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Abstract: In this paper, we study the optimality conditions for set optimization problems with
set criterion. Firstly, we establish a few important properties of the Minkowski difference for sets.
Then, we introduce the generalized second-order lower radial epiderivative for a set-valued maps
by Minkowski difference, and discuss some of its properties. Finally, by virtue of the generalized
second-order lower radial epiderivatives and the generalized second-order radial epiderivatives, we
establish the necessary optimality conditions and sufficient optimality conditions of approximate
Benson proper efficient solutions and approximate weakly minimal solutions of unconstrained set
optimization problems without convexity conditions, respectively. Some examples are provided to
illustrate the main results obtained.
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1. Introduction

Set-valued optimization is a kind of extension of vector optimization, which has be-
come a flourishing branch of applied mathematics due to the application of set-valued
optimization problems in many fields [1–3]. It is widely known that the analysis of op-
timality conditions for various types of set optimization problems and their solutions
strongly depends on the features of set-valued maps and their derivatives, or epideriva-
tives, see [4–6] . Based on a unique concept of the difference of sets, Jahn [7] presented the
idea of the directional derivative of a set-valued map and used the derivative to derive
the optimality conditions for a set optimization problems. In order to figure out the op-
timality conditions of the `-minimal solution for a set optimization problem, Durea and
Strugariu [8] proposed the concept of the directional derivative of set-valued maps. Using
the modified Demyanov difference and the derivative, Dempe and Pilecka [9] defined the
directional derivative of the set-valued maps and developed the optimality condition for
the set optimization problem. Since the radial set of a set contains global information of the
set [10–12], radial derivatives [13] have drawn a lot of attention, see [14,15]. For constrained
set-valued optimization problem, Yu [14] proposed the the higher-order radial derivative
of set-valued maps, by means of the derivative, they developed optimality conditions for
lower weak minimal solution.

In practical application, the mathematical programming models are usually not ac-
curate enough, so the solutions of the model are generally approximate rather than exact.
Meanwhile, approximate solutions can approximate exact solutions for mathematical pro-
gramming problems. It is important to note that most of the real-world optimization
issues, including economic analysis and traffic optimization, ecological planning, etc., have
approximate solutions, which are highly helpful in the analysis and treatment of set-valued
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optimization problems; see [16–18] for details. Therefore, the approximate solution of opti-
mization problems has attracted much attention from many scholars, see [19,20]. The idea
of ε-quasi solutions to vector optimization problems was first suggested by Loridan [21].
For a set-valued optimization problem, by combining vector and set criteria, Dhingra and
Lalitha [22] introduced concepts of approximative solutions. In a locally convex Hausdorff
topological vector space, Hu et al. [20] proposed an approximative Benson proper effective
solution to the set-valued equilibrium problem and explored the relationship between the
Benson effective solution and the approximate one. The Painlevé-Kuratowski lower and
upper convergence of the approximation solution for set optimization problems under
continuity and convexity are derived by Han et al. [23] . To gain the sufficient conditions
of minimal solution sets, Gupta and Srivastava [24] introduced a novel concept of approx-
imation weak minimal solution for a set optimization problem. Without employing the
convexity, Han [25] obtained two scalarization theorems for the connectedness of the weak
l-minimal approximate solutions for set optimization problems.

To our knowledge, there is relatively little literature on the second-order optimal
conditions for approximate solutions of set optimization problems with the Minkowski
difference. Motivated by the the derivatives in [14,15] and approximate solutions in [20,24],
we introduce the generalized second-order lower radial epiderivative for set-valued maps,
approximate Benson proper effective solutions and approximate weakly minimal solutions
of the set optimization problem based on the Minkowski difference. By the second-order
lower radial epiderivative, we establish the necessary optimality conditions and sufficient
optimality conditions of approximate Benson solutions and approximate weakly minimal
solutions for unconstrained set optimization problems, respectively.

The article is organized as follows. We recall some preliminaries and establish a few
features of the Minkowski difference for sets in Section 2. We firstly propose the generalized
second-order lower radial epiderivative for set-valued maps and discuss some properties
of the epiderivative in Section 3. We discuss the second-order necessary and sufficient
conditions for approximate Benson proper efficient solutions and approximate weakly
minimal solutions of the unconstrained set optimization problems in Section 4. The brief
conclusion of the paper is given in Section 5.

2. Preliminaries and Definitions

Throughout the paper, unless otherwise specified, let V and P be two normed spaces,
P∗ be the topological dual space of P , P(V) be the family of all nonempty subsets of
V. We denote by int(A) and cl(A), the interior and closure of a set A ⊆ P, respectively.
The generated cone of A is defined by cone A = {ty | y ∈ A, t > 0}. In the sequel, C is
a solid (int(C) 6= ∅) pointed (C ∩ (−C) = {0}) closed convex cone in P. We have
C + C = C, C + int(C) = int(C) and λC = C for all λ > 0. The dual cone of C is
C∗ := {b ∈ P∗ | 〈b, z〉 ≥ 0, ∀z ∈ C}.

Let S : V ⇒ P be a set-valued map. The domain, graph, epigraph and profile map of
S are defined, respectively, by

dom S = {v ∈ V | S(v) 6= ∅},
graph S = {(v, p) ∈ V × P | p ∈ S(v)},
epi S = {(v, p) ∈ V × P | p ∈ S(v) + C},
S+(v) = S(v) + C, v ∈ dom S.

Clearly, epi S = graph S+.

Definition 1 ([26]). Let I, W ∈ P(P). The Minkowski difference of I and W is defined as

I−̇W = {p ∈ P | p + W ⊆ I} =
⋂

w∈W
(I − {w}).

By the definition of Minkowski difference, the following results obviously hold.
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Proposition 1. Let I, W, A ∈ P(P). Then
(a) y ∈ I−̇W if and only if y ∈ I − {w}, ∀w ∈W.
(b) I ⊆W ⇒ I−̇A ⊆W−̇A.
(c) I ⊆W ⇒ A−̇W ⊆ A−̇I.
(d) (I

⋃
W)−̇A = (I−̇A)

⋃
(W−̇A).

Proposition 2. Let I, W ∈ P(P), a, b ∈ P, M := {a} × I and N := {b} ×W. Then

u ∈ I−̇W ⇔ (a− b, u) ∈ M−̇N.

Proof. (i) (⇒) Let u ∈ I−̇W. Then, it follows from Proposition 1 (a) that

u ∈ I − {w}, ∀w ∈W.

Therefore,

(a− b, u) ∈ {a− b} × (I − {w}) = ({a} × I)− {(b, w)}, ∀w ∈W,

that is,
(a− b, u) ∈ M− {v}, ∀v ∈ N,

which implies
(a− b, u) ∈ M−̇N.

(ii) (⇐) Let (a− b, u) ∈ M−̇N. Then, from Proposition 1 (a), we get

(a− b, u) ∈ M− {v}, ∀v ∈ N.

Therefore,
(a− b, u) ∈ {a− b} × (I − {w}), ∀w ∈W,

then
u ∈ I − {w}, ∀w ∈W,

which implies
u ∈ M−̇N.

The proof is complete.

Lemma 1 ([26]). Let I ∈ P(P). If I is a convex set, then for any W ∈ P(P), the Minkowski
difference I−̇W is a convex set.

Lemma 2 ([27]). If I, W ∈ P(P) and a ∈ P, then
(a) (a + I)−̇W = a + (I−̇W).
(b) I−̇(a + W) = −a + (I−̇W).
(c) If I is closed, then I−̇W is also closed.

Definition 2 ([15]). Let G, H ∈ P(V) and t ∈ V.
(i)The generalized radial set of G on H is defined by

Tr(G, H) := {q ∈ V | ∃mn > 0, ∃qn → q, s.t.∀v0 ∈ H, ∀n ∈ N, v0 + mnqn ∈ G}.

(ii) The generalized second-order radial set of G on H with respect to t is defined by

T
′′
r (G, H, t) := {q ∈ V | ∃mn > 0, ∃qn → q, s.t.∀v0 ∈ H, ∀n ∈ N, v0 + mnt + m2

nqn ∈ G
}

.
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Inspired by the mth-order lower radial set in [11] and the generalized second-order ra-
dial set in [15], we propose the notion of the generalized lower radial set and the generalized
second-order lower radial set.

Definition 3. Let G, H ∈ P(V) and t ∈ V .
(i)The generalized lower radial set of G on H is defined by

Tl−r(G, H) := {q ∈ V | ∀mn > 0, ∃qn → q, s.t.mnqn ∈ G−̇H, ∀n ∈ N}.

(ii) The generalized second-order lower radial set of G on H with respect to t is defined by

T
′′
l−r(G, H, t) :=

{
q ∈ V | ∀mn > 0, ∃qn → q, s.t. mnt + m2

nqn ∈ G−̇H, ∀n ∈ N
}

.

Remark 1. If G is convex, then T
′′
l−r(G, H, t) is convex.

Remark 2. Tr(G, H) = T
′′
r (G, H, t) = T

′′
l−r(G, H, t) = ∅ if and only if G−̇H = ∅.

Remark 3. If the set H is a singleton and H ⊆ G, then the generalized radial set Tr(G, H)
reduces to the closed radial cone R(G, v0) introduced in [13], the generalized second-order radial
set T

′′
r (G, H, t) reduces to second-order upper radial set Tr(2)

S (v0, t0) introduced in [11] and the
generalized second-order lower radial set T

′′
l−r(G, H, t) reduces to second-order lower radial set

Tr[(2)
S (v0, t0) introduced in [11].

Remark 4 ([15]). Let G, H ∈ P(V) be two nonempty sets.
(i) Tr(G, H) = clcone(G−̇H).
(ii) T

′′
r (G, H, z) = cl∪t>0

G−̇H−mz
m2 .

(iii) If G−̇H 6= ∅, then Tr(G, H) is a nonempty closed cone, T
′′
r (G, H, t) is a nonempty closed

set such that 0 ∈ T
′′
r (G, H, t). T

′′
r (G, H, t) is not a cone in general.

By Definitions 2 and 3, the following results naturally hold.

Proposition 3. Let G, H, I ∈ P(V) be three nonempty sets and let v0 ∈ G. Then
(i) Tl−r(G, v0) ⊆ Tr(G, v0).
(ii) G ⊆ H =⇒ Tl−r(G, v0) ⊆ Tl−r(H, v0).
(iii) G ⊆ H =⇒ Tl−r(G, I) ⊆ Tl−r(H, I) and Tl−r(I, H) ⊆ Tl−r(I, G).

Note that the inverse inclusion of Proposition 3 (i) may not hold by the following example.

Example 1. Let V = R2, G =
{
(p1, p2) ∈ R2 | p1 ≥ 0, p2 ≥ p1

2
}

and H =
{
(a, a

2 ) ∈ R2}. By
calculating, we obtain

Tr(G, v0) =
{
(v1, v2) ∈ R2 | v1 ≥ 0, v2 ≥ v1

}
∪
{
(v1, v2) ∈ R2 | v1 ≤ 0, v2 ≥ 0

}
and

Tl−r(G, v0) =
{
(v1, v2) ∈ R2 | v1 ≥ 0, v2 ≥ v1

}
.

Thus, Tr(G, v0) 6⊆ Tl−r(G, v0).

3. Generalized Second-Order Lower Radial Epiderivatives for Set-Valued Maps

In this section, by virtue of the Minkowski difference, we introduce generalized
second-order lower radial epiderivatives for set-valued maps, and then investigate some
characteristics of the epiderivative and generalized second-order radial epiderivatives.
Firstly, we recall two concepts in [15].
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Definition 4 ([15]). Let S : V ⇒ P be a set-valued map, v0 ∈ dom S and (t0, q0) ∈ V × P.
(i) The generalized radial derivatives of S at v0 is the set-valued map DrS(v0) : V ⇒ P

defined by

DrS(v0)(v) := {p ∈ P | (v, p) ∈ Tr(graph S, {v0} × S(v0))}, ∀v ∈ V.

(ii) The generalized second-order radial derivatives of S at v0 with respect to (t0, q0) is the
set-valued map D

′′
r S(v0, t0, q0) : V ⇒ P defined by

D
′′
r S(v0, t0, q0)(v) :=

{
p ∈ Y | (v, p) ∈ T

′′
r (graph S, {v0} × S(v0), (t0, q0))

}
, ∀v ∈ V.

Next, we introduce the generalized lower radial epiderivative and the generalized
second-order lower radial epiderivative of a set-valued map.

Definition 5. Let S : V ⇒ P be a set-valued map, v0 ∈ dom S and (t0, q0) ∈ V × P.
(i) The generalized lower radial epiderivatives of S at v0 is the set-valued map Dl−rS+(v0) :

V ⇒ P defined by

Dl−rS+(v0)(v) := {p ∈ P | (v, p) ∈ Tl−r(epi S, {v0} × S(v0)}, ∀v ∈ V.

(ii) The generalized second-order lower radial derivatives of S at v0 with respect to (t0, q0) is
the set-valued map D

′′
l−rS(v0, t0, q0) : V ⇒ P defined by

D
′′
l−rS(v0, t0, q0)(v) :=

{
p ∈ P | (v, p) ∈ T

′′
l−r(graph S, {v0} × S(v0), (t0, q0))

}
, ∀v ∈ V.

(iii) The generalized second-order lower radial epiderivatives of S at v0 with respect to (t0, q0)

is the set-valued map D
′′
l−rS+(v0, t0, q0) : V ⇒ P defined by

D
′′
l−rS+(v0, t0, q0)(v) :=

{
p ∈ P | (v, p) ∈ T

′′
l−r(epi S, {v0} × S(v0), (t0, q0))

}
, ∀v ∈ V.

Remark 5. If S(v0) = {p0}, then D
′′
l−rS(v0, t0, q0) reduces to the mth-order lower radial deriva-

tive D[(2)
R S(v0, p0, t0, q0) introduced in [13].

Proposition 4. Let S : V ⇒ P be a set-valued map, v0 ∈ dom S. Then Dl−rS+(v0) is strictly
positive homogeneous, i.e.,

Dl−rS+(v0)(αv) = αDl−rS+(v0)(v), ∀α > 0.

Proof. Let v ∈ V, α > 0.
(i) We first prove that

Dl−rS+(v0)(αv) ⊆ αDl−rS+(v0)(v).

Let p ∈ Dl−rS+(v0)(αv). Then

(αv, p) ∈ Tl−r(epi S, {v0} × S(v0)).

Thus, for any sequence {mn} with mn > 0, there exists a sequence {(vn, pn)} with
(vn, pn)→ (αv, p) such that

mn(vn, pn) ∈ epi S−̇{v0} × S(v0).

Then
αvmn(

1
αv

vn,
1

αv
pn) ∈ epi S−̇{v0} × S(v0). (1)
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Naturally, ( 1
α vn, 1

α pn)→ (v, 1
α p). It follows from (1) that 1

α p ∈ Dl−rS+(v0)(v). Therefore,

p ∈ αDl−rS+(v0)(v).

In this way,
Dl−rS+(v0)(αv) ⊆ αDl−rS+(v0)(v).

(ii) Next, we prove that αDl−rS+(v0)(v) ⊆ Dl−rS+(v0)(αv).
The relationship of αDl−rS+(v0)(v) ⊆ Dl−rS+(v0)(αv) can be proved according to

the same proof idea as (i).
So Dl−rS+(v0) is strictly positive homogeneous. This completes the proof.

Remark 6. It is clear that

D
′′
l−rS+(v0, t0, q0)(v) ⊆ D

′′
r S+(v0, t0, q0)(v). (2)

However, the converse inclusions of (2) may not hold. The following example show the case.

Example 2. Consider set optimization problem with V = P = R, G = {0, 1} and H = [1,+∞).
Let

S(v) =
{

(−∞, 2], v = 0,
(−∞, 4], v = 1.

It is obvious to get that epi S = G×R. So, for every v0 ∈ G and (t0, q0) ∈ V × (−H), we
calculate that

D
′′
r S+(v0, t0, q0)(x) = R

and
D
′′
l−rS+(v0, t0, q0)(v) = [0,+∞).

Thus, D
′′
r S+(v0, t0, q0)(v) 6⊆ D

′′
l−rS(v0, t0, q0)(v).

Remark 7. By Definitions 4 and 5, we get

DrS(v0)(v) = D
′′
r S(x0, 0, 0)(v)

and
Dl−rS+(v0)(v) = D

′′
l−rS+(v0, 0, 0)(x).

Proposition 5. Let S : V ⇒ P be a set-valued map, v0 ∈ dom S and (t0, q0) ∈ V × P. Then

D
′′
l−rS+(v0, t0, q0)(v) + C = D

′′
l−rS+(v0, t0, q0)(v), ∀v ∈ V.

Proof. (1) We first prove that

D
′′
l−rS+(v0, t0, q0)(v) + C ⊆ D

′′
l−rS+(v0, t0, q0)(x), ∀v ∈ V.

Let v ∈ dom D
′′
l−rS+(v0, t0, q0), p̄ ∈ D

′′
l−rS+(v0, t0, q0)(v) + C. Then there exist c ∈ C

and p ∈ D
′′
l−rS+(v0, t0, q0)(v) such that

p̄ = p + c.

Since p ∈ D
′′
l−rS+(v0, t0, q0)(v), for any sequence {mn}with mn > 0, there exists a sequence

{(vn, pn)} ⊂ V × P with (vn, pn)→ (v, p) such that(
v0 + mnt0 + m2

nvn, p0 + mnq0 + m2
n pn

)
∈ epi S, ∀p0 ∈ S(v0), n ∈ N,
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that is,

p0 + mnq0 + m2
n pn ∈ S+

(
v0 + mnt0 + m2

nvn

)
+ C, ∀p0 ∈ S(v0), n ∈ N.

Set p̄n := pn + c. Then p̄n → p + c and

p0 + mnq0 + m2
n p̄n = p0 + mnq0 + m2

n(pn + c)

= p0 + mnq0 + m2
n pn + m2

nc

∈ S+

(
v0 + mnt0 + mn

2qn

)
+ C,

which implies that p + c ∈ D
′′
l−rS+(v0, t0, q0)(v). Hence,

D
′′
l−rS+(v0, t0, q0)(v) + C ⊆ D

′′
l−rS+(v0, t0, q0)(v), ∀v ∈ V. (3)

(2) We now prove that D
′′
l−rS+(v0, t0, q0)(v) ⊆ D

′′
l−rS+(v0, t0, q0)(v) + C, ∀v ∈ V.

Since 0 ∈ C, one gets

D
′′
l−rS+(v0, t0, q0)(v) ⊆ D

′′
l−rS+(v0, t0, q0)(v) + C, ∀v ∈ V. (4)

From (3) and (4), we have

D
′′
l−rS+(v0, t0, q0)(v) + C = D

′′
l−rS+(v0, t0, q0)(v), ∀v ∈ V.

This proof is complete.

Proposition 6. Let S : V ⇒ P be a set-valued map, v0 ∈ dom S and (t0, q0) ∈ V × P. Then

D
′′
l−rS(v0, t0, q0)(v) + C ⊆ D

′′
l−rS+(v0, t0, q0)(v), ∀v ∈ V.

Proof. Let v ∈ dom D
′′
l−rS(v0, t0, q0), p ∈ D

′′
l−rS(v0, t0, q0)(v), c ∈ C. Then, for any se-

quence {mn}with mn > 0, there exists a sequence {(vn, pn)} ⊂ V × P with (vn, pn)→ (v, p)
such that(

v0 + mnt0 + m2
nvn, p0 + mnq0 + m2

n pn

)
∈ graph S, ∀p0 ∈ S(v0), n ∈ N,

that is,
p0 + mnq0 + m2

n pn ∈ S
(

v0 + mnt0 + m2
nvn

)
, ∀p0 ∈ S(v0), n ∈ N.

Then

P0 + mnq0 + m2
n(Pn + c) ∈ S

(
v0 + mnt0 + m2

nvn

)
+ C, ∀p0 ∈ S(v0), n ∈ N.

Set p̄n := pn + c. Then p̄n → p + c. So

p + c ∈ D
′′
l−rS+(v0, t0, q0)(v).

Hence,
D
′′
l−rS(v0, t0, q0)(v) + C ⊆ D

′′
l−rS+(v0, t0, q0)(v), ∀v ∈ V. (5)

This completes the proof.

Proposition 7. Let E ⊆ V be a nonempty subset, S : E ⇒ P be a set-valued map and (t0, q0) ∈ V × P.
Then

S(v)−̇S(v0)− {q0} ⊆ D′′r S(v0, t0, q0)(v− v0 − t0), ∀v ∈ E.
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Proof. It follows from Remark 4 (ii) that

T
′′
r (graph S, {v0} × S(v0), (t0, q0)) = cl∪m>0

graph S−̇{v0} × S(v0)−m(t0, q0)

m2 (6)

Let v ∈ E and a ∈ S(v)−̇S(v0). Then it follows from Proposition 2 that for any v ∈ E,
we get

(v− v0, a) ∈ {v} × S(v)−̇{v0} × S(v0)).

Therefore,

(v− v0 − t0, a− q0) ∈ {v} × S(v)−̇{v0} × S(v0)− (t0, q0))

⊂ cl∪m>0
graph S−̇{v0} × S(v0)−m(t0, q0)

m2 .

In combination with (6), we have

(v− v0 − t0, a− q0) ∈ T
′′
r (graph S, {v0} × S(v0), (t0, q0),

which implies that
a− q0 ∈ D′′r S(v0, t0, q0)(v− v0 − t0).

Hence,
S(v)−̇S(v0)− {q0} ⊆ D′′r S(v0, t0, q0)(v− v0 − t0), ∀v ∈ E.

This completes the proof.

Remark 8. Proposition 7 is established without any assumption of convexity.

Proposition 8. Let E ⊆ V be a nonempty subset, S : E ⇒ P be a set-valued map and (t0, q0) ∈
{0} × C. Then

S(v)−̇S(v0) ⊆ D′′r S(v0, t0, q0)(v− v0) + C.

Proof. From Proposition 7, we derive

S(v)−̇S(v0)− {q0} ⊆ D′′r S(v0, t0, q0)(v− v0 − t0), ∀v ∈ E.

Since (t0, q0) ∈ {0} × C, for any v ∈ E, one has

S(v)−̇S(v0) ⊆ D′′r S(v0, t0, q0)(v− v0) + C.

This completes the proof.

4. Optimality Conditions for Approximate Solutions of Set Optimization Problems

In this section, we discuss optimality conditions of approximate Benson proper efficient
solution and approximate weakly minimal solutions for unconstrained set optimization
problems by using the generalized second-order radial derivatives and the generalized
second-order lower radial epiderivatives.

Let S : V ⇒ P be a set-valued map, E ⊆ V, we consider a set optimization problem
(SOP) as follows:

(SOP)
{

minimize S(v)
subject to v ∈ E.

Next, we consider the following definitions for set optimization problem (SOP) with
the Minkowski difference.
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Definition 6 ([24]). Let ε > 0 and e ∈ int(C). A vector v0 ∈ E is said to be a (ε, e)-weak minimal
solution of (SOP), denoted by v0 ∈ (ε, e)-WMin(S, E, C), if

(S(E)−̇S(v0) + εe) ∩ (−int(C)) = ∅.

Remark 9. (i) If ε = 0, then (ε, e)-weak minimal solution reduces to m-weak minimal solution
considered in [24] for (SOP).

(ii) If S is single-valued, then Definition 6 of (ε, e)-weak minimal solution reduces to the weak
εe-efficient solution for the vector optimization problems introduced in [28].

Inspired by the Definition 6, we define MBenson proper efficient solution and (ε, e)-
MBenson proper efficient solution with the Minkowski difference.

Definition 7. Let v0 ∈ E, p0 ∈ S(v0), ε ≥ 0 and e ∈ int(C).
(i) v0 is said to be a MBenson proper efficient solution of (SOP), denoted by v0 ∈MBenson(S, E, C), if

clcone(S(E)−̇S(v0) + C) ∩ (−C \ {0}) = ∅.

(ii) v0 is said to be a (ε, e)-MBenson proper efficient solution of (SOP), denoted by v0 ∈ (ε, e)-
MBenson(S, E, C), if

clcone (S(E)−̇S(v0) + C + εe) ∩ (−C \ {0}) = ∅.

Remark 10. (i) If ε = 0, then (ε, e)-MBenson proper efficient solution reduces to MBenson proper
efficient solution for (SOP).

(ii) For every ε ≥ 0, we have MBenson(S, E, C) ⊆ (ε, e)-MBenson(S, E, C).
(iii) For every ε ≥ 0, we have MBenson(S, E, C) ⊆ ⋂ε>0(ε, e)-MBenson(S, E, C).

Firstly, we derive the optimality conditions of (ε, e)-weak minimal efficient solution
for (SOP).

Theorem 1. Let ε > 0, e ∈ int(C) and (t0, q0) ∈ V × (−int(C)) . If v0 ∈ E is a (ε, e)-weak
minimal solution of (SOP), then(

D′′l−rS+(v0, t0, q0)(N) + εe
)
∩ (−int(C)) = ∅, (7)

where N := dom D′′l−rS+(v0, t0, q0).

Proof. Suppose that (7) dose not hold. Then, there exists v̄ ∈ N and

p̄ ∈ D′′l−rS+(v0, t0, q0)(v̄)

such that
p̄ + εe ∈ −int(C). (8)

By the definition of the generalized second-order lower radial epiderivatives, for
a sequence {mn} with mn = 1, there exists {(vn, pn)} ⊆ V × P with (vn, pn) → (v̄, p̄)
such that

(v0 + t0 + vn, p0 + q0 + pn) ∈ epi S, ∀p0 ∈ S(v0) and n ∈ N.

Then, for every p0 ∈ S(v0) and n ∈ N, we get

p0 + q0 + pn ∈ S(v0 + t0 + vn) + C.

Therefore,
pn ∈ S(v0 + t0 + vn)− p0 + C− q0, ∀p0 ∈ S(v0), n ∈ N.
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In combination with q0 ∈ −C, one gets

pn ∈ S(v0 + t0 + vn)−̇S(v0)− {q0}+ C

⊆ S(v0 + t0 + vn)−̇S(v0) + C, ∀n ∈ N.

Since ε > 0 and e ∈ int(C), one has

pn + εe ∈ S(v0 + t0 + vn)−̇S(v0) + C + εe, ∀n ∈ N. (9)

Obviously, pn + εe→ p̄+ εe. It follows from (8) that there exists a natural number N such that

pn + εe ∈ −int(C), ∀n > N.

In combination with (9), it follows from Proposition 1 (d) that

(S(E)−̇S(v0) + C + εe) ∩−int(C)) 6= ∅.

Therefore,
(S(E)−̇S(v0) + εe) ∩−int(C)) 6= ∅.

which contradicts that v0 is a (ε, e)-weak minimal solution of problem (SOP). The proof
is complete.

According to Proposition 6, we get that the following corollary.

Corollary 1. Let ε > 0, e ∈ int(C) and (t0, q0) ∈ V × (−int(C)). If v0 ∈ E is a (ε, e)-weak
minimal solution of problem (SOP), then(

D′′l−rS(v0, t0, q0)(K) + εe
)
∩ (−int(C)) = ∅,

where K := dom D′′l−rS(v0, t0, q0).

Now we give an example to explain Theorem 1.

Example 3. Consider set optimization problem with V = R, P = R2, E = V, C = R2
+. Let

S(v) =
{
(p1, p2) ∈ R2 | p1 ≥ v2, p1 + p2 ≥ v

}
, v ∈ E.

It is easy to check that v0 = 1 is a (ε, e)-weak minimal solution of the problem (SOP).
Let ε = 1 and e = (1, 1). Then, by directly calculating, we get

D′′l−rS+(v0, t0, q0)(v) + εe =
{
(p1, p2) ∈ R2 | p1 ≥ 1, p1 + p2 ≥ v + 1

}
, v ∈ E.

Then (
D′′l−rS+(v0, t0, q0)(v) + εe

)
∩ (−int(C)) = ∅, ∀v ∈ V.

Remark 11. The condition of Theorem 1 is also a second-order necessary condition for m-weak
minimal solution in [24].

Theorem 2. Let ε > 0 and e ∈ int(C). If there exists (t0, q0) ∈ {0} × C such that

D′′r S(v0, t0, q0)((E− v0) + εe) ∩ (−int(C)) = ∅, (10)

then v0 is a (ε, e)-weak minimal solution of (SOP).
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Proof. From (10), we derive(
D′′r S(v0, t0, q0)(E− v0) + εe + C

)
∩ (−int(C)) = ∅. (11)

Suppose that (11) dose not hold. Then there exist v ∈ E, p ∈ D′′r S(v0, t0, q0)(v− v0) and
c ∈ C such that

p + εe + c ∈ (−int(C)).

Since int(C) + C ⊆ int(C), one has

p + εe ∈ −int(C)− c ⊆ −int(C).

Obviously, p + εe ∈ D′′r S(v0, t0, q0)((v− v0) + εe). Therefore,

D′′r S(v0, t0, q0)((E− v0) + εe) ∩ (−int(C)) 6= ∅.

which contradicts with (10). Hence (11) holds.
As ε > 0 and e ∈ int(C), it follows from Proposition 7 that

S(E)−̇S(v0) + εe ⊆ D′′r S(v0, t0, q0)(E− v0) + εa + K.

Combining with (11), we have

(S(E)−̇S(v0) + εe) ∩ (−int(C)) = ∅.

Therefore v0 is a (ε, e)-weak minimal solution of (SOP). The proof is complete.

Now we give an example to show Theorem 2.

Example 4. Consider (SOP) with V = R, P = R2, C = R2
+ and E = [1, 2]. Let{

S(v) = (p1, p2) ∈ R | p1 ≥ −
1
v

, p2 ≥ −
1
v

,−v ≤ p1 + p2 ≤ 2v
}

, 1 ≤ v ≤ 2.

Take v0 = 1. Let ε = 1 and e = (1, 1). It is easy to caculate that

D′′r S(v0, t0, q0)((v− v0) + εe) = (
1
2

,
1
2
).

Then
D′′r S(v0, t0, q0)((E− v0) + εe) ∩ (−int(C)) = ∅.

Thus, v0 = 1 is a (ε, e)-weak minimal solution.

Since the (ε, e)-weak minimal solution is not always the (ε, e)-MBenson proper efficient
solution for (SOP), we next provide optimality conditions of the (ε, e)-MBenson proper
efficient solution (SOP).

Theorem 3. Let ε > 0, e ∈ int(C), v0 ∈ E and (t0, q0) ∈ E× (−C). If v0 is a (ε, e)-MBenson
proper efficient solution of problem (SOP), then(

D′′l−rS+(v0, t0, q0)(N) + εe
)
∩ (−C \ {0}) = ∅, (12)

where N := dom D′′l−rS+(v0, t0, q0).

Proof. Suppose to the contrary that there exists some v̄ ∈ N such that (12) does not hold.
Then there exists some p̄ ∈ P such that

p̄ ∈ D′′l−rS+(v0, t0, q0)(v̄)
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and
p̄ + εe ∈ −C \ {0}. (13)

By the definition of the generalized second-order lower radial epiderivatives, for
a sequence {mn} with mn = 1, there exists {(vn, pn)} ⊆ V × P with (vn, pn) → (v̄, p̄)
such that

(v0 + t0 + vn, p0 + q0 + pn) ∈ epi S, ∀p0 ∈ S(v0) and n ∈ N.

Then, for every p0 ∈ S(v0) and n ∈ N, we get

p0 + q0 + pn ∈ S(v0 + t0 + vn) + C.

Therefore,
pn ∈ S(v0 + t0 + vn)− p0 + C− q0, ∀p0 ∈ S(v0), n ∈ N.

Combining with q0 ∈ −C and Proposition 1 (b), one gets

pn ∈ S(v0 + t0 + vn)−̇S(v0)− {q0}+ C

⊆ S(E)−̇S(v0)− {q0}+ C

⊆ S(E)−̇S(v0) + C, ∀n ∈ N.

Since ε > 0 and e ∈ int(C), one has

pn + εe ∈ S(E)−̇S(v0) + C + εe, ∀n ∈ N.

So
p̄ + εe ∈ clcone(S(E)−̇S(v0) + C + εe).

Combining with (13), we get

clcone(S(E)−̇S(v0) + C + εe) ∩ (−C \ {0}) 6= ∅,

which contradicts that v0 is a (ε, e)-MBenson proper efficient solution of problem (SOP).
The proof is complete.

According to Proposition 6, we get that the following corollary.

Corollary 2. Let ε > 0, e ∈ int(C), v0 ∈ E and (t0, q0) ∈ E× (−C). If v0 is a (ε, e)-MBenson
proper efficient solution of problem (SOP), then(

D′′l−rS(v0, t0, q0)(K) + εe
)
∩ (−C \ {0}) = ∅,

where K := dom D′′l−rS(v0, t0, q0).

Now we provide an example to illustrate Theorem 3.

Example 5. Consider set optimization problem with V = R, P = R2, E = V, C = R2
+. Let

S(v) =
{
(p1, p2) ∈ R2 | p1 ≥ 0, p2 ≥ v2

}
, v ∈ E.

It is easy to check that v0 = 1 is a (ε, e)-MBenson proper efficient solution of the
problem (SOP). Let ε = 1 and e = (1, 1). Then, by directly calculating, we get

D′′l−rS+(v0, t0, q0)(v) + εe =
{
(p1, p2) ∈ R2 | p1 ≥ 0, v ≥ p2 ≥ v2

}
, v ∈ E.

Then (
D′′l−rS+(v0, t0, q0)(v) + εe

)
∩ (−C \ {0}) = ∅, ∀v ∈ E.
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Remark 12. If ε = 0 and e ∈ C in Theorem 3, it follows from Remark 10 (i) that v0 becomes a
MBenson proper efficient solution of problem (SOP), and (12) becomes the necessary condition for
MBenson proper efficient solution.

Remark 13. As MBenson(F, E, C) ⊆ (ε, e)-MBenson(F, E, C) from Theorem 3, so the condition
of Theorem 3 is also a second-order necessary condition for MBenson proper efficient solution.

Remark 14. If the condition of q ∈ −C is not satisfied in Theorem 3, then Theorem 3 may not hold.
The following example explains the case.

Example 6. Consider Example 5. Then v0 = 1 is a (ε, e)-MBenson proper efficient solution of the
problem (SOP). Take q = (1, 0) /∈ −C and

D′′l−rS+(v0, t0, q0)(v) + εe =
{
(p1, p2) ∈ R2 | p1 ∈ R, v ≥ p2 ≥ v2

}
.

Thus, (
D′′l−rS+(v0, t0, q0)(v) + εe

)
∩ (−C \ {0}) 6= ∅, ∀v ∈ E.

Theorem 4. Let v0 ∈ E, ε > 0, e ∈ int(C) and (t0, q0) ∈ {0} × K. If

clcone
(

D′′r S(v0, t0, q0)(E− v0) + C + εe
)
∩ (−C \ {0}) = ∅, (14)

then v0 is a (ε, e)-MBenson proper efficient solution of problem (SOP).

Proof. By Proposition 7, we have

S(v)−̇S(v0)− {q0} ⊆ D′′r S(v0, t0, q0)(v− v0 − t0) + C, ∀v ∈ E.

Since (t0, q0) ∈ {0} × C, one has

S(v)−̇S(v0) ⊆ D′′r S(v0, t0, q0)(v− v0) + C, ∀v ∈ E.

Then, from Proposition 1 (d), we have

S(E)−̇S(v0) ⊆ D′′r S(v0, t0, q0)(E− v0) + C.

Therefore, combining with C + C = C, we get

clcone(S(E)−̇S(v0) + C + εe) ⊆ clcone
(

D′′r S(v0, t0, q0)(E− v0) + C + εe
)
.

Then it follows from (14) that

clcone(S(E)−̇S(v0) + C + εe) ∩ (−C \ {0}) = ∅,

which implies that v0 is a (ε, e)-MBenson proper efficient solution of problem (SOP). This
completes the proof.

Now we give an example to illustrate Theorem 4.

Example 7. Consider (SOP) with V = R, P = R2, C = R2
+ and E = [1, 2]. Let

{S(v) = (p1, p2) ∈ R | p1 ≥ v, P1 + P2 ≥ v}, 1 ≤ v ≤ 2.

Take v0 = 1. Let ε = 1 and e = (1, 1), then by calculating, we get

D′′r S(v0, t0, q0)((v− v0) + εe) =
{
(p1, p2) ∈ R2 | p1 ≥ 0, p1 + p2 = v

}
, v ∈ E.
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Thus,
clcone

(
D′′r S(v0, t0, q0)(E− v0) + C + εe

)
∩ (−C \ {0}) = ∅,

which implies that v0 = 1 is a (ε, e)-MBenson proper efficient solution.

Remark 15. if we replace the (ε, e)-MBenson proper efficient solution with the MBenson proper
efficient solution in Theorems 3 and 4, then the corresponding conclusions are still valid.

5. Conclusions

In this paper, we firstly propose the notion of the generalized second-order lower
radial epiderivatives and discuss some properties about it. We also extend a few crucial
properties of generalized second-order radial derivatives. Finally, we establish the necessary
and sufficient optimality conditions of approximate Benson proper efficient solutions
and approximate weakly minimal solutions for the set optimization problem under the
unconstrained condition.

It is significant to emphasize that no prior research has been done on the optimality
conditions for approximation solutions with the Minkowski difference of set optimization
problems, which is the subject of this paper. It would be great to investigate these ideas by
using the new derivative.
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3. Ansari, Q.H.; Köbis, E.; Sharma, P.K. Characterizations of multiobjective robustness via oriented distance function and image

space analysis. J. Optim. Theory Appl. 2019, 181, 817–839. [CrossRef]
4. Abdessamad, O.; Ikram. D. Necessary and sufficient conditions for set-valued maps with set optimization. J. Abstr. Appl. Anal.

2018, 2018, 5962049.
5. Baier, R.; Eichfelder, G.; Gerlach, T. Optimality conditions for set optimization using a directional derivative based on generalized

Steiner sets. Optimization 2022, 71, 2273–2314. [CrossRef]
6. Han, Y. A Hausdorff-type distance, the Clarke generalized directional derivative and applications in set optimization problems.

J. Appl. Anal. 2022, 101, 1243–1260. [CrossRef]
7. Jahn, J. Directional derivatives in set optimization with the less order relation. Taiwan. J. Math. 2015, 19, 737–757. [CrossRef]
8. Durea, M.; Strugariu, R. Directional derivatives and subdifferentials for set-valued maps applied to set optimization. J. Glob.

Optim. 2023, 85, 687–707. [CrossRef]
9. Dempe, S.; Pilecka, M. Optimality condtions for set-valued optimisation problems using a modified demyanov difference.

J. Optim. Theory Appl. 2016, 171, 402-421. [CrossRef]
10. Kasimbeyli, R. Radial epiderivatives and set-valued optimization. Optimization 2009, 58, 521–534. [CrossRef]
11. Anh, N.L.H.; Khanh, P.O. Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives.

J. Glob. Optim. 2013, 56, 519–536. [CrossRef]
12. Anh, N.L.H. On higher-order mixed duality in set-valued optimization. Bull. Malays. Math. Sci. Soc. 2018, 41, 723–739. [CrossRef]
13. Taa, A. Set-valued derivatives of multifunctions and optimality conditions. Numer. Funct. Anal. Optim. 1998, 19, 121–140.

[CrossRef]
14. Yu, G.L. Optimality conditions in set optimization employing higher-order radial derivatives. J. Appl. Math. J. Chin. Univ. 2017,

32, 225–236. [CrossRef]

http://doi.org/10.1007/s10957-019-01505-y
http://dx.doi.org/10.1080/02331934.2020.1812605
http://dx.doi.org/10.1080/00036811.2020.1778673
http://dx.doi.org/10.11650/tjm.19.2015.4940
http://dx.doi.org/10.1007/s10898-022-01222-3
http://dx.doi.org/10.1007/s10957-015-0745-5
http://dx.doi.org/10.1080/02331930902928310
http://dx.doi.org/10.1007/s10898-012-9861-z
http://dx.doi.org/10.1007/s40840-016-0362-y
http://dx.doi.org/10.1080/01630569808816819
http://dx.doi.org/10.1007/s11766-017-3414-7


Axioms 2023, 12, 1001 15 of 15

15. Yao, B.; Li, S.J. Second-order optimality conditions for set optimization using coradiant sets. Optim. Lett. 2019, 14, 2073–2086.
[CrossRef]

16. Hamel, A.H.; Heyde, F.; Löhne, A.; Rudloff, B.; Schrage, C. Set optimization-a rather short introduction. In Set Optimization and
Applications—The State of the Art; Hamel, A.H., Ed.; Springer: Berlin, Germany, 2015; pp. 65–141.

17. Seto, K.; Kuroiwa, D.; Popovici, N. A systematization of convexity and quasiconvexity concepts for set-valued maps defined by
l-type and u-type preorder relations. Optimization 2018, 67, 1077–1094. [CrossRef]

18. Hernández, E.; López, R. About asymptotic analysis and set optimization. Set Valued Var. Anal. 2019, 27, 643–664. [CrossRef]
19. Gutiérrez, C.; Huerga, L.; Jiménez, B.; Novo, V . Approximate solutions of vector optimization problems via improvement sets in

real linear spaces. J. Glob. Optim. 2018, 70, 875–901. [CrossRef]
20. Hu, S.S.; Xu, Y.H.; Niu, Z.C. Approximate Benson efficient solutions for set-valued equilibrium problems. J. Inequal. Appl. 2020,

2020, 1931–1944. [CrossRef]
21. Loridan, P. ε-solutions in vector minimization problems. J. Optim. Theory Appl. 1984, 43, 265–276. [CrossRef]
22. Dhingra, M.; Lalitha, C.S. Approximate solutions and scalarization in set-valued optimization. Optimization 2017, 66, 1793–1805.

[CrossRef]
23. Han, Y.; Zhang, K.; Huang, N. The stability and extended well-posedness of the solution sets for set optimization problems via

the Painlevé-Kuratowski convergence. J. Math Method Oper. Res. 2020, 91, 175–196. [CrossRef]
24. Gupta, M.; Srivastava, M. Approximate solutions and Levitin-Polyak Well-Posedness for set optimization using weak efficiency.

J. Optim. Theory Appl. 2020, 186, 191–208. [CrossRef]
25. Han, Y. Connectedness of the approximate solution sets for set optimization problems. Optimization 2022, 71, 4819–4834.

[CrossRef]
26. Danilov, V.I.; Koshevoy, G.A. Cores of cooperative games, superdifferentials of functions, and the Minkowski difference of sets.

J. Math. Anal. Appl. 2000, 247, 1–14. [CrossRef]
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