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Abstract: This paper provides an investigation on nonlinear dynamic behaviors of the (3+1)-
dimensional B-type Kadomtsev—Petviashvili equation, which is used to model the propagation of
weakly dispersive waves in a fluid. With the help of the Cole—Hopf transform, the Hirota bilinear
equation is established, then the symbolic computation with the ansatz function schemes is employed
to search for the diverse exact solutions. Some new results such as the multi-wave complexiton,
multi-wave, and periodic lump solutions are found. Furthermore, the abundant traveling wave
solutions such as the dark wave, bright-dark wave, and singular periodic wave solutions are also
constructed by applying the sub-equation method. Finally, the nonlinear dynamic behaviors of the
solutions are presented through the 3-D plots, 2-D contours, and 2-D curves and their corresponding
physical characteristics are also elaborated. To our knowledge, the obtained solutions in this work
are all new, which are not reported elsewhere. The methods applied in this study can be used to
investigate the other PDEs arising in physics.

Keywords: Hirota bilinear equation; periodic-lump solution; multi-wave complexiton solution;
multi-wave solution; sub-equation method; traveling wave solutions
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1. Introduction

Nonlinear partial differential equations (NPDEs) are powerful tools to model various
complex phenomena in nature [1–6]. How to obtain the exact solution of the NPDEs has always
been the purpose of researchers. To this day, some effective methods have been proposed to
seek for the exact solution of the NPDEs such as the Bäcklund transformation method [7–10],
Cole—Hopf transformation method [11–14], variational method [15,16], extended rational sine—
cosine and sinh—cosh methods [17,18], Sardar subequation method [19,20], the Kudryashov
approach [21,22], extended sinh—Gordon equation expansion method [23,24], trial equation
method [25,26], sub-equation method [27–29], Wang’s direct mapping method [30], and so
on [31–35]. In this work, we aim to study the (3+1)-dimensional B-type Kadomtsev—Petviashvili
equation that reads as [36]:

ψty − ψxxxy − 3
(
ψxψy

)
x + 3ψxz = 0, (1)

Equation (1) is a subclass of the Kadomtsev—Petviashvili (KP) hierarchy and is used to
describe the weakly dispersive waves in a fluid. ψ = ψ(x, y, z, t) represents the amplitude
or elevation of the relevant wave and is a real function of space x, y, z, and time t. Up
to now, many effective methods have been proposed to deal with Equation (1) and some
results have been obtained. In [37], two methods, namely the simplest equation method
and multiple exp-function method, are used to construct the exact solutions of Equation (1).
In [38], one- and two-soliton solutions of Equation (1) are obtained by using the Bäcklund
transformations. In [39], the extended homoclinic test technique is employed to study
Equation (1) and some new rational breather solutions are found. In [40], the direct algebraic
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method is adopted and the interaction solutions among solitons, rational waves, and
periodic waves are obtained. In [41], the soliton molecules, asymmetric solitons, and some
novel hybrid solutions are attained by using the velocity resonance mechanism and the long
wave limit method. In [42], the exp-function method aided with symbolic computation is
utilized to seek for the anti-kink solutions. However, to our knowledge, the multi-wave
complexiton, multi-wave, and periodic lump have not been studied. In addition, the sub-
equation method has not been employed to study Equation (1) either. Thus, the objective
of this work is to search for the abundant solutions of Equation (1) by means of the Hirota
bilinear method and sub-equation method. The results obtained in this work are expected
to extend the solutions of the (3+1)-dimensional B-type Kadomtsev—Petviashvili equation.
The structure of this article is arranged as follows. In Section 2, the Hirota bilinear equation
is developed via the Cole—Hopf transform and the symbolic computation with the ansatz
function schemes is utilized to find the multi-wave complexiton solutions, multi-wave
solutions, and periodic lump solutions, respectively. In Section 3, the sub-equation method
is applied to seek for the traveling wave solutions. In Section 4, the physical characteristics
and numerical results of the solutions are presented via the 3-D plots, 2-D contours, and
2-D curves. Finally, the conclusion is provided in Section 5.

2. Cole—Hopf Transform and the Exact Solutions

For constructing the exact solutions of Equation (1), we use the Cole—Hopf trans-
form as:

ψ = 2 ln(g)x. (2)

Applying this transform, we can obtain the bilinear form of Equation (1) as:(
DyDt − D3

xDy + 3DxDz

)
g · g = 0. (3)

Here, the definition of the operators Dm
x Dn

t is [43–46]:

Dm
x Dn

t f · g =

(
∂

∂x
− ∂

∂x′

)m( ∂

∂t
− ∂

∂t′

)n
f (x, t)g

(
x′, t′

)∣∣∣∣x=x′ ,t=t′ . (4)

Additionally, there are:
Dx( f · g) = fxg− f gx,
D2

x( f · g) = fxxg− 2 fxgx + f gxx,
D2

x( f · f ) = 2
(

fxx f − f 2
x
)
,

DtDx( f · g) = ftxg− ftgx − fxgt + gtx f ,
. . . . . .

2.1. The Multi-Waves Complexiton Solutions

In order to find the multi-wave complexiton solution, it is assumed that the test
function g is:

φ = x + ε1y + ε2z + ε3t,

ϕ = x + ε4y + ε5z + ε6t,

γ = x + ε7y + ε8z + ε9t,

g = ∆1eϕ + ∆2e−ϕ + ∆3 sin(ϕ) + ∆4sin h(γ), (5)

where εi(i = 1, 2, . . . , 9) and ∆i(i = 1, 2, 3, 4) are real parameters to be determined later.
Substituting Equation (5) into Equation (3) and performing the corresponding adjustments,
we have:

Case 1:

ε1 = 3ε2
4−ε9

, ε2 = ε2, ε3 = ε9, ε4 = 3ε2
ε9−4 , ε5 = ε2(2+ε9)

4−ε9
, ε6 = ε9 − 2, ε7 = 3ε2

4−ε9
, ε8 = ε2, ε9 = ε9,

∆1 = ∆1, ∆2 = ∆2, ∆3 = ∆3, ∆4 = ∆4.
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where 4− ε9 6= 0. Applying the above results into Equation (5), we can obtain the multi-
wave complexiton solution through the transformation provided by Equation (2) as:

ψ(x, y, z, t) =

2

∆1ex+ 3ε2
4−ε9

y+ε2z+ε9t − ∆2e−(x+ 3ε2
4−ε9

y+ε2z+ε9t)
+ ∆3 cos

(
x + 3ε2

ε9−4 y + ε2(2+ε9)
4−ε9

z + (ε9 − 2)t
)

+∆4 cosh
(

x + 3ε2
4−ε9

y + ε2z + ε9t
)


∆1ex+ 3ε2

4−ε9
y+ε2z+ε9t

+ ∆2e−(x+ 3ε2
4−ε9

y+ε2z+ε9t)
+ ∆3 sin

(
x + 3ε2

ε9−4 y + ε2(2+ε9)
4−ε9

z + (ε9 − 2)t)

+∆4sinh
(

x + 3ε2
4−ε9

y + ε2z + ε9t
)


(6)

Case 2:

ε1 = ε7, ε2 = ε2, ε3 = 4ε7−3ε2
ε7

, ε4 = −ε7, ε5 = 2ε7 − ε2, ε6 = 2ε7−3ε2
ε7

, ε7 = ε7, ε8 = ε2,
ε9 = 4ε7−3ε2

ε7
, ∆1 = ∆1, ∆2 = ∆2, ∆3 = ∆3, ∆4 = ∆4.

Inserting the above results into Equation (5) and using the transformation provided
by Equation (2), we can obtain the multi-wave complexiton solution as:

ψ(x, y, z, t) =

2

 ∆1ex+ε7y+ε2z+ 4ε7−3ε2
ε7

t − ∆2e−(x+ε7y+ε2z+ 4ε7−3ε2
ε7

t)
+ ∆3 cos

(
x− ε7y + (2ε7 − ε2)z +

2ε7−3ε2
ε7

t
)

+∆4 cosh
(

x + ε7y + ε2z + 4ε7−3ε2
ε7

t
)


 ∆1ex+ε7y+ε2z+ 4ε7−3ε2

ε7
t
+ ∆2e−(x+ε7y+ε2z+ 4ε7−3ε2

ε7
t)
+ ∆3 sin

(
x− ε7y + (2ε7 − ε2)z +

2ε7−3ε2
ε7

t
)

+∆4sinh
(

x + ε7y + ε2z + 4ε7−3ε2
ε7

t
)


(7)

Case 3:

ε1 = ε7, ε2 = 4ε7−3ε3ε7
3 , ε3 = ε3, ε4 = −ε7, ε5 = (ε3+2)ε7

3 , ε6 = ε3 − 2, ε7 = ε7, ε8 = 4ε7−3ε3ε7
3 ,

ε9 = ε3, ∆1 = ∆1, ∆2 = ∆2, ∆3 = ∆3, ∆4 = ∆4.

In the same way, we can obtain the multi-wave complexiton solution as:

ψ(x, y, z, t) =

2

 ∆1ex+ε7y+ 4ε7−3ε3ε7
3 z+ε3t − ∆2e−(x+ε7y+ 4ε7−3ε3ε7

3 z+ε3t) + ∆3 cos
(

x− ε7y + (ε3+2)ε7
3 z + (ε3 − 2)t

)
+∆4 cosh

(
x + ε7y + 4ε7−3ε3ε7

3 z + ε3t
) 

 ∆1ex+eηy+ 4εr−3ε2η3
3 +ŝt + ∆2e−(x+ε7y+ 4ε7−3ε3ε7

3 z+ε3t) + ∆3 sin
(

x− ε7y + (ε3+2)ε7
3 z + (ε3 − 2)t

)
+∆4sinh

(
x + ε7y + 4ε7−3ε3ε7

3 z + ε3t
)  (8)

Case 4:

ε1 = ε7, ε2 = ε8, ε3 = 4ε7−3ε8
ε7

, ε4 = −ε7, ε5 = 2ε7 − ε8, ε6 = 2ε7−3ε8
ε7

, ε7 = ε7, ε8 = ε8,
ε9 = 4ε7−3ε8

ε7
, ∆1 = ∆1, ∆2 = ∆2, ∆3 = ∆3, ∆4 = ∆4.

Accordingly, the multi-wave complexiton solution of Equation (1) is attained as:

ψ(x, y, z, t) =

2

 ∆1ex+ε7y+ε8z+ 4ε7−3ε8
ε7

t − ∆2e−(x+ε7y+ε8z+ 4ε7−3ε8
ε7

t)
+ ∆3 cos

(
x− ε7y + (2ε7 − ε8)z +

2ε7−3ε8
ε7

t
)

+∆4 cosh
(

x + ε7y + ε8z + 4ε7−3ε8
ε7

t
)


 ∆1ex+ε7y+ε8z+ 4ε7−3ε8

ε7
t
+ ∆2e−(x+ε7y+ε8z+ 4ε7−3ε8

ε7
t)
+ ∆3 sin

(
x− ε7y + (2ε7 − ε8)z +

2ε7−3ε8
ε7

t
)

+∆4sinh
(

x + ε7y + ε8z + 4ε7−3ε8
ε7

t
)


(9)

Case 5:

ε1 = ε1, ε2 = ε8, ε3 = 4ε1−3ε8
ε1

, ε4 = −ε1, ε5 = 2ε1 − ε8, ε6 = 2ε1−3ε8
ε1

, ε7 = ε1, ε8 = ε8,
ε9 = 4ε1−3ε8

ε1
, ∆1 = ∆1, ∆2 = ∆2, ∆3 = ∆3, ∆4 = ∆4.
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Using the above results, we can obtain the multi-wave complexiton solution of Equa-
tion (1) via Equation (2) and Equation (5) as:

ψ(x, y, z, t) =

2

 ∆1ex+ε1y+ε8z+ 4ε1−3ε8
ε1

t − ∆2e−(x+ε1y+ε8z+ 4ε1−3ε8
ε1

t)
+ ∆3 cos

(
x− ε1y + ε5z + 2ε1−3ε8

ε1
t
)

+∆4 cosh
(

x + ε1y + ε8z + 4ε1−3ε8
ε1

t
)


 ∆1ex+ε1y+ε8z+ 4ε1−3ε8

ε1 + ∆2e−(x+ε1y+ε8z+ 4ε1−3ε8
ε1

t)
+ ∆3 sin

(
x− ε1y + ε5z + 2ε1−3ε8

ε1
t
)

+∆4sinh
(

x + ε1y + ε8z + 4ε1−3ε8
ε1

t
)


(10)

Case 6:

ε1 = −ε4, ε2 = ε4(ε9−4)
3 , ε3 = ε9, ε4 = ε4, ε5 = − 2ε4+ε4ε9

3 , ε6 = ε9 − 2, ε7 = −ε4, ε8 = ε4(ε9−4)
3 ,

ε9 = ε9, ∆1 = ∆1, ∆2 = ∆2, ∆3 = ∆3, ∆4 = ∆4.

Putting the above results into Equation (5) and using the transformation of Equation
(2), we can obtain the multi-wave complexiton solution as:

ψ(x, y, z, t) =

2

 ∆1ex−ε4y+ ε4(ε9−4)
3 z+ε9t − ∆2e−(x−ε4y+ ε4(ε9−4)

3 z+ε9t) + ∆3 cos
(

x + ε4y− 2ε4+ε4ε9
3 z + (ε9 − 2)t

)
+∆4 cosh

(
x− ε4y + ε4(ε9−4)

3 z + ε9t
)


 ∆1ex−ε4y+ ε4(ε9−4)

3 z+ε9t + ∆2e−(x−ε4y+ ε4(ε9−4)
3 z+ε9t) + ∆3 sin

(
x + ε4y− 2ε4+ε4ε9

3 z + (ε9 − 2)t
)

+∆4sinh
(

x− ε4y + ε4(ε9−4)
3 z + ε9t

)
 (11)

2.2. The Multi-Wave Solutions

To seek for the multi-wave solutions of Equation (1), we assume that g has the follow-
ing form:

φ = ε1x + ε2y + ε3z + ε4t + ε5,

ϕ = ε6x + ε7y + ε8z + ε9t + ε10,

γ = ε11x + ε12y + ε13z + ε14t + ε15,

g = ∆1 cos(φ) + ∆2cos h(ϕ) + ∆3cos h(γ) + ε16, (12)

where εi(i = 1, 2, . . . , 16) and ∆i(i = 1, 2, 3) are real parameters to be determined later.
Incorporating Equation (12) into Equation (3) yields a set of algebraic equations. Solving
them, we have:

Case 1:

ε1 = ε1, ε2 = 0, ε3 = 0, ε4 = ε4, ε5 = ε5, ε6 = ε6, ε7 = 0, ε8 = 0, ε9 =
ε6(ε3

1+ε4+ε1ε2
6)

ε1
, ε10 = ε10,

ε11 = 0, ε12 = ε12, ε13 = − ε12(ε3
1+ε4)

3ε1
, ε14 = 0,

ε15 = ε15, ε16 = ε16, ∆1 = ∆1, ∆2 = ∆2, ∆3 = ∆3.

Substituting the above results into Equation (12) and adopting the transformation
provided by Equation (2), we can obtain the multi-wave solution as:

ψ(x, y, z, t) =
2
[
−ε1∆1 sin(ε1x + ε4t + ε5) + ε6∆2sin h

(
ε6x +

ε6(ε3
1+ε4+ε1ε2

6)
ε1

t + ε10

)]
∆1 cos(ε1x + ε4t + ε5) + ∆2cos h

(
ε6x +

ε6(ε3
1+ε4+ε1ε2

6)
ε1

t + ε10

)
+∆3cos h

(
ε12y− ε12(ε3

1+ε4)
3ε1

z + ε15

)
+ ε16

. (13)

Case 2:
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ε1 = ε1, ε2 = − ε11ε12
ε1

, ε3 =
ε11ε12(4ε3

1+ε4)
3ε2

1
, ε4 = ε4, ε5 = ε5, ε6 = ε6, ε7 = ε11ε12

ε6
,

ε8 = − ε11ε12(ε3
1+ε4−3ε1ε2

6)
3ε1ε6

, ε9 =
ε6(ε3

1+ε4+ε1ε2
6)

ε1
, ε10 = ε10, ε11 = ε11, ε12 = ε12,

ε13 = − ε12(ε3
1−3ε1ε2

11+ε4)
3ε1

, ε14 =
ε11(ε3

1+ε1ε2
11+ε4)

ε1
, ε15 = ε15, ε16 = 0, ∆1 = ∆1, ∆2 = ∆2, ∆3 = ∆3

Using the obtained results, we can obtain the multi-wave solution of Equation (1) by
Equation (12) and Equation (2) as:

ψ(x, y, z, t) =

2


−ε1∆1 sin

(
ε1x− ε11ε12

ε1
y +

ε11ε12(4ε3
1+ε4)

3ε2
1

z + ε4t + ε5

)
+ε6∆2sinh

(
ε6x + ε11ε12

ε6
y− ε11ε12(ε3

1+ε4−3ε1ε2
6)

3ε1ε6
z +

ε6(ε3
1+ε4+ε1ε2

6)
ε1

t + ε10

)
+ε11∆3sinh

(
ε11x + ε12y− ε12(ε3

1−3ε1ε2
11+ε4)

3ε1
z +

ε11(ε3
1+ε1ε2

11+ε4)
ε1

t + ε15

)


∆1 cos

(
ε1x− ε11ε12

ε1
y +

ε11ε12(4ε3
1+ε4)

3ε2
1

z + ε4t + ε5

)
+∆2 cosh

(
ε6x + ε11ε12

ε6
y− ε11ε12(ε3

1+ε4−3ε1ε2
6)

3ε1ε6
z +

ε6(ε3
1+ε4+ε1ε2

6)
ε1

t + ε10

)
+∆3 cosh

(
ε11x + ε12y− ε12(ε3

1−3ε1ε2
11+ε4)

3ε1
z +

ε11(ε3
1+ε1ε2

11+ε4)
ε1

t + ε15

)

(14)

2.3. The Periodic Lump Solutions

To search for the periodic lump solutions of Equation (1). Here, the ansatz function g
is supposed as the following form:

φ = x + ε1y + ε2z + ε3t,

ϕ = x + ε4y + ε5z + ε6t,

g = ∆1 sin(φ) + ∆2cos h(ϕ) + ε7, (15)

where εi(i = 1, 2, . . . , 7) and ∆i(i = 1, 2) are real parameters that can be determined later.
In the same manner, substituting Equation (15) into Equation (3) and performing the
corresponding adjustments, we have:

Case 1:

ε1 = −ε4, ε2 =
ε3 + 4

3
, ε3 = ε3, ε4 = ε4, ε5 =

2ε4 − ε3ε4

3
, ε6 = ε3 + 2, ε7 = 0, ∆1 = ∆1, ∆2 = ∆2.

Substituting the above results into Equation (15) and applying the transformation
provided by Equation (2), we can obtain the periodic lump solution of Equation (1) as:

ψ(x, y, z, t) =
2
[
∆1 cos

(
x− ε4y + ε3+4

3 z + ε3t
)
+ ∆2sin h

(
x + ε4y + 2ε4−ε3ε4

3 z + (ε3 + 2)t
)]

∆1 sin
(

x− ε4y + ε3+4
3 z + ε3t

)
+ ∆2cos h

(
x + ε4y + 2ε4−ε3ε4

3 z + (ε3 + 2)t
) . (16)

Case 2:

ε1 = ε1, ε2 = −2ε1 + ε1ε6

3
, ε3 = ε6 − 2, ε4 = −ε1, ε5 =

ε1ε6 − 4ε1

3
, ε6 = ε6, ε7 = 0, ∆1 = ∆1, ∆2 = ∆2.

Bringing the obtained results into Equation (15), we can obtain the periodic lump
solution of Equation (1) with the help of the transformation provided by Equation (2) as:

ψ(x, y, z, t) =
2
[
∆1 cos

(
x + ε1y− 2ε1+ε1ε6

3 z + (ε6 − 2)t
)
+ ∆2sin h

(
x− ε1y + ε1ε6−4ε1

3 z + ε6t
)]

∆1 sin
(

x + ε1y− 2ε1+ε1ε6
3 z + (ε6 − 2)t

)
+ ∆2cos h

(
x− ε1y + ε1ε6−4ε1

3 z + ε6t
) . (17)
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3. The Traveling Wave Solutions

In this section, we will inquire into the traveling wave solutions of Equation (1) with
the aid of the sub-equation method [47,48].

To obtain the traveling wave solutions, we first introduce the following variable
transformation:

ψ(x, y, z, t) = Ψ(ζ), ζ = mx + ny + kz + st, (18)

where m, n, k, s are non-zero constants. Putting it into Equation (1) yields:

m3nΨ(4) + 3m2n
[(

Ψ′
)2
]′
− (ns + 3mk)Ψ′′ = 0, (19)

Integrating Equation (19) with respect to ζ once and ignoring the integral constant,
we have:

m3nΨ′′′ + 3m2n
(
Ψ′
)2 − (ns + 3mk)Ψ′ = 0, (20)

Using the sub-equation method, we can assume the solution of Equation (20) is:

Ψ(ζ) =
c

∑
i=0

αi<i(ζ). (21)

where αi(i = 0, 1, 2. . . . , c) are constants that can be determined later. Additionally, there is:

<′(ζ) = µ +<2(γ). (22)

Here, µ is a constant. The solutions of Equation (22) are:

<(ζ) =


−√−µtan h(

√−µζ), µ < 0
−√−µcot h(

√−µζ), µ < 0√
µ tan

(√
µζ
)
, µ > 0

−√µ cot
(√

µζ
)
, µ > 0

− 1
ζ+Λ , Λ is a constant, µ = 0

. (23)

By balancing Ψ′′′ and
(
Ψ′
)2 in Equation (20), the value of c in Equation (21) can be

determined as:
c = 1. (24)

Thus, we have:
Ψ(ζ) = α0 + α1<(ζ). (25)

Now, substituting Equation (25) with Equation (22) into Equation (20) and setting their
coefficients of the different powers of <(ζ) to be zero yields:

<0(ζ): −3kmµα1 − nsµα1 + 2m3nµ2α1 + 3m2nµ2α2
1 = 0,

<2(ζ): −3kmα1 − nsα1 + 8m3nµα1 + 6m2nµα2
1 = 0,

<4(ζ): 6m3nα1 + 3m2nα2
1 = 0.

On solving them, we have:

Case 1:

α0 = α0, α1 = α1, m = −α1

2
, n = n, k = k, s =

α1
(
3k + nµα2

1
)

2n
, µ = µ.

So, the traveling wave solutions of Equation (1) can be obtained as:

ψ(x, y, z, t) = α0 − α1
√
−µtan h

[√
−µ

(
−α1

2
x + ny + kz +

α1
(
3k + nµα2

1
)

2n
t

)]
, µ < 0 (26)

ψ(x, y, z, t) = α0 − α1
√
−µcot h

[√
−µ

(
−α1

2
x + ny + kz +

α1
(
3k + nµα2

1
)

2n
t

)]
, µ < 0 (27)
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ψ(x, y, z, t) = α0 + α1
√

µ tan

[
√

µ

(
−α1

2
x + ny + kz +

α1
(
3k + nµα2

1
)

2n
t

)]
, µ > 0 (28)

ψ(x, y, z, t) = α0 − α1
√

µ cot

[
√

µ

(
−α1

2
x + ny + kz +

α1
(
3k + nµα2

1
)

2n
t

)]
, µ > 0 (29)

Case 2:

α0 = α0, α1 = −2m, m = m, n = n, k = −ns + 4m3nµ

3m
, s = s, µ = µ.

So, the traveling wave solutions of Equation (1) can be obtained as:

ψ(x, y, z, t) = α0 + 2m
√
−µtan h

[√
−µ

(
mx + ny− ns + 4m3nµ

3m
z + st

)]
(30)

ψ(x, y, z, t) = α0 + 2m
√
−µcot h

[√
−µ

(
mx + ny− ns + 4m3nµ

3m
z + st

)]
, µ < 0. (31)

ψ(x, y, z, t) = α0 − 2m
√

µ tan
[
√

µ

(
mx + ny− ns + 4m3nµ

3m
z + st

)]
, µ > 0. (32)

ψ(x, y, z, t) = α0 + 2m
√

µ cot
[
√

µ

(
mx + ny− ns + 4m3nµ

3m
z + st

)]
(33)

4. The Numerical Results and Physical Interpretations

The numerical results will be presented by the 3-D plots, 2-D contours, and 2-D curves
in this section by assigning the reasonable parameters with the help of the Mathemat-
ica software.

Figure 1 presents the behavior of the multi-waves complexiton solution provided by
Equation (6) for using ε2 = 2, ε9 = 3, ∆1 = 1, ∆2 = −1, ∆3 = 1, ∆4 = 1 for z = 0 at t = 0,
t = 4 and t = 8 in the form of a 3-D plot and 2-D contour. It can be observed that there
were collision phenomena between the lump and singular periodic waves arising in the
outline. As the time goes on, the wave is propagating along the negative direction of the
x-axis and y-axis.

By assigning the parameters as ε1 = 1, ε4 = 1, ε5 = 1, ε6 = 1, ε10 = 1, ε12 = 1, ε15 = 1,
ε16 = 1, ∆1 = 1, ∆2 = 1, and ∆3 = 1, we present the performance of Equation (13) in
Figure 2 for z = 0 at t = 0, t = 2, and t = 4 through the 3-D plots and 2-D contours.
We can find that the multi-wave is formed by the interleaving and superposition of two
waveforms. As time goes on, one wave is propagating along the negative direction of x-axis
and positive direction of y-axis, on the other hand, the other wave is propagating along the
negative direction of the x-axis and y-axis.

Figure 3 presents the behaviors of Equation (16) by selecting the parameters as ε3 = 1,
ε4 = 1, ∆1 = 1, and ∆2 = 1 at z = 1 for t = 0, t = 1, and t = 2 via the 3-D plots and 2-D
contours. It is easy to see the collision phenomena between the lump and singular periodic
waves arising in the outline. With the increase in t, the waveform propagates along the
negative direction of the x-axis and y-axis.

Assigning the parameters as α0 = 1, α1 = 1, n = 1, k = 1, and µ = −1, the behaviors
of Equation (26) and Equation (27) are described in Figures 4 and 5, respectively. We can
find the waveform of Equation (26) is the dark wave and of Equation (27) is the bright-
dark wave.
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Figure 4. The 3-D plots and 2-D curve of Equation (26) with the parameters as α0 = 1, α1 = 1, n = 1,
k = 1, and µ = −1. (a) 3-D plot for z = 0 and t = 0, (b) 2-D contour for z = 0 and t = 0, and (c) 2-D
curve for y = 0, z = 0, and t = 0.

If we choose the parameters as α0 = 1, m = 1, n = 1, s = 1, and µ = 1, we present the
performances of Equation (28) and Equation (29) in Figures 6 and 7, respectively. It can be
observed that the profiles are both the singular periodic waves.
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Figure 5. The 3-D plots and 2-D curve of Equation (27) with the parameters as α0 = 1, α1 = 1, n = 1,
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curve for y = 0, z = 0, and t = 0.
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5. Conclusions and Future Recommendations

With the aid of the Cole—Hopf transform, we successfully constructed the multi-wave
complexiton, multi-wave, and periodic-lump solutions of the (3+1)-dimensional B-type
Kadomtsev—Petviashvili equation via applying the symbolic computation and the ansatz
function schemes. Furthermore, we also find its abundant exact traveling solutions by
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means of the sub-equation method, which includes the dark wave, bright-dark wave,
and singular periodic wave solutions. Finally, the numerical simulation of the solutions
are presented through the 3-D plots, 2-D contours, and 2-D curves. Compared with
the solutions reported in [35–40], it can be found that the diverse solutions in this work
are all new, which can be used to extend the solutions of the (3+1)-dimensional B-type
Kadomtsev—Petviashvili equation in fluid mechanics. The methods in this paper can be
applied to study the exact solutions of the other PDEs in physics.

Recently, the fractal and fractional calculus have a wide range of applications in differ-
ent fields [49–57]; how to apply them to Equation (1) is the direction of the future research.
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