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Abstract: In the present paper, the problems of longitudinal and flexural vibrations of an inhomoge-
neous rod are considered. The Young’s modulus and density are variable in longitudinal coordinate.
Vibrations are caused by a load applied at the right end. The proposed method allows us to consider a
wider class of inhomogeneity laws in comparison with other numerical solutions. Sensitivity analysis
is carried out. A new inverse problem related to the simultaneous identification of the variation
laws of Young’s modulus and density from amplitude–frequency data, which are measured in given
frequency ranges, is considered. Its solution is based on an iterative process: at each step, a system of
two Fredholm integral equations of the first kind with smooth kernels is solved numerically. The
analysis of the kernels is carried out for different frequency values. To find the initial approximation,
several approaches are proposed: a genetic algorithm, minimization of the residual functional on a
compact set, and additional information about the values of the sought-for functions at the ends of the
rod. The Tikhonov regularization and the LSQR method are proposed. Examples of reconstruction of
monotonic and non-monotonic functions are presented.

Keywords: Tikhonov regularization; LSQR method; inverse problem; Fredholm integral equation;
inhomogeneous body

MSC: 47A52, 65R30, 74H75, 45B05

1. Introduction

Nowadays, the study of inverse coefficient problems is an important part of modern
mechanics. These problems have wide practical applications in the implementation of
nondestructive testing and diagnosis of objects of mass production and critical purposes.

One of the most promising inhomogeneous materials is a functionally graded material
(FGM) [1–4]. Their physical properties continuously change along spatial coordinates. This
leads to a significantly reduced probability of cracking compared to that of conventional
composite laminates. The FGM production is complex, high-tech and includes a few
different processes (crushing, pressing, melting, spraying, etc.). In this case, the physical
properties of the constituent components change continuously. One way to describe the
behavior of such materials is to use a model of linear elasticity theory with variable elastic
moduli and density. There are a number of works that are devoted to the study of direct
problems for given laws of properties of an inhomogeneous material [5–7]. In a number of
cases, solutions were obtained numerically using the finite element method [8–10], and for
some special cases, analytical solutions were obtained (see, for example [11–13]). One-
dimensional or two-dimensional power functions described by one or two parameters
are usually used as variation laws. In particular, a number of works study the behavior
of inhomogeneous rods with properties that vary along one or two coordinates [14–16].
This is because rods remain one of the most common structural elements and are more
accessible for full-scale experiments.
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Considering the complexity and cost of FGM production, an important problem is to
identify the real variation laws using nondestructive methods [17]. Among these methods,
the acoustic method is worth noting. Compared to some others, it quickly allows us to
carry out experiments, can be used for bodies of various shapes, and is cheaper. Within the
framework of this method, it is assumed that the variable characteristics effect the acoustic
properties of the object. The problem of diagnosing the properties of an inhomogeneous
material can be considered as an inverse coefficient problem related to identifying the
parameters of the differential operator that describe the behavior of an object.

From a mathematical point of view, such problems are usually essentially ill-posed
and nonlinear. Inverse coefficient problems arise in many fields of science and engineering,
including mechanics, biomechanics, physics, medicine, and geophysics [18,19]. The main
difficulty is constructing operator relations that connect the input data and the desired
functions or parameters of differential operators [18]. In some cases, inverse problems
are reduced to minimizing the residual functional on the corresponding compact set
constructed from a priori information about the sought-for quantities. On the other hand,
there are more complex problems in which the search for unknown characteristics is
carried out in a wide class of functions. The choice of special methods with which to solve
such problems is determined based on the specific problem and the available data. Some
commonly used methods are Tikhonov regularization, least-squares methods, Bayesian
inversion and iterative processes. These methods can be computationally intensive, and the
choice of method and associated parameters can have a significant impact on the accuracy
and stability of the solution. Taking into account the features of inverse problems, the choice
of the initial approximation in iterative processes is an important problem. The iterative
process may not converge if it differs significantly from the desired function or parameter.

The most important applied problems solution methods are those that make it possible
to search for unknown quantities in a wide class of functions in the presence of the input
data error. Previously, the authors showed that in some cases, inverse coefficient problems
of elasticity and thermoelasticity can be reduced to the study of the Fredholm integral
equation (FIE) of the first kind [20,21].

The paper [22] provides an overview of numerical methods with which to solve the
FIE of the first kind. The first part of the paper describes the importance of FIE analysis in
various studies, the second part presents the main theoretical statements and definitions,
the third one describes the existing numerical methods for solving these equations (direct
numerical integration method, wavelet analysis, GMRES method, multistage iterative
method, CAS wavelet solution, multiple constraint smoothing method, Tikhonov regu-
larization, etc.), and the fourth provides a brief assessment of these and other methods,
including heuristic methods (genetic algorithm, neural networks, etc.). Other methods
for solving integral equations of the first kind are also being developed (see, for exam-
ple [23,24]). Each method has its own characteristics.

Among the most common methods used to construct a numerical solution of the
FIE of the first kind, Tikhonov regularization should be noted. Theoretical foundations,
program algorithms, and examples are presented in [25,26]. This method allows one to
search for solutions of the FIE of the first kind, which arise as problems in various areas of
study [27–29]. It should also be noted that Tikhonov regularization continues to develop
(see, for example [30,31]).

In the present work, problems on longitudinal and flexural vibrations of an inho-
mogeneous rod are formulated. It is assumed that the Young’s modulus and density are
variable along the longitudinal coordinate. Direct problems of determining longitudinal
and transverse displacements were solved numerically. The effect of variable properties on
amplitude-frequency characteristics (AFC) was analyzed. Sensitivity analysis was carried
out. A new inverse problem on the simultaneous identification of the variation laws of
Young’s modulus and density from AFC data, which are measured in given frequency
ranges, is considered. A numerical solution using an iterative process is proposed. A sys-
tem of FIE of the first kind is derived for its implementation. The solution was obtained
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using the Tikhonov method and the LSQR method. To demonstrate the accuracy of the
obtained solutions, reconstruction examples are presented.

2. Formulation of the System of FIE of the First Kind

Consider the problem of determining the variation laws of the elastic modulus E(x)
and density ρ(x) of an inhomogeneous elastic rod. Within the framework of acoustic
diagnostics, the identification of these variable properties can be carried out given the
data on the AFC change. Since two functions are unknown, we will consider problems of
steady-state longitudinal (Problem 1) and flexural (Problem 2) vibrations. The rod length
equals l. The left end of the rod is rigidly fixed. Vibrations are forced by concentrated forces
applied at the right end (see Figure 1).

(a) (b)

Figure 1. Inhomogeneous rod with applied longitudinal (a) and transverse (b) forces.

Problem 1. Longitudinal vibrations of the rod are described as follows:


(
EFw′1

)′
+ ρω2Fw1 = 0

w1(0) = 0
EFw′1(l) = p

or


s′ = −ληu
u′ =

s
g

u(0) = 0
s(1) = p∗

, (1)

where ξ = x/l ∈ [0, 1], w1(x) = lu(ξ), E(x) = E∗g(ξ), ρ(x) = ρ∗η(ξ), λ = ρ∗ω2l2/E∗,
p∗ = p/(E∗F). Here, u is the displacement function along the rod axis, F is the cross-sectional
area, ω is the vibration frequency, and the coefficients E∗ and ρ∗ represent characteristic values
of Young’s modulus and density, respectively. The functions g(ξ) and η(ξ) describe the laws of
variation of variable characteristics; the parameter λ is proportional to the vibration frequency.

Problem 2. Flexural vibrations of the rod


(JEw′′2 )

′′ − ρω2Fw2 = 0
w2(0) = 0
w′2(0) = 0
(JEw′′2 )(l) = 0
(JEw′′2 )

′(l) = −P

or



a′ = γληv
b′ = a

c′ =
b
g

v′ = c
a(1) = p∗

b(1) = 0
c(0) = 0
v(0) = 0

, (2)

where similar notations are introduced

w2(x) = lv(ξ), γ =
Fl2

J
, p∗ = − Pl2

JE∗
.

Here, v is the function of the vertical displacement of points on the rod axis and J is the axial moment
of inertia of the cross section. For rods of circular cross-section with radius r, the value of the γ
parameter is defined as γ = 4l2/r2. Within the framework of beam theory, it is usually assumed
that r/l ≤ 1/5, so the value of the parameter γ ≥ 100. Hereinafter, we will assume that γ = 100.
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Each of these problems for given functions g(ξ), η(ξ) can be solved numerically; for example, using
the shooting method [32].

The solution of the inverse problem consists of determining the functions g(ξ), η(ξ) and
u(ξ), v(ξ) from the data on the AFC change u(1, λ) = f (λ), v(1, λ) = q(λ), specified at
different frequency ranges λ ∈ [λ−1 , λ+

1 ] and λ ∈ [λ−2 , λ+
2 ], respectively. This problem is essen-

tially nonlinear. To solve it, the technique described in [33], based on the linearization method
is used.

Functions describing displacement and parameter changes are represented as follows

g(ξ) = g0(ξ) + εg1(ξ), η(ξ) = η0(ξ) + εη1(ξ),
u(ξ) = u0(ξ) + εu1(ξ), v(ξ) = v0(ξ) + εv1(ξ),

(3)

where g1(ξ), η1(ξ) are corrections to the corresponding functions, ε is the small formal parameter.
To determine these, a system of two FIEs of the first kind can be obtained from the generalized
reciprocity relation [20,33]:

∫ 1

0
(g1(ξ)K11(ξ, λ)− η1(ξ)K12(ξ, λ))dξ =F1(λ), λ ∈ [λ−1 , λ+

1 ]∫ 1

0
(g1(ξ)K21(ξ, λ)− η1(ξ)K22(ξ, λ))dξ =F2(λ), λ ∈ [λ−2 , λ+

2 ]

, (4)

where K11(ξ, λ) = (u′0)
2, K12(ξ, λ) = λu2

0, K21(ξ, λ) = (v′′0 )
2, K22(ξ, λ) = γλv2

0 — non-
negative kernels of integral operators, F1(λ) = −p∗( f (λ)− u0(1, λ)), F2(λ) = p∗(q(λ)−
v0(1, λ)), the functions u0(ξ) and v0(ξ) are determined numerically from the solution of the
following boundary value problems for the given laws η0 and g0


s′0 = −λη0u0

u′0 =
s0

g0
u0(0) = 0
s0(1) = p∗

,



a′0 = γλη0v0
b′0 = a0

c′0 =
b0

g0
v′0 = c0
a0(1) = p∗

b0(1) = 0
c0(0) = 0
v0(0) = 0

. (5)

It should be noted that kernels of these equations are non-negative. The right-hand sides of
the equations are the differences in the AFC values calculated at the frequency ranges. There-
fore, the effect of the Young’s modulus and density variation laws on the values of the AFC
and kernels is an important aspect to consider when constructing a numerical scheme to solve
this system.

3. Sensitivity Analysis

To analyze the effect of the density variation laws η(ξ) on the AFC of an inhomo-
geneous rod, graphs of the functions u(1, λ) and v(1, λ) in the vicinity of the first res-
onance for two pairs of material properties variation laws are presented (see Figure 2):
g1(ξ) = 1 + 0.5 e−ξ , η1(ξ) = 1 (black solid lines) and g2(ξ) = 1 + 0.5e−ξ , η2(ξ) = 1 + ξ
(green dash-dotted lines). Here and below, without loss of generality, taking into account
the linearity of the problem, we assume that p∗ = p∗ = 1.
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(a) (b)

Figure 2. AFC |u(1, λ)| (a) and |v(1, λ)| (b) in the vicinity of the first resonance for two variation laws
for the density.

To estimate the effect of the Young’s modulus variation laws g(ξ), the graphs u(1, λ)
and v(1, λ) in the vicinity of the first resonance for two pairs of material properties variation
laws are similarly presented (see Figure 3): g1(ξ) = 1, η1(ξ) = 1 + ξ (black solid lines) and
g2(ξ) = 1 + 0.5e−ξ , η2(ξ) = 1 + ξ (green dash-dotted lines). Similar AFC change results
were also obtained in the vicinity of the second resonances.

(a) (b)

Figure 3. AFC |u(1, λ)| (a) and |v(1, λ)| (b) in the vicinity of the first resonance for two variation laws
for the Young’s modulus.

As it can be seen from the presented results, the Young’s modulus and density variation
laws have a commensurate effect on the AFC values for the considered problems. In this
case, the largest change occurs in the vicinity of the resonant frequencies. To reveal the
peculiarities of the kernels Kij(ξ, λ) of the integral operators (4) on the basis of numerical
solutions to direct problems, their graphs are built on the frequency ranges that are below
the first (see Figure 4) and between the first and second resonances (see Figure 5). It can be
seen from these figures that below the first resonance, all the graphs are monotonic, and
between resonances they are non-monotonic. The kernels K12(ξ, λ) and K22(ξ, λ) vanish
for ξ = 0 and for the kernel K21(ξ, λ) = 0 for ξ = 1 due to the boundary conditions.
These features must be taken into account when constructing a numerical solution to the
considered inverse coefficient problem. It should be noted that some peculiarities can be
avoided by changing the boundary conditions. For example, when flexural vibrations are
caused by a bending moment applied at the right end, the kernel is K21(1, λ) 6= 0. As can be
seen from the presented graphs, a sharp change in the values of the kernels is observed near
the resonance frequencies. These zones are the most informative in the study of inverse
coefficient problems, since the effect of variable properties on acoustic characteristics is
significantly noticeable.
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(a) (b)

(c) (d)

Figure 4. Kernels Kij(ξ, λ) below the first resonance: (a) K11(ξ, λ), (b) K12(ξ, λ), (c) K21(ξ, λ),
(d) K22(ξ, λ).

(a) (b)

(c) (d)

Figure 5. Kernels Kij(ξ, λ) between the first and the second resonances: (a) K11(ξ, λ), (b) K12(ξ, λ),
(c) K21(ξ, λ), (d) K22(ξ, λ).
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4. Iterative Process Implementation

Now, using the equation system (4), we can construct an iterative process for me-
chanical parameters reconstruction. Taking into account the ill-posed nature of the inverse
problem and the variation laws effect on the right-hand sides of the equations, it should
be noted that an important stage is the initial approximation choice. Basing on a priori
information about the reconstructed functions boundedness, we consider the following
three approaches:

1. Genetic algorithm. We approximate unknown functions using the Lagrange polynomial

g(ξ) = 1 +
N

∑
i=1

gi

N

∏
j=0, j 6=i

ξ − ξi
ξ j − ξi

η(ξ) = 1 +
N

∑
i=1

ηi

N

∏
j=0, j 6=i

ξ − ξi
ξ j − ξi

(6)

where ξi = ih — equidistant nodes, gi, ηi — real coefficients of the corresponding represen-
tations, i = 0, 1 . . . N, h = 1/N.

Consider the following objective function:

J(η0, ..., ηn, g0, ..., gn) =
n

∑
i=0

[
U(η0, ..., ηn, g0, ..., gn, λ

(i)
1 )− f (λ(i)

1 )
]2

+
m

∑
j=0

[
V(η0, ..., ηn, g0, ..., gn, λ

(j)
2 )− q(λ(j)

2 )
]2

,
(7)

where λ
(i)
1 ∈ [λ−1 , λ+

1 ], i = 1, 2 . . . n, λ
(j)
2 ∈ [λ−2 , λ+

2 ], j = 1, 2 . . . m, the values of U and V

are equal to the values of u(1, λ
(i)
1 ) and v(1, λ

(j)
2 ), respectively. These values were obtained

numerically from the solution of the problems (1) and (2) for each set of parameters
(η0, ..., ηn, g0, ..., gn).

Thus, the initial approximations search in the form (6) is reduced to the objective func-
tion minimization. Each set of numbers (η0, ..., ηn, g0, ..., gn) is represented as a sequence
of bits, consisting of zeros and ones. The search for a solution is carried out using the
genetic algorithm GALGO-2.0, implemented in C++ [34]. The choice of the C++ is due to
the high speed with which numerical solutions to problems (1) and (2) are obtained using
the shooting method.

2. Minimization of the residual functional on a compact set. It should be noted that,
in a particular case, the problem of finding initial approximations in the class of linear
functions of the form

g(ξ) = ag + bgξ, η(ξ) = aη + bηξ (8)

can be reduced to finding the minimum of a function for a set of parameters (ag, bg, aη , bη)
on compact sets Mg and Mη . These sets are constructed using a priori information about
the boundedness of the sought-for functions 0 < g− ≤ g(ξ) ≤ g+, 0 < η− ≤ η(ξ) ≤ η+,
ξ ∈ [0, 1] (see Figure 6). The numerical implementation of this approach is carried out
by calculating the values of the function J for each set (ag, bg, aη , bη) on the grids of the
compact sets Mg and Mη and choosing the set that minimizes the function J. The step of
compact sets partitioning has a significant effect on the accuracy of the parameters ag, bg,
aη , bη obtained.

3. Additional information about the values of the sought-for functions. The initial
approximation of the restored function can be chosen in the form of a constant, which
is defined as the arithmetic mean of the maximum and minimum values, or as equal to
one of them. The main advantage of this approach is its ease of implementation. On the
other hand, the initial approximation chosen this way can differ significantly from the exact
solution, which can lead to a divergence of the iterative process.
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M g+

ag
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−

−

g+g
−

−
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(a)
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−

−
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−

−

�
−

�
+
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Figure 6. Compact sets Mg (a) and Mη (b).

Now, we formulate the iterative process to find the functions of Young’s modulus
and density. At the first stage, an initial approximation is selected according to one of the
methods described above. Next, corrections to the sought-for functions are determined
from the solution of the system of FIEs. The corrections to the corresponding functions are
made. Then, the process is closed and repeated until the stopping condition is reached:
this is the maximum predetermined number of iterations or the smallness of the right-
hand sides of FIEs. It should be noted that the main difficulty in the implementation of
this process lies in the construction of a numerical solution to the system of FIEs. Since
such a problem is essentially ill-posed, it is necessary to use special techniques. In this
paper, the Tikhonov regularization and the LSQR method are considered. The system of
linear algebraic equations of size 2n for the implementation of Tikhonov regularization is
presented:

Bαu = F, (9)

where

Bα = B + αC, C = E +

(
C1 0
0 C1

)
,

F =

 f1
...

f2n

, u =

 u1
...

u2n

, B =

 b11 . . . b1n
...

. . .
...

b2n1 . . . b2n2n

, B = hξ hλ AT A

ξ j = (j− 1)hξ , hξ = (n− 1)−1, j = 1 . . . n,

fk = hλ

2m
∑

i=1
f̃iaik, k = 1 . . . 2n,

f̃i =

{
F1(λi), i = 1 . . . m,
F2(λi−m), i = m + 1 . . . 2m,

uj =

{
g1(ξ j), j = 1 . . . n,
η1(ξ j−n), j = n + 1 . . . 2n,

aij =


K11(ξ j, λi), i = 1 . . . m, j = 1 . . . n,
K12(ξ j−n, λi), i = 1 . . . m, j = n + 1 . . . 2n,
K21(ξ j, λi−m), i = m + 1 . . . 2m, j = 1 . . . n,
K22(ξ j−n, λi−m), i = m + 1 . . . 2m, j = n + 1 . . . 2n,

C1 =



1
h2

ξ

− 1
h2

ξ

0 ... 0 0

− 1
h2

ξ

2
h2

ξ

− 1
h2

ξ

... 0 0

... ... ... ... ... ...
0 0 ... − 1

h2
ξ

2
h2

ξ

− 1
h2

ξ

0 0 ... 0 − 1
h2

ξ

1
h2

ξ


.
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Here, E is the identity matrix, α is the regularization parameter, and C1 is the n× n band
matrix. The α parameter is determined according to the algorithm described [25].

The LSQR method is applied to a system of linear algebraic equations obtained
after the discretization of the integral operators included in both equations. In this case,
the trapezoidal rule was used. The LSQR method was implemented in the C++ according
to the algorithm described in [35].

5. Reconstruction Examples

As a model example of the proposed methods for solving FIE systems, the reconstruc-
tion examples for monotonic and non-monotonic functions g(ξ) and η(ξ) are presented.

In Figures 7–15, there are results of reconstruction, maximum relative error and the
corresponding AFC.

In Figures 7, 10 and 13, we plot the exact solutions (black solid lines), initial ap-
proximations (red open circles) and the reconstructed solutions obtained using the LSQR
method [35] (green circles) and an iterative process based on the Tikhonov regularization
(blue dash-dotted lines).

Hereinafter, the maximum relative error of g(ξ) reconstruction is determined by
δ(ξi) =

|g∗(ξi)−ge(ξi)|
max

ξ∈[ξ0,1]
ge(ξ)

· 100%, ξi ∈ [ξ0, 1], and similarly for η(ξ). Graphs of δ(ξ) for increas-

ing, decreasing and non-monotonic laws g(ξ) and η(ξ) are shown in Figures 8, 11 and 14,
respectively.

In Figures 9, 12 and 15 the AFC |u(1, λ)| and |v(1, λ)| are plotted in the frequency
ranges in which the identification of the sought-for variation laws is carried out. It is worth
noting that in all examples, there is a significant convergence of the AFC for the exact and
regularized solutions.

Figure 7 (monotonically increasing laws): the exact laws are ge(ξ) = 2− (ξ − 1)2 and
ηe(ξ) = 1 + e5(ξ−1), the initial approximations are g f (ξ) = 1 and η f (ξ) = 1 (minimums
of reconstructed laws), reconstructed laws are g∗(ξ) and η∗(ξ); 20 iterations (Tikhonov
regularization) and 100 iterations (LSQR method). The value of δ is 5.3% for the func-
tion g(ξ) (at the right end is 7.5%) and 2.1% for function η(ξ) (at the right end is 8.1%). The
frequency ranges are λ ∈ [0, 1.44] for g(ξ), and λ ∈ [0, 0.02] for η(ξ). The number of points
along the longitudinal coordinate is n = 31; the number of points in frequency is m = 11.
The residual norm of the right-hand sides to exit the iterative process is equal to 10−7.

Figure 10 (monotonically decreasing laws): the exact laws are ge(ξ) = 2− (ξ− ξ0)
2 and

ηe(ξ) = 1 + e−4ξ+0.02, the initial approximations are g0(ξ) = η0(ξ) = 2− ξ; 10 iterations
(Tikhonov regularization) and 26 iterations (LSQR method). The value of the relative
error δ is 3.58% for the function g(ξ) and 6.44% for the function η(ξ). The frequency ranges
are λ ∈ [6.25, 16.0] for g(ξ), and λ ∈ [0.71, 3.75] for η(ξ). The number of division points
and the residual norm are similar to those in the previous example.

Figure 7. Reconstruction of monotonically increasing laws.
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Figure 8. The value of the relative error δ: function g(ξ) (left), function η(ξ) (right).

−

−

Figure 9. AFC |u(1, λ)| (left) and |v(1, λ)| (right).

Figure 10. Reconstruction of monotonically decreasing functions.

Figure 11. The value of the relative error δ: function g(ξ) (left), function η(ξ) (right).
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−

−

Figure 12. AFC |u(1, λ)| (left) and |v(1, λ)| (right).

Reconstruction of non-monotonic laws is presented in the Figure 13. The exact
laws are ge(ξ) = 1 + sin(πξ) and ηe(ξ) = 4ξ2 − 4ξ + 2, the initial approximations are
g0(ξ) = η0(ξ) = 1.5 (average values); 15 iterations (Tikhonov regularization) and 23 it-
erations (LSQR method). The value of δ is 3.9% for the function g(ξ) and 4.09% for the
function η(ξ) (at the left end is 27%). The frequency ranges are λ ∈ [4.41, 15.21] for g(ξ)
and λ ∈ [0.19, 2.31] for η(ξ).

It can be seen from the presented results that the proposed numerical methods for
solving the system of FIEs of the first kind allow one to obtain similar results. It should be
noted that the initial approximation choice has a significant effect on the reconstruction
accuracy. The largest error in the reconstruction of the non-monotonic function η(ξ) is due
to the peculiarity of the corresponding kernels K12, K22. Due to the boundary conditions,
they vanish at ξ = 0.

Figure 13. Reconstruction of non-monotonic functions.

Figure 14. The value of the relative error δ: function g(ξ) (left), function η(ξ) (right).



Axioms 2023, 12, 912 12 of 14

−

Figure 15. AFC |u(1, λ)| (left) and |v(1, λ)| (right).

6. Discussion

In this article, direct problems of steady-state longitudinal and flexural vibrations
of an inhomogeneous rod are considered. Its properties are described using the Young’s
modulus and density varying along the longitudinal coordinate. The solution to the direct
problem in the general case of properties inhomogeneity is reduced to a numerical study
of the corresponding canonical systems of differential equations with variable coefficients
using the shooting method. This method allows us to obtain a solution with a given
accuracy. The proposed method allows us to consider a wider class of inhomogeneity laws
(continuous monotonic and non-monotonic, discontinuous, etc.) in comparison with other
numerical solutions to these problems. Unlike the original statement of the problem, there
is no need to calculate derivatives of these functions. Based on the proposed numerical
solution to the direct problem, a sensitivity analysis was carried out by estimating the
effect of the variable Young’s modulus and density on the AFC measured at the right
end of the rod. The analysis revealed that this influence is more significant in the vicinity
of resonances. A new inverse coefficient problem on the simultaneous identification of
variation laws of Young’s modulus and density from AFC data for problems of longitudinal
and flexural vibrations of a rod is considered. The AFC is measured at specified frequency
ranges. The solution was obtained using the iterative method. The initial approximations
were selected in the class of linear functions. It should be noted that in several practical
problems, such an approximation can be chosen as the final solution. To find the initial
approximation, several approaches are proposed: a genetic algorithm, minimization of the
residual functional on a compact set, additional information about the values of the sought-
for functions at the ends of the rod. A new system of FIE of the first kind with smooth
non-negative kernels to find two unknown corrections is obtained using a previously tested
technique. The kernels are plotted, and their features are revealed. Since solving the FIE of
the first kind is an ill-posed problem, the Tikhonov method and LSQR are used. The systems
of algebraic equations obtained after discretization of integral operators are presented.
Reconstruction examples demonstrate the effectiveness of the proposed approach are
presented. It is shown that in some cases, the Tikhonov method and LSQR give similar
reconstruction results. Features of solutions associated with boundary conditions are noted
(the kernels of integral operators vanish). Practical recommendations to choose the optimal
frequency range and implement the reconstruction procedure effectively are proposed.

7. Conclusions

Methods for analyzing inverse coefficient problems of mechanics by reconstructing
two variation laws in material characteristics within the framework of the acoustic sounding
method are presented. It is shown that they can be reduced to the implementation of itera-
tive processes, and at each iteration, a direct problem with known changes in characteristics
is solved and corrections are found from solutions to an ill-posed problem that involves
constructing a solution for a system of two FIEs of the first kind with smooth non-negative
kernels. As specific examples, the paper considers the problems of longitudinal and flexural
vibrations of an inhomogeneous rod, where the unknown characteristics are the Young’s
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modulus and density. An analysis of changes in the kernels of integral equations obtained
as a result of linearization for different values of the frequency parameter is carried out,
and the features of their structure are revealed. Two numerical methods for solving the
FIE system of the first kind are presented. The first method is based on the Tikhonov regu-
larization; the second one is based on the LSQR method. To test the proposed numerical
schemes, the results of the reconstruction of monotonic and non-monotonic functions are
presented. A comparative assessment of the accuracy of the results obtained is provided.
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