed as a lifetime model in the reliabil-
ity engineering discipline. The density and hazard function of the IWD might be unimodal
or declining, depending on the form of the parameter used. As a result, if empirical studies
confirm that the hazard function is unimodal, the IWD fits the data better than the Weibull
distribution. The following examples highlight the significance of the IWD: the IWD is
more useful for modelling several failure characteristics, including wear-out periods, infant
mortality, and the time to breakdown of an insulating fluid subjected to the effect of con-
stant strain. Furthermore, the IWD is a viable model for describing the failure of mechanical
components in diesel engines. In situations where units consist of several parts and the
failure of each part has the same distribution, Weibull and inverse Weibull distributions are
more acceptable for modelling; see Liu [1] and Nelson [2]. A comparison between Weibull
and inverse Weibull composite distributions was performed by Cooray and colleagues [3].
The parameters of IWD were estimated under adaptive type-II progressive hybrid censor-
ing scheme, see Nassar and Abo-Kasem [4]. For entropy estimation of the IWD, see Xu and
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Gui [5], and for modelling reliability data, see Alkarni et al. [6]. The random variable T has
an inverse Weibull random variable if the probability density function (PDF) is

f (t) = αβt−(β+1)e−αt−β
, α, β > 0, t > 0, (1)

where α and β are the scale and shape parameters, respectively. Figure 1 was plotted
using Mathematica version 10 to show the different shapes of PDFs and the corresponding
hazard failure rate (HFR) function of the IWD for the scale parameter α = 1.0 and different
parameters β.

Figure 1. The PDF and the corresponding hazard failure rate function of the IWD.

To determine the reliability of any product, certain product units must be submitted
to a life testing trial, and the resulting lifetime data may be complete or censored. The cost
and duration of the test determine the best approach for collecting data. In the literature,
common and simple censoring schemes are known as type-I and type-II censoring schemes
(CSs). If a random sample of size n is randomly selected from a life population, under the
type-I CS, the test time is proposed but the number of failures r is random, 0 ≤ r ≤ n. In
contrast, in the type-II CS, the test time is random but the number of failures is proposed
beforehand. It is that the number of failures r is randomly selected in the type-I CS; the test
has a lack of memory and r may be zero. However, in the type-II CS, the test time Tm is
random and it may be that Tm → ∞. This is more conventional in several cases. The ideal
test time τ and the number of failures m are proposed beforehand in the hybrid censoring
scheme (HCS). Therefore, when the type-I CS is combined with the HCS design, type-I
HCS is presented. In the type-I HCS and the type-II HCS, the experimenter terminates the
experiment at min(τ, Tm) and max(τ, Tm), respectively. The last two types of censoring
schemes type-I HCS and type-II HCS have the same lack of memory (i.e., a small number
of failures and a higher test time, respectively). Type-I and type-II CSs or type-I and type-II
HCSs do not allow for the removal of units from the test other than the final point. The
concept of removing units other than the final point is allowed in progressive censoring
schemes (PCSs) and hybrid progressive censoring schemes (HPCSs), see Balakrishnan and
Aggarwala [7] and Balakrishnan [8].

For type-II PCSs, a random sample of units of size n is tested. The number of failures
m and the CS R = (R1, R2, . . . , Rm) are proposed beforehand. When the experiment is
running at each failure time Ti:m,n, i = 1, 2, . . . , m, Ri survival units are randomly removed
from the test. The experiment is continued until the failure time Tm:m,n is reached and
then the remaining Rm survival units are removed from the test. Then, the random sample
T = (TR

1;m,n, TR
2;m,n, . . . , TR

m;m,n) is called the type-II PC sample. In contrast, for the type-I
HPCS, a sample of size n is put under testing. The number of failures m, the ideal test time
τ, and the CS R = (R1, R2, . . . , Rm) are proposed beforehand. As given in type-II PCSs, at
each failure time Ti:m,n, i =1, 2, . . . , r and r ≤ m, Ri survival units are randomly removed
from the test. The experiment is continued until the time τ is reached and the remaining

n− r −
m
∑

i=r
ri survival units are removed from the test. The random sample T = (TR

1;m,n,

TR
2;m,n, . . . , TR

r;m,n) is called a type-I HPC sample. Censoring type-I HPC and type-II PC
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schemes both lack memory, resulting in a small number of failures and a larger test time,
respectively. In practice, a problem arises from choosing suitable censorship schemes,
which balance the effective number of failures needed for statistical inference and a short
test time. Ng et al. [9] proposed a new model called adaptive type-II HPCS, which saves
both the cost and the time; see Abd-Elmougod et al. [10] for further information about
adaptive type-II HPCS. The experiment design under adaptive type-II HPCS introduced
statistical inference efficiency, where a threshold time can be employed to switch from the
originally planned censoring scheme to a changed one. Comparative lifetime studies are
particularly important in manufacturing processes for determining the relative qualities
of many competing products in terms of reliability. The joint censoring scheme (JCS) has
recently received a lot of attention, and it is especially significant in comparing the lives
of units from various manufacturing lines. Many studies have considered the problem
of JCS, such as Bhattacharyya and Mehrotra [11], and Mehrotra and Bhattacharyya [12].
Also, further discussion of JCS is presented by Balakrishnan and Rasouli [13], Rasouli and
Balakrishnan [14], and Shafay et al. [15]. The balanced JCS under PCS is given by Mondal
and Kundu [16] and recently discussed by Algarni et al. [17] and Tahani et al. [18]. For other
recent works on JCS, one can refer to Almarashi et al. [19], Shokr et al. [20], Tolba et al. [21],
and Al-Essa et al. [22]. One of the more important subjects in the statistical literature is the
statistical inference of comparative life populations. This issue is investigated since the life
item has IWD and all of the parameters are unknown. As a result, the purpose of this study
is to provide statistical inference for comparing IW lifetime populations. We employed
this problem under adaptive type-II HPCS with a joint censoring scheme to create the joint
adaptive type-II HPCS. To create point and interval estimators for comparative population
parameters, maximum likelihood (ML) and Bayesian estimating methodologies are used.
Asymptomatic properties of the ML estimations are used to calculate asymptotic confidence
intervals. Bootstrap confidence intervals are also provided. In the Bayesian technique, the
parameters are assumed to have independent gamma priors. Bayes estimates, as expected,
cannot be obtained in closed form. In this case, we use the Metropolis–Hastings MH
with Gibbs sampling technique to generate samples from the posterior distributions and
then compute the Bayes estimators of the individual parameters, and Bayesian credible
intervals are then calculated. The performance of classical and Bayes estimators is compared
using several simulated trials. The rest of the paper is summarised as follows: Section 2
describes the model with the joint adaptive type-II hybrid censoring scheme as well as
some assumptions. In Section 3, we obtain the traditional maximum likelihood estimators
and asymptotic confidence intervals. Bayes point estimation with a credible interval are
proposed in the same Section. Section 4, illustrates the analysis of a real-life data set that
represents failure times of breakdown of an insulated fluid. Also, the numerical assessment
of the developed results from the simulation study are provided in Section 4. The brief
comments with our conclusion and recommendations are reported in Section 5.

2. Joint Adaptive Type-II Hybrid Censoring Scheme

A joint random sample of size n is selected from a two comparative life product to
put under a life-testing experiment. Suppose that a random sample of size n is taken from
two lines of production, such that n1 from line Φ1 and n2 from line Φ2, n = n1 + n2. The
mechanism of joint adaptive type-II HPCS can be described as follows: let the pairs (m, τ)
denote the number of observed failures and the ideal test time, with the censoring scheme
R = (R1, R2, . . . , Rm) being proposed. When the experiment is running, the failure time
and the corresponding type (Ti, ηi) are recorded. On observing the first failure T1 and the
corresponding type η1, we record (T1, η1) and R1 survival units are randomly removed from
the test. When the second failure T2 is observed, then we record (T2, η2) and R2 survival
units are removed from the test. The experiment is continued until the time τ is reached,
Tr < τ < Tr+1, 1 ≤ r < m and T0 = 0, Tm+1 = ∞. If m−th failures are observed before the
time τ, then the experiment is terminated at time Tm. But if Tm > τ (which means that the
number of failures r is smaller than m), then we need to terminate the experiment as soon
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as possible. Then, the observed joint adaptive type-II HPCS is given as: T ={(T1, η1), (T2,
η2), . . . , (Tr, ηr), (Tr+1, ηr+1), . . . , (Tm, ηm)}. For more details, see David and Nagaraja [23]
and Ng and Chan [24]. Therefore, under adaptive type-II HPCS, the scheme R = (R1, R2,

. . . , Rm) change to R∗ = (R1, R2, . . . , Rr, 0, 0, . . . , 0, R∗m), R∗m = n−m−
r
∑

i=1
Ri. The time τ

is essential for the modification R to R∗ (reduced the total test time). It should be noted
that, when τ = 0, the adaptive type-II HPCS is reduced to ordinary type-II CS, and when
τ → ∞, it is reduced to ordinary type-II PCS. Figure 2 was drawn to present the different
cases of adaptive type-II HPCS.

Figure 2. Adaptive type-II HPCS when Tm < τ, (top) and Tm > τ, (bottom).

Let m1 =
m
∑

i=1
ηi and m2 =

m
∑

i=1
(1− ηi) are number of observed failure from lines Φ1 and

Φ2, respectively (where ηi = 1 mean from the line Φ1 and ηi = 0 mean from the line Φ2).
Under consideration that two lines Φ1 and Φ2 of production with units have PDFs,

and CDFs follow the IWD lifetime distribution defined by:

f j(t) = αjβ jt
−(β j+1)e−αjt

−βj
, αj, β j > 0, t > 0, j = 1, 2, (2)

with the corresponding CDFs, reliability, and failure rate functions

Fj(t) = e−αjt
−βj

, (3)

Sj(t) = 1− e−αjt
−βj

, (4)

and

Hj(t) =
αjβ jt

−(β j+1)e−αjt
−βj

1− e−αjt
−βj

. (5)

Suppose that the failure times X1, X2, . . . , Xn1 are observed from the line Φ1, which
have a cumulative distribution function (CDF) and probability density function (PDF),
given respectively, by F1(.) and f1(.). Also, let the failure times Y1, Y2, . . . , Yn2 belong to the
line Φ2 with CDF and PDF, given respectively, by F2(.) and f2(.). For a given data of size
m and test time τ, the ordered life times {T1, T2, . . . , Tr, Tr+1, . . . , Tm}, obtained from the
joint sample {X1, X2, . . . , Xm1 , Y1, Y2, . . . , Ym2} with m = m1 + m2 is called a joint adaptive
type-II HPC sample.

The likelihood function of the observed joint adaptive type-II HPC sample T ={(T1,
η1), (T2, η2), . . . , (Tr, ηr), (Tr+1, ηr+1), . . . , (Tm, ηm)} is formulated by:

f (t1, t2, . . . , tr, tr+1, . . . , tm|Θ) = A
m

∏
i=1

[ f1(ti)]
ηi [ f2(ti)]

1−ηi [S1(ti)]
R∗1i [S2(ti)]

R∗2i , (6)
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where R∗1i + R∗2i = R∗i denote the number of survival units removed from the lines Φ1 and
Φ2. Also, Θ is the parameters vectors, Sj(.) = 1− Fj(.), j = 1, 2, with

0 < t1 < t2 < . . . < tr < tr+1 < . . . < tm < ∞,

A =
m

∏
i=1

[
n− i + 1−

min{i−1,J}

∑
i=1

Ri

]
, (7)

and

R∗i =


Ri if i ≤ r
0 if r < i < m
n−m−

r
∑

j=1
Rj

if i = m and r < m.

(8)

3. Methodology
3.1. Point Estimation

In this section, we formulate the point estimations of the model parameters and some
parameters of life (reliability and hazard failure rate functions) by using classical and
Bayesian approaches.

3.1.1. ML Estimation

For the given joint sample T ={(T1, η1), (T2, η2), . . . , (Tr, ηr), (Tr+1, ηr+1), . . . , (Tm,
ηm)} and IWD distribution given by (2)–(4), the joint likelihood function is

L(Θ|T)∝ αm1
1 αm2

2 βm1
1 βm2

2

m

∏
i=1

[
t−(β1+1)
i e−α1t

−β1
i

]ηi

(1− e−α1t
−β1
i )R∗1i

[
t−(β2+1)
i e−α2t−β2

i

]1−ηi

× (1− e−α2t−β2
i )R∗2i , (9)

where Θ = {α1, α2, β1, β2}. The natural logarithm of the likelihood function is given by

`(Θ|T) = m1 log α1 + m2 log α2 + m1 log β1 + m2 log β2 − (β1 + 1)
m

∑
i=1

ηi log ti − α1

m

∑
i=1

ηit
−β1
i

+
m

∑
i=1

R∗1i log
[

1− e−α1t
−β1
i

]
− (β2 + 1)

m

∑
i=1

(1− ηi) log ti − α2

m

∑
i=1

(1− ηi)t
−β2
i

+
m

∑
i=1

R∗2i log
[

1− e−α2t−β2
i

]
, (10)

by taking the first partial derivatives of (10) with respect to the model parameters Θ = {α1,
α2, β1, β2}, and equating them zero, the following likelihood equations are obtained:

∂`(Θ|T)
∂α1

=
m1

α1
−

m

∑
i=1

ηit
−β1
i +

m

∑
i=1

R∗1i
t−β1
i e−α1t

−β1
i

1− e−α1t
−β1
i

= 0, (11)

∂`(Θ|T)
∂α2

=
m2

α2
−

m

∑
i=1

(1− ηi)t
−β2
i +

m

∑
i=1

R∗2i
t−β2
i e−α2t−β2

i

1− e−α2t−β2
i

= 0, (12)

∂`(Θ|T)
∂β1

=
m1

β1
−

m

∑
i=1

ηi log ti + α1

m

∑
i=1

ηit
−β1
i log ti − α1

m

∑
i=1

R∗i
t−β1
i log tie−α1t

−β1
i

1− e−α1t
−β1
i

=0, (13)

and
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∂`(Θ|T)
∂β2

=
m2

β2
−

m

∑
i=1

(1− ηi) log ti + α2

m

∑
i=1

(1− ηi)t
−β2
i log ti − α2

m

∑
i=1

R∗2i
t−β2
i log tie−α2t−β2

i

1− e−α2t−β2
i

=0. (14)

The nonlinear Equations (11)–(14) do not admit explicit solutions. Therefore, the
Newton–Raphson iteration methods are used to solve them and to obtain the ML estimates
Θ̂ = {α̂1, α̂2, β̂1, β̂2}. It should be noted that the numerical manipulations in this paper were
carried out using the Mathematica package (Mathematica ver. 10). In Mathematica, the
FindRoot module uses Newton’s method to solve a nonlinear system. Also, the FindRoot
module uses a damped version of Newton–Raphson, for without the damping, bad choices
of starting values will more often result in divergence. The damping makes the iterations
less likely to go wild. As a consequence of the invariance property of the ML estimator, we
can obtain the ML estimators of the reliability and hazard failure rate functions as

Ŝj(t) = 1− e−α̂jt
−β̂j

, (15)

and

Ĥj(t) =
α̂j β̂ jt

−(β̂ j+1)e−α̂jt
−β̂j

1− e−α̂jt
−β̂j

. (16)

3.1.2. Bayesian Estimation

The Bayesian approach is dependent on the prior information of the model parameters
and information in the data presented by the likelihood function. The problem of choosing
suitable prior information is more important in the statistical literature. The gamma
distribution has a maximum entropy probability distribution, and the main motivation for
the gamma prior is usually to constrain the random variables to positive values. Also, the
gamma distribution is considered a family of distributions, and each of the exponential and
chi-square distributions is considered a special case. Therefore, in this study, independent
gamma priors are assumed for all parameters, as follows:

Π∗i (Θi) ∝ Θai−1
i exp(−biΘi), Θi > 0; ai, bi > 0, i = 1, . . . , 4, (17)

where Θ = {α1, α2, β1, β2}. The corresponding joint density function of prior distribution
is given by

Π∗(α1, α2, β1, β2) ∝ αa1−1
1 αa2−1

2 βa3−1
1 βa4−1

2 exp(−b1α1 − b2α2 − b3β1 − b4β2). (18)

The joint posterior density function is formulated from (9) and (18) by

Π(α1, α2, β1, β2|T)∝ αm1+a1−1
1 αm2+a2−1

2 βm1+a3−1
1 βm2+a4−1

2 exp

{
−(β1 + 1)

m

∑
i=1

ηi log ti

−b1α1 − b3β1 − α1

m

∑
i=1

ηit
−β1
i +

m

∑
i=1

R∗1i log
[

1− e−α1t
−β1
i

]
− (β2 + 1)

m

∑
i=1

(1− ηi) log ti

−b2α2 − b4β2 − α2

m

∑
i=1

(1− ηi)t
−β2
i +

m

∑
i=1

R∗2i log
[

1− e−α2t−β2
i

]}
. (19)

The joint posterior distribution (19) has shown that, under a high-dimensional case,
the posterior distribution and the corresponding Bayes estimators cannot be simplified to a
closed form. Therefore, different methods can be applied to obtain the Bayes estimators
of the model parameters, such as Lindely approximation, numerical integration and the
Markov Chen Monte Carlo (MCMC) method. In the following subsection, we discuss the
MCMC method.
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3.1.3. MCMC Method

The full conditional posterior distributions obtained from (19) are formulated by:

Π1(α1|α2, β1, β2, T)∝ αm1+a1−1
1 exp

{
−α1

(
b1 +

m

∑
i=1

ηit
−β1
i

)}
, (20)

Π2(α2|α1, β1, β2, T)∝ αm2+a2−1
2 exp

{
−α2

(
b2 +

m

∑
i=1

(1− ηi)t
−β2
i

)}
, (21)

Π3(β1|α1, α2, β2, T)∝ βm1+a3−1
1 exp

{
−β1

(
b3 +

m

∑
i=1

ηi log ti

)}
, (22)

and

Π4(β1|α1, α2, β2, T)∝ βm2+a4−1
2 exp

{
−β2

(
b4 +

m

∑
i=1

(1− ηi) log ti

)}
, (23)

with the associated weight

h(α1, α2, β1, β2|T)=
exp

{
m
∑

i=1
R∗1i log

[
1− e−α1t

−β1
i

]
+

m
∑

i=1
R∗2i log

[
1− e−α2t−β2

i

]}
(

b1 +
m
∑

i=1
ηit
−β1
i

)m1+a1
(

b2 +
m
∑

i=1
(1− ηi)t

−β2
i

)m2+a2
. (24)

The empirical posterior distribution is obtained with the help of the subclass of the
MCMC method for the full conditional distributions (20) to (23). Moreover, since the
functions in (20)–(23) follow gamma, it is quite simple to generate from these functions. So,
we provide the importance sampling procedure to compute the Bayes estimates according
to the following Algorithm 1:

Algorithm 1: Importance sample algorithm

1. Put κ = 1 and begin with initial guess value of Θ(0) = {α̂1, α̂2, β̂1, β̂2}.
2. The values α

(κ)
j , j = 1, 2, is generated from gamma distributions given by

(20) and (21).
3. The values β

(κ)
j , j = 1, 2, is generated from gamma distributions given by

(22) and (23).
4. Compute h(α(κ)1 , α

(κ)
2 , β

(κ)
1 , β

(κ)
2 |T)

5. Put κ = κ + 1.
6. Steps from (2) to (5) is repeated MC times.
7. Under consideration that, MC∗ is the number of MCMC iteration need to reaching

the stationary distribution. The Bayes estimate of any function Ψ(α1, α2, β1, β2) of
the model parameters under squared error loss function is given by

Ψ̂B = EΠ(Ψ|T) =

1
MC−MC∗

MC
∑

j=MC∗+1
Ψ(α

(j)
1 , α

(j)
2 , β

(j)
1 , β

(j)
2 )h(α(j)

1 , α
(j)
2 , β

(j)
1 , β

(j)
2 |T)

1
MC−MC∗

MC
∑

j=MC∗+1
h(α(j)

1 , α
(j)
2 , β

(j)
1 , β

(j)
2 |T)

, (25)

and the corresponding posterior variance is

V̂(Ψ) =

1
MC−MC∗

MC
∑

j=MC∗+1
(Ψ(j) − Ψ̂B)

2h(α(j)
1 , α

(j)
2 , β

(j)
1 , β

(j)
2 |T)

1
MC−MC∗

MC
∑

j=MC∗+1
h(α(j)

1 , α
(j)
2 , β

(j)
1 , β

(j)
2 |T)

, (26)
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3.2. Interval Estimation

In this section, we discussed the interval estimation of the model parameters. Firstly,
we discuss classical estimation (asymptotic ML confidence intervals and bootstrap confi-
dence intervals). Secondly, we present Bayesian credible intervals.

3.2.1. Asymptotic Confidence Intervals

The Fisher information matrix (FIM) is used to formulate interval estimators of the
model parameters. FIM is defined as the expectation of a minus second derivative of the
log-likelihood function. In the cases in which this expectation is more serious, we replace
FIM with approximate information matrix (AIM), which is defined by

AIM(Θ) = −
(

∂2`(Θ|T)
∂Θi∂Θk

)
|i, k=1,2,3,4. (27)

Under the property that the ML estimators of the model parameters Θ = {α1, α2, β1,
β2} have a bivariate normal distribution with mean Θ = {α1, α2, β1, β2} and a variance
covariance matrix obtained from the inverse of the AIM at the ML estimate defined by

AIM0 = −
(

∂2`(Θ|T)
∂Θi∂Θk

)
|α̂1,α̂2,β̂1,β̂2

. (28)

The approximate (1− γ)%100 confidence intervals of Θ = {α1, α2, β1, β2} is given{
α̂j ∓ω γ

2
zj, j = 1, 2,

β̂ j ∓ω γ
2

zj+2j+2, j = 1, 2,
, (29)

where the the elements of the diagonal of AIM0 take the values zj, j =1, . . . , 4. And the
value ω γ

2
is a standard normal value under significant level γ.

3.2.2. Bootstrap Confidence Intervals

Using the bootstrap technique, we can compute any quantity of interest by re-sampling
from the pseudo-population. In this subsection, we use the bootstrap method to re-sample
and then produce the confidence interval, which can be applied to statistical inference with
a small effective sample size. We adopted the percentile parametric bootstrap technique
to formulate the confidence interval of the model parameters. For information about
bootstrap-p, see Efron [25]. Algorithm 2, can be used to compute parametric bootstrap-p
confidence intervals.

3.2.3. Bayesian HP Credible Interval

Bayesian HP credible intervals of the model parameters Θ = {α1, α2, β1, β2} are
obtained by using the idea of Chen and Shao [26]. The algorithms used to formulate HP
credible intervals of the model parameters can be described as follows.

Step 1 From the MCMC sample Θ(i) = {α(i)1 , α
(i)
2 , β

(i)
1 , β

(i)
2 }, i = MC∗ + 1, MC∗ + 2, . . . ,

MC generated by the importance sampling technique.

Step 2 Sort Θ(i)
k , k = 1, 2, 3, 4 to obtain the ordered values, Θk(i).

Step 3 Compute the weighted function wi

wi =
h(α(i)1 , α

(i)
2 , β

(i)
1 , β

(i)
2 |T)

MC
∑

j=MC∗+1
h(α(i)1 , α

(i)
2 , β

(i)
1 , β

(i)
2 |T)

. (30)

Then, rewrite (wi, i = MC∗+ 1, MC∗+ 2, . . . , MC) as (w(i), i = 1, 2, . . . , MC−MC∗)
so that the i-th value w(i) corresponds to the the value Θk(i).
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Step 4 The γ−quantile of the marginal posterior of Θk(i) can be estimated by

Θ̃k
(γ) =


Θk(1), if γ = 0

Θk(j), if
j−1
∑

i=1
w(i) < γ <

j
∑

i=1
w(i)

. (31)

Step 5 Compute the (1− γ)100% credible intervals of θ

[θ(
L

MC−MC∗ ), θ(
L+(1−γ)(MC−MC∗)

MC−MC∗ )], (32)

where L = 1, 2, . . . , γ(MC−MC∗).

Step 6 The (1− γ)100% HPD interval is the one with the smallest interval width among all
credible intervals.

Algorithm 2: Bootstrap-p confidence intervals

1. From the original data set T = {(T1, η1), (T2, η2), . . . , (Tr, ηr), (Tr+1, ηr+1), . . . , (Tm,
ηm)}, compute Θ̂ = {α̂1, α̂2, β̂1, β̂2}.

2. Generate two samples of sizes n1 and n2 from IWD(α̂1, β̂1) and IWD(α̂2, β̂2),
respectively.

3. From the joint sample of size n1 + n2, generate random type-II PC sample of size m
by using the algorithms given by Balakrishnan and Sandhu [27].

4. Form the random type-II PC sample of size m for given τ, report the sample {T1, T2,
. . . , Tr}, r ≤ m.

5. Generate two samples of size (m− r) from truncated distributions, see Ng et al. [9]
and choose the smallest (m− r) values from the joint sample.

6. Report the bootstrap joint adaptive type-II HPC sample and its type T∗={T∗1 , T∗2 ,
. . . , T∗r , T∗r+1, . . . , T∗m}.

7. Based on T∗={T∗1 , T∗2 , . . . , T∗r , T∗r+1, . . . , T∗m}, compute Θ∗(0) = {α̂∗1 , α̂∗2 , β̂∗1, β̂∗2}.
8. Repeat the Steps (2–6) MB times, we have Θ̂∗(i) = {α̂∗(i)1 , α̂

∗(i)
2 , β̂

∗(i)
1 , β̂

∗(i)
2 }, i =1, 2,

. . . , MB.
9. Put, the bootstrap sample estimate in ascending order as Θ̂∗(i) = {α̂

∗
1(i), α̂∗2(i), β̂∗1(i),

β̂∗2(i)}, i =1, 2, . . . , MB.

10.The cumulative distribution function of Θ̂∗(i) can be defined by

z(Θ̂∗k ) = P(Θ̂∗k 6 z), Θ̂∗1 = α̂∗1 and others. Hence, (1− γ)100% percentile
Bootstrap confidence intervals is given by[

Θ̂∗kboot(
γ

2
), Θ̂∗kboot(1−

γ

2
)
]
.

4. Numerical Results
4.1. Simulation Studies

To determine the quality of the ML and Bayesian estimation methods discussed in
the preceding sections, a Monte Carlo simulation study is conducted. Some measures are
computed, such as the mean squared error for the point estimation and the mean interval
length and coverage percentage for the interval estimation. In this study, we consider
different sample sizes, different effective sample sizes, and different choices for censoring
schemes, with varying values of the ideal test time. The parameters {α1, α2, β1, β2} are
chosen to be (2.0, 1.0, 0.5, 0.8) and (1.0, 0.5, 1.5, 2.0). For the Bayesian estimation, we
have taken both informative (P1) and non-informative priors (P0), and the hyperparameter
values are chosen so that the expectation of the prior distributions is equivalent to the true
value. In the simulation study, we generate 1000 samples with the pre-specified model
parameters. For each sample, we compute the point ML and Bayes estimates and the mean
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estimate (ME) with the corresponding mean squared error (MSE). For interval estimations,
we compute average interval length (AIL) and coverage percentage (CP). We adopted four
censoring schemes (CS) defined as:

scheme I : Rm = n1 + n2 −m, Ri = 0 for i 6= m.
scheme II: Ri = 0, i = 1, 2, . . . , n1 + n2 −m, Ri = 1, i = n1 + n2 −m, . . . , n1 + n2.
scheme III: Ri = 1 for i = 1, 2, . . . , m, Ri = 0 for i = m + 1, 2, . . . , n1 + n2.
scheme IV: R1 = n1 + n2 −m, Ri = 0 for i 6= 1.

The results of the simulation study are computed according to Algorithm 3:

Algorithm 3: Monte Carlo simulation study

1. For given Θ = {α1, α2, β1, β2}, generate two samples of sizes n1 and n2 from
IWD(α1, β1) and IWD(α2, β2), respectively.

2. From the joint sample of size n1+n2, randomly generate type-II PC sample of
size m.

3. Under comparison between the ideal test time τ, with type-II PC sample of size m
report the sample {T1, T2, . . . , Tr}, r ≤ m.

4. Generate two samples of size (m− r) from truncated IWDs see Ng et al. [9] and
choose the smallest (m− r) values.

5. Report the joint adaptive type-II HPC sample T ={(T1, η1), (T2, η2), . . . , (Tr, ηr),
(Tr+1, ηr+1), . . . , (Tm, ηm)}.

6. Steps from 1 to 4 are repeated 1000 times.
7. For each adaptive type-II HPC sample we compute the MLE and Bayes estimates

(point and interval).
8. The mean estimate ME and MSE are computed and reported in Tables 1 and 2.
9. The results of point estimates show ML and non-informative Bayes estimates are

close to each other. Therefore, the AIL and CP are computed and reported in
Tables 3 and 4 for informative Bayes credible intervals.

Table 1. ME and MSE of the parameter estimates for Θ = {2.0, 1.0, 0.5, 0.8}.

MLE Bayes(P0) Bayes(P1)

τ (n1, n2, m) CS α1 β1 α2 β2 α1 β1 α2 β2 α1 β1 α2 β2

0.5 (20,20,15) I ME 2.345 0.734 1.298 1.098 2.311 0.701 1.254 1.071 2.281 0.667 1.178 1.001
MSE 0.321 0.147 0.224 0.200 0.301 0.132 0.207 0.193 0.301 0.132 0.207 0.193

II ME 2.338 0.739 1.277 1.077 2.288 0.698 1.251 1.062 2.254 0.648 1.170 0.978
MSE 0.307 0.132 0.207 0.183 0.281 0.112 0.200 0.179 0.286 0.114 0.191 0.177

III ME 2.318 0.722 1.265 1.070 2.269 0.682 1.239 1.049 2.241 0.633 1.159 0.966
MSE 0.288 0.111 0.188 0.166 0.264 0.092 0.181 0.161 0.265 0.100 0.177 0.168

IV ME 2.310 0.708 1.249 1.058 2.255 0.671 1.230 1.037 2.232 0.620 1.148 0.954
MSE 0.255 0.092 0.171 0.152 0.248 0.081 0.168 0.145 0.249 0.081 0.160 0.152

(30,30,35) I ME 2.241 0.645 1.200 0974 2.228 0.633 1.192 0966 2.187 0.556 1.099 0901
MSE 0.204 0.069 0.124 0.099 0.189 0.063 0.112 0.093 0.102 0.044 0.089 0.045

II ME 2.237 0.640 1.192 0968 2.221 0.625 1.188 0958 2.180 0.548 1.092 0893
MSE 0.189 0.061 0.117 0.087 0.166 0.052 0.101 0.079 0.088 0.032 0.078 0.033

III ME 2.231 0.634 1.187 0961 2.214 0.614 1.180 0947 2.171 0.539 1.085 0885
MSE 0.180 0.053 0.108 0.081 0.154 0.048 0.089 0.072 0.082 0.028 0.071 0.029

IV ME 2.224 0.629 1.182 0954 2.200 0.602 1.171 0942 2.165 0.533 1.080 0877
MSE 0.165 0.044 0.098 0.073 0.145 0.040 0.075 0.064 0.077 0.018 0.064 0.023
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Table 1. Cont.

MLE Bayes(P0) Bayes(P1)

τ (n1, n2, m) CS α1 β1 α2 β2 α1 β1 α2 β2 α1 β1 α2 β2

1.0 (20,20,15) I ME 2.338 0.728 1.291 1.093 2.302 0.687 1.248 1.070 2.271 0.658 1.172 1.003
MSE 0.312 0.138 0.215 0.192 0.294 0.123 0.199 0.187 0.293 0.125 0.201 0.189

II ME 2.332 0.740 1.278 1.071 2.279 0.691 1.244 1.058 2.255 0.639 1.162 0.971
MSE 0.301 0.128 0.202 0.174 0.273 0.104 0.193 0.171 0.278 0.107 0.180 0.169

III ME 2.309 0.724 1.258 1.066 2.269 0.677 1.233 1.043 2.238 0.627 1.154 0.961
MSE 0.281 0.103 0.179 0.161 0.258 0.088 0.174 0.157 0.261 0.097 0.166 0.161

IV ME 2.312 0.711 1.241 1.047 2.251 0.667 1.227 1.031 2.224 0.613 1.141 0.950
MSE 0.247 0.090 0.166 0.143 0.241 0.074 0.162 0.138 0.242 0.074 0.152 0.145

(30,30,35) I ME 2.233 0.640 1.201 0969 2.223 0.628 1.187 0961 2.182 0.548 1.092 0897
MSE 0.193 0.062 0.119 0.092 0.181 0.054 0.103 0.087 0.093 0.041 0.082 0.041

II ME 2.229 0.632 1.188 0961 2.217 0.614 1.182 0949 2.171 0.540 1.087 0888
MSE 0.183 0.054 0.112 0.088 0.167 0.055 0.093 0.073 0.082 0.027 0.073 0.028

III ME 2.224 0.631 1.182 0958 2.211 0.609 1.178 0943 2.173 0.532 1.081 0881
MSE 0.174 0.049 0.102 0.076 0.142 0.03 0.084 0.066 0.074 0.022 0.065 0.023

IV ME 2.218 0.622 1.175 0947 2.192 0.595 1.173 0935 2.161 0.524 1.082 0871
MSE 0.161 0.039 0.092 0.066 0.140 0.032 0.071 0.055 0.072 0.014 0.059 0.018

Table 2. ME and MSE of the parameter estimates for Θ = {1.0, 0.5, 1.5, 2.0}.

MLE Bayes(P0) Bayes(P1)

τ (n1, n2, m) CS α1 β1 α2 β2 α1 β1 α2 β2 α1 β1 α2 β2

0.7 (20,20,15) I ME 1.324 1.842 0.742 2.356 1.311 1.818 0.724 2.333 1.211 1.547 0.621 2.188
MSE 0.245 0.114 0.375 0.421 0.232 0.101 0.361 0.409 0.188 0.082 0.265 0.341

II ME 1.311 1.825 0.731 2.347 1.300 1.807 0.708 2.318 1.195 1.540 0.611 2.180
MSE 0.238 0.111 0.369 0.417 0.219 0.092 0.349 0.401 0.175 0.075 0.251 0.336

III ME 1.304 1.818 0.732 2.341 1.291 1.801 0.702 2.308 1.188 1.536 0.602 2.169
MSE 0.231 0.103 0.359 0.412 0.212 0.088 0.341 0.388 0.165 0.068 0.245 0.328

IV ME 1.289 1.812 0.727 2.335 1.287 1.792 0.691 2.302 1.181 1.527 0.592 2.161
MSE 0.228 0.097 0.352 0.404 0.207 0.082 0.336 0.375 0.158 0.060 0.236 0.319

(30,30,35) I ME 1.154 1.625 0.665 2.214 1.142 1.611 0.651 2.189 1.088 1.596 0.589 2.102
MSE 0.182 0.060 0.301 0.350 0.177 0.045 0.289 0.341 0.125 0.025 0.211 0.289

II ME 1.147 1.618 0.659 2.207 1.131 1.600 0.647 2.182 1.081 1.591 0.582 2.094
MSE 0.175 0.054 0.294 0.345 0.170 0.039 0.282 0.338 0.120 0.021 0.201 0.283

III ME 1.141 1.612 0.651 2.197 1.122 1.588 0.641 2.169 1.077 1.585 0.571 2.088
MSE 0.170 0.048 0.288 0.339 0.166 0.031 0.278 0.331 0.109 0.0158 0.188 0.269

IV ME 1.135 1.600 0.639 2.191 1.112 1.580 0.632 2.161 1.066 1.577 0.568 2.081
MSE 0.150 0.041 0.254 0.312 0.135 0.014 0.252 0.311 0.091 0.0131 0.162 0.251

1.5 (20,20,15) I ME 1.312 1.829 0.728 2.347 1.300 1.807 0.712 2.324 1.200 1.540 0.614 2.180
MSE 0.239 0.109 0.371 0.418 0.218 0.094 0.354 0.392 0.184 0.079 0.259 0.336

II ME 1.302 1.814 0.722 2.338 1.291 1.798 0.702 2.309 1.187 1.532 0.601 2.175
MSE 0.232 0.104 0.363 0.411 0.209 0.088 0.342 0.400 0.168 0.070 0.244 0.329

III ME 1.277 1.814 0.725 2.331 1.284 1.792 0.692 2.301 1.178 1.528 0.556 2.161
MSE 0.227 0.101 0.344 0.364 0.182 0.082 0.315 0.345 0.145 0.061 0.222 0.301

IV ME 1.275 1.811 0.721 2.328 1.281 1.792 0.691 2.298 1.171 1.521 0.552 2.155
MSE 0.224 0.098 0.340 0.360 0.177 0.078 0.309 0.340 0.141 0.054 0.217 0.297

(30,30,35) I ME 1.147 1.622 0.652 2.203 1.130 1.601 0.635 2.180 1.082 1.587 0.577 2.088
MSE 0.173 0.062 0.301 0.341 0.171 0.035 0.278 0.330 0.118 0.013 0.198 0.276

II ME 1.142 1.603 0.642 2.198 1.121 1.595 0.633 2.182 1.072 1.580 0.566 2.081
MSE 0.164 0.047 0.283 0.340 0.161 0.024 0.271 0.326 0.110 0.012 0.184 0.271

III ME 1.131 1.597 0.639 2.188 1.110 1.572 0.619 2.161 1.064 1.570 0.555 2.077
MSE 0.166 0.041 0.282 0.333 0.161 0.024 0.272 0.324 0.103 0.0153 0.182 0.264

IV ME 1.131 1.598 0.633 2.193 1.104 1.572 0.625 2.156 1.061 1.571 0.562 2.078
MSE 0.145 0.039 0.247 0.303 0.131 0.012 0.247 0.305 0.087 0.0124 0.154 0.247

Table 3. MIL and CP of the parameter estimates for Θ = {2.0, 1.0, 0.5, 0.8}.

ACI BCI BHPI

τ (n1, n2, m) CS α1 β1 α2 β2 α1 β1 α2 β2 α1 β1 α2 β2

0.5 (20,20,15) I MIL 3.541 1.325 2.457 1.854 3.523 1.312 2.432 1.828 3.245 1.135 2.255 1.542
CP 0.88 0.89 0.89 0.89 0.90 0.91 0.90 0.90 0.91 0.91 0.92 0.91

II MIL 3.518 1.304 2.439 1.831 3.505 1.292 2.411 1.809 3.218 1.121 2.241 1.519
CP 0.90 0.89 0.90 0.89 0.91 0.91 0.92 0.93 0.92 0.93 0.92 0.91

III MIL 3.509 1.295 2.425 1.820 3.497 1.281 2.400 1.801 3.207 1.109 2.229 1.503
CP 0.91 0.89 0.92 0.90 0.91 0.92 0.93 0.91 0.92 0.93 0.92 0.94

IV MIL 3.491 1.284 2.420 1.808 3.494 1.274 2.391 1.791 3.201 1.089 2.214 1.500
CP 0.92 0.90 0.91 0.90 0.92 0.92 0.91 0.91 0.93 0.93 0.93 0.91
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Table 3. Cont.

ACI BCI BHPI

τ (n1, n2, m) CS α1 β1 α2 β2 α1 β1 α2 β2 α1 β1 α2 β2

(30,30,35) I MIL 3.478 1.271 2.409 1.801 3.479 1.270 2.382 1.777 3.189 1.080 2.205 1.487
CP 0.92 0.91 0.93 0.92 0.92 0.92 0.90 0.91 0.91 0.95 0.93 0.94

II MIL 3.471 1.265 2.402 1.794 3.471 1.266 2.374 1.771 3.177 1.066 2.201 1.482
CP 0.91 0.93 0.94 0.92 0.93 0.91 0.93 0.91 0.91 0.92 0.92 0.93

III MIL 3.461 1.260 2.387 1.778 3.460 1.252 2.363 1.759 3.170 1.049 2.189 1.477
CP 0.93 0.91 0.92 0.95 0.93 0.93 0.94 0.91 0.95 0.92 0.95 0.94

IV MIL 3.423 1.248 2.384 1.771 3.449 1.242 2.360 1.751 3.164 1.041 2.183 1.469
CP 0.93 0.92 0.92 0.95 0.93 0.92 0.94 0.92 0.95 0.92 0.92 0.92

1.0 (20,20,15) I MIL 3.532 1.319 2.448 1.851 3.517 1.304 2.424 1.820 3.235 1.127 2.249 1.545
CP 0.89 0.89 0.90 0.90 0.91 0.91 0.89 0.91 0.92 0.92 0.92 0.92

II MIL 3.511 1.301 2.431 1.824 3.501 1.287 2.400 1.801 3.209 1.117 2.229 1.512
CP 0.91 0.89 0.92 0.89 0.92 0.91 0.92 0.92 0.92 0.92 0.92 0.93

III MIL 3.501 1.287 2.411 1.808 3.491 1.271 2.402 1.790 3.202 1.102 2.215 1.492
CP 0.91 0.90 0.92 0.93 0.91 0.92 0.92 0.91 0.95 0.93 0.92 0.96

IV MIL 3.487 1.280 2.422 1.801 3.487 1.266 2.388 1.785 3.194 1.082 2.208 1.492
CP 0.92 0.95 0.92 0.90 0.92 0.95 0.91 0.94 0.93 0.94 0.94 0.92

(30,30,35) I MIL 3.470 1.264 2.401 1.792 3.470 1.259 2.371 1.771 3.179 1.065 2.195 1.480
CP 0.93 0.93 0.93 0.92 0.93 0.93 0.90 0.93 0.91 0.93 0.93 0.96

II MIL 3.462 1.254 2.391 1.790 3.466 1.265 2.364 1.762 3.170 1.054 2.190 1.471
CP 0.92 0.92 0.94 0.92 0.93 0.93 0.94 0.94 0.91 0.92 0.92 0.94

III MIL 3.451 1.249 2.380 1.768 3.451 1.242 2.356 1.750 3.162 1.041 2.182 1.470
CP 0.93 0.92 0.92 0.94 0.94 0.92 0.94 0.91 0.94 0.92 0.95 0.92

IV MIL 3.418 1.239 2.377 1.762 3.441 1.233 2.349 1.747 3.160 1.036 2.175 1.461
CP 0.94 0.92 0.94 0.94 0.93 0.92 0.94 0.92 0.95 0.94 0.92 0.94

Table 4. MIL and CP of the parameter estimates for Θ = {1.0, 0.5, 1.5, 2.0}.

ACI BCI BHPI

τ (n1, n2, m) CS α1 β1 α2 β2 α1 β1 α2 β2 α1 β1 α2 β2

0.7 (20,20,15) I MIL 2.452 3.412 1.354 4.213 2.432 3.395 1.328 4.200 2.265 3.174 1.154 4.022
CP 0.89 0.90 0.89 0.90 0.91 0.90 0.92 0.90 0.91 0.93 0.91 0.91

II MIL 2.441 3.403 1.342 4.207 2.418 3.381 1.311 4.187 2.254 3.162 1.142 4.007
CP 0.90 0.91 0.89 0.90 0.91 0.93 0.92 0.94 0.92 0.95 0.92 0.93

III MIL 2.428 3.384 1.328 4.201 2.404 3.372 1.300 4.172 2.241 3.150 1.124 4.001
CP 0.91 0.91 0.92 0.93 0.91 0.90 0.92 0.91 0.91 0.93 0.94 0.94

IV MIL 2.421 3.377 1.322 4.189 2.391 3.367 1.292 4.169 2.225 3.142 1.112 3.987
CP 0.92 0.92 0.91 0.93 0.93 0.92 0.92 0.91 0.92 0.93 0.93 0.95

(30,30,35) I MIL 2.390 3.352 1.291 4.155 2.362 3.332 1.266 4.166 2.202 3.114 1.082 3.952
CP 0.93 0.94 0.93 0.93 0.92 0.92 0.93 0.91 0.93 0.95 0.93 0.96

II MIL 2.382 3.340 1.278 4.142 2.349 3.327 1.254 4.149 2.189 3.100 1.070 3.938
CP 0.92 0.91 0.92 0.93 0.92 0.91 0.93 0.93 0.91 0.94 0.93 0.92

III MIL 2.371 3.331 1.272 4.131 2.340 3.321 1.249 4.143 2.179 3.94 1.062 3.933
CP 0.92 0.92 0.92 0.93 0.93 0.93 0.92 0.91 0.95 0.94 0.95 0.95

IV MIL 2.362 3.324 1.262 4.119 2.332 3.314 1.240 4.131 2.170 3.923 1.049 3.925
CP 0.91 0.92 0.92 0.91 0.93 0.92 0.93 0.92 0.95 0.93 0.92 0.93

1.5 (20,20,15) I MIL 2.448 3.413 1.354 4.207 2.424 3.391 1.317 4.187 2.261 3.169 1.155 4.014
CP 0.90 0.90 0.89 0.91 0.91 0.92 0.92 0.93 0.91 0.94 0.92 0.93

II MIL 2.433 3.395 1.334 4.201 2.412 3.374 1.305 4.175 2.249 3.155 1.140 3.998
CP 0.91 0.91 0.90 0.92 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.94

III MIL 2.421 3.377 1.321 4.194 2.392 3.366 1.292 4.170 2.244 3.144 1.118 4.003
CP 0.92 0.92 0.93 0.92 0.91 0.92 0.92 0.91 0.92 0.93 0.94 0.92

IV MIL 2.414 3.371 1.315 4.181 2.379 3.362 1.284 4.162 2.227 3.136 1.104 3.979
CP 0.93 0.92 0.92 0.93 0.93 0.92 0.96 0.92 0.92 0.93 0.96 0.95

(30,30,35) I MIL 2.385 3.347 1.285 4.150 2.354 3.325 1.248 4.160 2.194 3.100 1.071 3.939
CP 0.94 0.94 0.94 0.93 0.92 0.94 0.93 0.94 0.93 0.94 0.93 0.90

II MIL 2.374 3.333 1.271 4.129 2.339 3.321 1.248 4.141 2.180 3.104 1.062 3.932
CP 0.91 0.93 0.92 0.94 0.92 0.91 0.95 0.93 0.95 0.94 0.96 0.92

III MIL 2.365 3.319 1.270 4.133 2.328 3.314 1.240 4.139 2.173 3.936 1.054 3.928
CP 0.91 0.92 0.94 0.93 0.93 0.96 0.92 0.96 0.95 0.94 0.93 0.92

IV MIL 2.355 3.318 1.254 4.108 2.324 3.307 1.225 4.125 2.166 3.920 1.039 3.911
CP 0.93 0.92 0.93 0.91 0.93 0.93 0.93 0.94 0.95 0.93 0.94 0.95

Figures 3–6 show scatter plots of the model parameters generated by the MCMC method
and the corresponding histograms, which showed the normality of posterior samples.
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Figure 3. The estimate PDF of data 1.

Figure 4. The estimate PDF of data 2.

Figure 5. The scatter plot and the corresponding histogram of the parameter α1.

Figure 6. The scatter plot and the corresponding histogram of the parameter α2.

Results: From the numerical results, we observed some points, which can be described
as follows:
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1. From the results presented in Tables 1–4, adaptive type-II HPCS presents a more
efficacious censoring scheme.

2. In general, the MSE of all estimates decreases as the effective sample sizes increase.
3. For all cases, the censoring scheme IV, in which the removed items after the first

observed failure give more accurate results through the MSEs than the other schemes.
4. Estimations under ML and non-informative Bayes are close to others.
5. Bayesian estimation under informative prior information serves better than classical

estimation (ML and bootstrapping) and non-informative Bayes estimation.
6. The proposed model serves well for all of the parameter values.
7. The informative Bayes credible interval serves better than bootstrap CIs and asymp-

totic CIs.
8. As the effective sample sizes increase, the coverage probability for the parameters is

close to the nominal level of 0.95.
9. We also observed that better estimates are obtained by increasing the ideal test time τ.

4.2. Real Data Example

In this section, we consider the combination of two real-life examples to illustrate
and discuss the proposed model and the corresponding methods of estimation. The data
were presented by Nelson [28] to describe breakdown times for insulating fluid per minute
between two electrodes under different voltages. Data 1 was reported under 34. kilo-
volts, and data 2 was reported under 36 kilo-volts. The data and the corresponding joint
sample are presented in Table 5. The problem of fitting the data with respect to IWD was
discussed by Alslman and Amal [29]. The estimate PDF of two data points is described in
Figures 3 and 4, see [29]

Hence, we considered the IWD as a good fit for both data samples. From the joint
sample, we generated the joint adaptive type-II PHCS under censoring scheme τ = 10 and
R ={1, 1, 1, 2, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0}. The random generated sample and
its type is reported in Table 5. The corresponding censoring schemes R∗1 ={1, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0} and R∗1 ={0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
0, 0, 0, 0}. Point ML and Bayes estimates of the model parameters are reported in Table 6.
The approximate confidence interval (ACI), bootstrap confidence intervals (BCI), and the
Bayesian HP credible interval (HPCI) are computed and reported in Table 6. Estimations of
reliability and failure rate functions of two lines are also computed, results are summarized
in Table 7. In the Bayesian approach, we adopted non-informative prior information for
the model parameters with values ai = bi = 0.0001. For the MCMC approach, we ran the
chain 11,000 times and discarded the first 1000 varieties as a burn-in. The MCMC trace
and the associated histograms plots are displayed in Figures 5–8. These figures show the
convergence in the empirical posterior distribution.

Table 5. The Breakdown times in minutes of insulating fluid Nelson [28].

Data 1 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.5, 7.35, 8.01, 8.27, 12.06, 31.75,
32.52, 33.91, 36.71, 72.89

Data 2 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.9, 3.67, 3.99, 5.35, 13.77, 25.50

Joint data (0.19,1), (0.35,0), (0.59,0), (0.78,1), (0.96,1), (0.96,0), (0.99,0), (1.31,1), (1.69,0), (1.97,0)
(2.07,0), (2.58,0), (2.71,0), (2.78,1), (2.9,0), (3.16,1), (3.67,0), (3.99,0), (4.15,1)
(4.67,1), (4.85,1), (5.35,2), (6.5,1), (7.35,1), (8.01,1), (8.27,1), (12.06,1), (13.77,0)
(25.5,0), (31.75,1), (32.52,1), (33.91,1), (36.71,1), (72.89,1)

Joint adaptive (0.19, 1), (0.35,0), (0.59,0), (0.78,1), (0.96,1), (0.96,0), (0.99,0), (1.69,0)
type-II HPCS (1.97,0), (2.07,0), (3.16,1), (3.67,0), (3.99,0), (4.15,1), (4.67,1), (5.35,0), (7.35,1)

(8.01,1), (13.77,0), (32.52,1), (33.91,1), (36.71,1)
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Table 6. The point and 95% interval estimates of the parameters.

Pa.s ML Bayes ACI BCI HPI

α1 1.0222 1.6624 (0.2393, 1.8050) (0.3412, 1.9925) (0.6245, 1.7452)
α2 0.5903 1.4963 (0.0603, 1.1202) (0.1074, 1.3542) (0.4215, 1.6542)
β1 0.7525 0.6135 (0.4103, 1.0947) (0.4555, 1.4221) (0.5008, 1.1245)
β2 1.5822 1.0196 (0.9066, 2.2578) (0.9325, 2.4478) (0.7421, 1.4582)

Table 7. Reliability and failure rate functions of two line for mission time t = 1.0.

S1 S2 h1 h2

ML 0.64018 0.445814 0.432319 1.16091
MCMC 0.793798 0.755609 0.246514 0.45368

Figure 7. The scatter plot and the corresponding histogram of the parameter β1.

Figure 8. The scatter plot and the corresponding histogram of the parameter β2.

5. Conclusions

Comparative life tests have received a great deal of attention in recent years for
industrial products that have many lines of manufacture within the same facility. In
addition, there is difficulty determining the relative advantages of competing products in
terms of competitive duration. So, in this study, we examined this problem for products
from two production lines that have inverse Weibull lifetime distributions with different
parameters. An adaptive type-II HPCS was proposed to reduce total test time and unit costs.
For the unknown model parameters, both Bayesian and maximum likelihood techniques
were used to estimate model parameters. The asymptotic confidence intervals were then
computed using the observed information matrix. The bootstrap-P method can also be
used to calculate confidence intervals. The Bayes estimates and credible intervals were
computed using the Markov chain Monte Carlo method. Through Monte Carlo simulation
studies, the developed methods were evaluated and compared. For all cases, the censoring
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scheme IV, in which the removed items were removed after the first observed failure, gives
more accurate results through the MSEs than the other schemes. The HPD credible interval
has the shortest interval length when compared to the ACI. The proposed model was tested
using real-world data examples. The results obtained from this study indicate that the
model and associated estimating methods work effectively in different cases. The current
method can be extended to generate an ideal progressive censoring sampling plan.
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