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Abstract: Let A be a non-commutative prime ring with involution ∗, of characteristic 6= 2 (and 3),
with Z as the center of A and Π a mapping Π : A → A such that [Π(x), x] ∈ Z for all (skew)
symmetric elements x ∈ A. If Π is a non-zero CE-Jordan derivation of A, then A satisfies s4, the
standard polynomial of degree 4. If Π is a non-zero CE-Jordan ∗-derivation of A, then A satisfies s4 or
Π(y) = λ(y− y∗) for all y ∈ A, and some λ ∈ C, the extended centroid of A. Furthermore, we give
an example to demonstrate the importance of the restrictions put on the assumptions of our results.

Keywords: prime ring; involution; centrally extended Jordan (∗-)derivation; (skew) symmetric
elements

MSC: 16W10; 16N60; 16W25

1. Introduction

Throughout this article, A denotes an associative ring with the center Z, and with
the maximal symmetric ring of quotients of A, denoted by Qms = Qms(A). The center
of Qms is called the extended centroid of A and is denoted by C. Clearly, A ⊆ Qms and
Z ⊆ C. Moreover, if A is prime, then C is a field. The ring AC is called the central closure
of A. The prime ring A is called centrally closed if A = AC. In particular, the prime ring
Qms is centrally closed; more information about these objects can be found in [1]. The
symbol [a, b] (resp., a ◦ b) denotes the commutator (resp., anti-commutator) ab− ba (resp.,
ab + ba) for all a, b ∈ A. A ring A is called prime if, for all a, b ∈ A, aAb = (0) implies
either a = 0 or b = 0, and if aAa = (0) implies a = 0, then A is called a semi-prime ring.
A ring A is called 2-torsion-free if, for all a ∈ A, 2a = 0 implies a = 0. If a, ax ∈ Z and
A is a prime ring, then a = 0 or x ∈ Z for all a, x ∈ A. Further, if 0 6= a ∈ Z and A is
a prime ring, then a is not a zero divisor for all a ∈ A. An additive map ∗ : A → A is
called an involution if (a∗)∗ = a for all a ∈ A and (ab)∗ = b∗a∗ for all a, b ∈ A. By a ring
with involution, we mean a ring equipped with an involution “ ∗ ”, which is also called
a ∗-ring. Let H = {a ∈ A : a∗ = a} and S = {a ∈ A : a∗ = −a}; the elements of H are
called symmetric, and the elements of S are called skew-symmetric. Thus, for all a ∈ A,
we have a + a∗ ∈ H and a− a∗ ∈ S. The involution “ ∗ ” can be uniquely extended to the
involution of Qms. The involution “ ∗ ” is said to be of the first kind if Z ⊆ H; otherwise,
it is of the second kind, i.e., S ∩ Z 6= (0). An additive mapping Π : A → A is called a
derivation if Π(ab) = Π(a)b + aΠ(b) for all a, b ∈ A. For a fixed element c ∈ A, a mapping
a 7→ [c, a] is called an inner derivation induced by ‘c’. An additive map Π is called a Jordan
derivation if Π(a2) = Π(a)a + aΠ(a) for all a ∈ A. Obviously, every derivation is a Jordan
derivation, but the converse is not necessarily true (see [2], Example 3.2.1). Moreover, the
question of “When is a Jordan derivation a derivation?” led to a new and significant area
of research (see [3–7]). In 1957, Herstein [6] showed that for prime rings of characteristic
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6= 2, every Jordan derivation is an ordinary derivation. Later, Brešar and Vukman [5]
gave a brief and elegant proof of this result. In the same year, Brešar [4] showed that for a
rather wider class of rings—namely, semi-prime rings with 2-torsion-free condition—every
Jordan derivation is a derivation. Thenceforth, a considerable number of results have
been proved in this direction. Let A be a ∗-ring. An additive mapping Π : A → A is
called a ∗-derivation if Π(ab) = Π(a)b∗ + aΠ(b) for all a, b ∈ A, and is called a Jordan
∗-derivation if Π(a2) = Π(a)a∗ + aΠ(a) for all a ∈ A. The notions of ∗-derivation and
Jordan ∗-derivation were first mentioned in [8]. Note that the mapping a 7→ a∗c− ca, where
c is a fixed element of A, is a Jordan ∗-derivation known as an inner Jordan ∗-derivation.
Moreover, Π is called X-inner if there exists q ∈ Qms such that Π(a) = aq− qa∗ for all
a ∈ A (see [9]). The issue of quadratic forms’ representability by bilinear forms gave rise
to the study of Jordan ∗-derivations (see [10,11]). Since then, there has been a significant
interest in studying the algebraic structure of Jordan ∗-derivations in rings and algebras;
for a good cross-section, we refer the reader to [12–15]. For further generalizations and
recent results, see [9].

Recently, Bell and Daif [16] introduced a centrally extended derivation and defined it
as follows: a map Π : A→ A is called a centrally extended derivation if Π(a + b)−Π(a)−
Π(b) ∈ Z for all a, b ∈ A and Π(ab)−Π(a)b− aΠ(b) ∈ Z for all a, b ∈ A. There has been
rising literature investigating centrally extended mappings in rings under various settings;
e.g., see [16–20].

Let D be a subset of A; a mapping f is called commuting (resp., centralizing) on D,
if [ f (a), a] = 0 (resp., [ f (a), a] ∈ Z) for all a ∈ D. In 1955, Divinsky [21] established that a
simple Artinian ring is commutative if it admits a commuting non-trivial automorphism,
which launched the study of commuting and centralizing mappings. Posner [22] proved
another remarkable result: A must be commutative if there is a non-zero centralizing
derivation on A. Ali and Dar [23] introduced ∗-commuting and ∗-centralizing mappings
and defined them as follows: a mapping f is called ∗-commuting (resp., ∗-centralizing) on
a set D if [ f (a), a∗] = 0 (resp., [ f (a), a∗] ∈ Z) for all a ∈ D. For further generalizations and
recent results, see [24].

One of the most interesting and revolutionary concepts was the study of derivations in
rings. It has been proven in a variety of other derivations over time. Amalgamation endo-
morphisms, anti-automorphisms, and (anti-) commutators with derivations have opened
up a new world of intriguing ideas. Although purely an algebraic concept, derivations have
a wide range of applications. Many algebraists are interested in the issue of knowing the
structure of rings, and the concept of derivations on rings and modules is convenient for this
goal. The relationship between derivations and the structure of rings has been extensively
examined in recent years, although more work is needed. The study of derivations in rings
was initiated long ago but received impetus only after Posner [22], who in 1957 established
two very striking results on derivations in prime rings. The notion of derivation has also
been generalized in various directions, such as Jordan derivation, centrally extended Jordan
(∗)-derivation, centrally extended generalized Jordan (∗)-derivation, etc. Moreover, there
has been considerable interest in investigating the commutativity of rings, more often that
of prime and semiprime rings, and admitting these mappings, which are centralizing or
commuting on some appropriate subsets of R. Kharchenko [25] described identities with
derivations, and his results are used effectively as a powerful tool to reduce a differential
identity to a generalized polynomial identity.

Recently, Bhushan et al. [17] introduced centrally extended Jordan derivations, which
are a generalization of Jordan derivations and derivations, and they discussed the existence
of these mappings in rings. Accordingly, a self-mapping Π of A is called a centrally
extended Jordan derivation if Π(a + b)−Π(a)−Π(b) ∈ Z and Π(a ◦ b)−Π(a) ◦ b− a ◦
Π(b) ∈ Z for all a, b ∈ A. They abbreviated this map as the CE-Jordan derivation. They
also established the following result: if A is a non-commutative prime ring with involution
“ ∗ ” and Π is a non-zero centrally extended Jordan derivation of A such that [Π(a), a] ∈ Z
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(resp., [Π(a), a∗] ∈ Z) for all a ∈ A, then A satisfies s4 (in other words, A is an order in a
central simple algebra of dimension at most 4 over its center, see Lemma 1).

Motivated by this, we show that if a non-zero centrally extended Jordan derivation
Π on a non-commutative prime ring A, char(A) 6= 2 with involution “ ∗ ” satisfying
[Π(a), a] ∈ Z for all a ∈ H or a ∈ S, then A satisfies s4. Moreover, we provide analogous
studies related to centrally extended Jordan ∗-derivations. Furthermore, we give Example 1
to demonstrate the importance of the primeness A in our results.

2. Preliminary Results

The standard identity in four non-commuting variables, denoted by s4, is defined by

s4(a1, a2, a3, a4) = ∑
σ∈S4

(−1)σaσ(1)aσ(2)aσ(3)aσ(4),

where (−1)σ is the sign of the permutation σ ∈ S4, S4 is the symmetric group of degree 4,
and aσ(i) are the indeterminate variables [26,27]. It is known that if A is a non-commutative
prime ring and satisfies s4, then A is an order in a central simple algebra of dimension at
most 4 over its center, see Lemma 1.

Lemma 1 ([28], Lemma 2.1 and [29], Theorem (Posner) 4.4, p.42). Let A be a non-commutative
prime ring. Then, dimC AC ≤ 4 if and only if A satisfies s4.

Lemma 2 ([30], Lemma 2). Let A be a semi-prime ring. If [S2, S2] = (0), then A satisfies s4.

Lemma 3 ([31], Theorem 3). Let A be a prime ring. If n is a fixed natural number such that
hn ∈ Z for all h ∈ H, then A satisfies s4.

Lemma 4 ([31], Theorem 7). Let A be a prime ring. If δ is a derivation on A such that δ(s) ◦ s ∈ Z
for all s ∈ S, then δ = 0 or A satisfies s4.

Lemma 5 ([31],Theorem 1 and 2). Let A be a prime ring and char(A) 6= 2. If δ is a non-zero
derivation on A such that [δ(t), t] ∈ Z for all t ∈ H (t ∈ S), then A satisfies s4.

We now introduce the notation of a generalized polynomial identity taken from [32].
With or without involution, let A be a prime ring, ACC〈X〉 a free product over C of AC,
and C〈X〉 a free algebra on a set X of indeterminates. An additive subgroup A of AC is
called a generalized polynomial identity over C (shortly, A is GPI over C) if there exists a
non-zero element θ(x1, x2, ..., xm) of ACC〈X〉 such that θ(u1, u2, ..., um) = 0 for all ui ∈ A.

Lemma 6 ([1], Corollary 6.2.5). Let A be a prime ring, char(A) 6= 2 with involution ∗.
(i) If S is GPI, then A is GPI.
(ii) If H is GPI, then A is GPI.

Lemma 7 ([32], Lemma 3.2). Let D be any set and A be a prime ring. If functions F : D → A
and G : D → A satisfy such F(u)aG(t) = G(u)aF(t) for all u, t ∈ D and a ∈ A, then F = 0 or
there exists λ in the extended centroid of A, such that G(u) = λF(u) for all u ∈ D.

Lemma 8 ([33], Lemma 1.3.2). Let A be a prime ring. Suppose that ai, bi are elements in A such
that ∑ aiubi = 0 for all u ∈ A. Then, all a′is = 0 or b′is = 0 unless the a′is are linearly dependent
over C, and the b′is are linearly dependent over C.

3. Results on Centrally Extended Jordan Derivations

Let A be a ring with involution “ ∗ ”. Recently, Bhushan et al. [17] introduced the notion
of CE-Jordan derivation. They established the following result: if A is a non-commutative
prime ring, char(A) 6= 2 with involution “ ∗ ”, and Π is a CE-Jordan derivation such that
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[Π(a), a] ∈ Z (resp., [Π(a), a∗] ∈ Z) for all a ∈ A, then Π = 0 or dimC AC ≤ 4. They also
proved that a CE-Jordan derivation Π of a prime ring is additive. Now, we will show the
following results on a CE-Jordan derivation.

Theorem 1. Let A be a non-commutative prime ring, char(A) 6= 2 with involution “ ∗ ”, and let
Π be a non-zero CE-Jordan derivation of A. Suppose that [Π(h), h] ∈ Z for all h ∈ H. Then, A
satisfies s4.

Proof. Assume that

[Π(h), h] ∈ Z (1)

for all h ∈ H. If Z = (0); then, from the definition of Π, we have that Π is a Jordan
derivation and by [6], we obtain that Π is a derivation, and so A satisfies s4, by Lemma 5.
Thus, from now on we will assume that Z 6= (0).

Now, by linearizing (1), we see that [Π(h), h1] + [Π(h1), h] ∈ Z for all h, h1 ∈ H.
Putting h1 = h2 in the last relation, we find that [Π(h), h2] + [Π(h2), h] ∈ Z, and so

[Π(h), h]h + h[Π(h), h] + [Π(h)h + hΠ(h), h] ∈ Z.

Further,
[Π(h), h]h + h[Π(h), h] + [Π(h), h]h + h[Π(h), h] ∈ Z.

Using (1) in the above expression, we conclude that 4h[Π(h), h] ∈ Z, and hence, h[Π(h), h] ∈
Z for all h ∈ H. It follows that [h[Π(h), h], r] = 0 for all r ∈ A. By applying (1) in the previ-
ous relation, we infer that [h, r][Π(h), h] = 0. Again, by using (1) in the last equation, we
find that [h, r]A[Π(h), h] = 0 for all r ∈ A. Taking r by Π(h) in the previous relation, we
obtain [h, Π(h)]A[Π(h), h] = 0, and so,

[Π(h), h] = 0 (2)

for all h ∈ H. By linearizing (2), we obtain

[Π(h), h1] + [Π(h1), h] = 0 (3)

for all h, h1 ∈ H. Replacing h1 by h1 ◦ h2 in (3), we obtain

[Π(h), h1 ◦ h2] + [Π(h1 ◦ h2), h] = 0

for all h, h1, h2 ∈ H—that is,

[Π(h), h1 ◦ h2] + [Π(h1) ◦ h2 + h1 ◦Π(h2), h] = 0.

It follows that

[Π(h), h1]h2 + h1[Π(h), h2] + [Π(h), h2]h1 + h2[Π(h), h1]

+ [Π(h1), h]h2 + Π(h1)[h2, h] + h2[Π(h1), h] + [h2, h]Π(h1)

+ [Π(h2), h]h1 + Π(h2)[h1, h] + h1[Π(h2), h] + [h1, h]Π(h2) = 0.

Applying (3) in the above equation, we see that

Π(h1)[h2, h] + [h2, h]Π(h1) + [Π(h2), h]h1 + Π(h2)[h1, h] + [h1, h]Π(h2) = 0.

That is,

Π(h1) ◦ [h2, h] + Π(h2) ◦ [h1, h] = 0 (4)
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for all h, h1, h2 ∈ H. By Lemma 6(ii), we have

Π(h1) ◦ [h2, x] + Π(h2) ◦ [h1, x] = 0 (5)

for all h1, h2 ∈ H and x ∈ A. Replacing x by xy in (5), where y ∈ A, we conclude that

Π(h1) ◦ [h2, x]y + Π(h1) ◦ x[h2, y] + Π(h2) ◦ [h1, x]y + Π(h2) ◦ x[h1, y] = 0

for all h1, h2 ∈ H and x, y ∈ A—that is,

(Π(h1) ◦ [h2, x] + Π(h2) ◦ [h1, x])y− ([h2, x][Π(h1), y] + [h1, x][Π(h2), y])

+ x(Π(h1) ◦ [h2, y] + Π(h2) ◦ [h1, y]) + ([Π(h1), x][h2, y] + [Π(h2), x][h1, y]) = 0

for all h1, h2 ∈ H and x, y ∈ A. By using (5) in the above expression, we arrive at

[Π(h1), x][h2, y] + [Π(h2), x][h1, y]− [h2, x][Π(h1), y]− [h1, x][Π(h2), y] = 0

for all h1, h2 ∈ H and x, y ∈ A. Taking h1 = h2 = h in the last relation, we have

[Π(h), x][h, y]− [h, x][Π(h), y] = 0

for all h ∈ H and x, y ∈ A. Putting y by ry in the previous equation and applying it,
we obtain

[Π(h), x]r[h, y]− [h, x]r[Π(h), y] = 0 (6)

for all h ∈ H and x, y, r ∈ A. By using Lemma 7, we obtain [h, x] = λ[Π(h), x] for all h ∈ H,
x ∈ A, and some λ ∈ C or [Π(h), x] = 0 for all h ∈ H and x ∈ A.

Case (I): Suppose that [Π(h), x] = 0 for all h ∈ H and x ∈ A. It follows that

Π(h) ∈ Z (7)

for all h ∈ H. Taking h by h2 in (7) and applying it, we have 2hΠ(h) ∈ Z for all h ∈ H—that
is, hΠ(h) ∈ Z for all h ∈ H. Using (7) in the last relation, we see that h ∈ Z or Π(h) = 0. In
the case where h ∈ Z for all h ∈ H, then by Lemma 3, we obtain that A satisfies s4. Now, if

Π(h) = 0 (8)

for all h ∈ H. Putting h by s2 in (8), where s ∈ S, we find that Π(s) ◦ s + z(s2) = 0, and so,

Π(s) ◦ s ∈ Z (9)

for all s ∈ S. Replacing s by s + (s ◦ h) in (9), where h ∈ H, we conclude that

Π(s ◦ h) ◦ s + Π(s) ◦ (s ◦ h) ∈ Z.

Applying (8) in the above expression, we have

{Π(s) ◦ h + z(h, s)} ◦ s + Π(s) ◦ (s ◦ h) ∈ Z.

It follows that
(Π(s) ◦ h) ◦ s + 2z(h, s)s + Π(s) ◦ (s ◦ h) ∈ Z.

This implies that

(Π(s)h + hΠ(s))s + s(Π(s)h + hΠ(s)) + 2z(h, s)s + Π(s)(sh + hs) + (sh + hs)Π(s) ∈ Z.
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Hence,

Π(s)hs+ hΠ(s)s+ sΠ(s)h+ shΠ(s)+ 2z(h, s)s+Π(s)sh+Π(s)hs+ shΠ(s)+ hsΠ(s) ∈ Z.

That is,

h(Π(s)s + sΠ(s)) + h(Π(s)s + sΠ(s)) + 2Π(s)hs + 2shΠ(s) + 2z(h, s)s ∈ Z.

Using (9) in the previous relation, we obtain

2h(Π(s)s + sΠ(s)) + 2Π(s)hs + 2shΠ(s) + 2z(h, s)s ∈ Z.

This implies that

h(Π(s)s + sΠ(s)) + Π(s)hs + shΠ(s) + z(h, s)s ∈ Z.

Thus,
[h(Π(s)s + sΠ(s)) + Π(s)hs + shΠ(s) + z(h, s)s, s] = 0.

Again, by applying (9) in the last equation, we have

(Π(s) ◦ s)[h, s] + [Π(s)h, s]s + s[hΠ(s), s] = 0 (10)

for all s ∈ S and h ∈ H. Using Lemma 6(ii) in (10), we obtain

(Π(s) ◦ s)[x, s] + [Π(s)x, s]s + s[xΠ(s), s] = 0 (11)

for all s ∈ S and x ∈ A. Putting x by sx in (11) and applying (9), left multiplying it by
s, and then subtracting them, we arrive that [[Π(s), s]x, s]s = 0—that is, [Π(s), s]xs2 −
s[Π(s), s]xs = 0. Using Lemma 8 in the previous relation, we obtain [Π(s), s] = 0 or s = 0
unless λ1(s)s + λ2(s)s2 = 0 for some λ1(s), λ2(s) ∈ C.

Subcase (1): If s = 0 for all s ∈ S, then Π(s) = 0 for all s ∈ S, and from (8), we obtain
Π(s + h) = 0—that is Π(x) = 0 for all x ∈ A—and so Π = 0, a contradiction.

Subcase (2): If [Π(s), s] = 0 for all s ∈ S, then Π(s)s = sΠ(s) and by applying the last
expression in (9), we obtain 2Π(s)s ∈ Z; so,

Π(s)s ∈ Z (12)

for all s ∈ S. Replacing s by s + (s ◦ h) in the above relation, where h ∈ H, we con-
clude that Π(s ◦ h)s + Π(s)(s ◦ h) ∈ Z. Using (8) in the previous expression, we have
(Π(s) ◦ h)s + z(h, s)s + Π(s)(s ◦ h) ∈ Z—that is, 2hΠ(s)s + 2Π(s)hs + z(h, s)s ∈ Z. Hence,
[2hΠ(s)s + 2Π(s)hs, s] = 0; so, [hΠ(s)s + Π(s)hs, s] = 0. It follows that [hΠ(s)s, s] +
[Π(s)h, s]s = 0. Applying (12) in the last equation, we find that [h, s]Π(s)s + [Π(s)h, s]s =
0—that is, [h, s]Π(s)s + [Π(s), s]hs + Π(s)[h, s]s = 0. However, from Subcase (2), we
have [Π(s), s] = 0; so, [h, s]Π(s)s + Π(s)[h, s]s = 0. Using Lemma 6(ii) in the previ-
ous relation, we obtain [x, s]Π(s)s + Π(s)[x, s]s = 0 for all x ∈ A and s ∈ S—that is,
xsΠ(s)s− sxΠ(s)s + Π(s)xs2 −Π(s)sxs = 0 for all x ∈ A and s ∈ S. Applying (12) in the
last expression, we see that −sxΠ(s)s + Π(s)xs2 = 0 for all x ∈ A and s ∈ S. Again, using
(12) in the previous relation, we have

Π(s)s2x−Π(s)xs2 = 0 (13)

for all x ∈ A and s ∈ S. Applying Lemma 8 in (13), we obtain s2 = 0 unless λ3(s) +
λ4(s)s2 = 0 for some λ3(s), λ4(s) ∈ C. In case s2 = 0 for all s ∈ S and by Lemma 2, we
obtain that A satisfies s4. Now, consider the case λ3(s) + λ4(s)s2 = 0 and s2 6= 0. Since
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λ3(s) 6= 0 6= λ4(s), we obtain s2 = −λ3(s)λ−1
4 (s) ∈ C; hence, s2 ∈ C, and since s2 ∈ A, we

obtain

s2 ∈ Z (14)

for all s ∈ S—that is, [s2, x] = 0 for all x ∈ A. It follows that [s, x]s + s[s, x] = 0. We put
δ(s) = [s, x], and so δ(s)s + sδ(s) = 0; hence, δ(s) = 0 or A satisfies s4 by Lemma 4. If
δ(s) = 0, then [s, x] = 0 and, by Lemma 6(i), we obtain [y, x] = 0 for all x, y ∈ A; so, A is
commutative, a contradiction.

Subcase (3): If

λ1(s)s + λ2(s)s2 = 0 (15)

for all s ∈ S, then (λ1(s)s + λ2(s)s2)∗ = 0; so,

−λ1(s)∗s + λ2(s)∗s2 = 0 (16)

for all s ∈ S.
First: Suppose that “ ∗ ” is the first kind. From (16), we see that −λ1(s)s + λ2(s)s2 = 0

and by using the last expression in (15) we obtain 2λ1(s)s = 0—that is, λ1(s)s = 0, and
since λ1(s) 6= 0, we find that s = 0. Now, the same as in the above, we obtain that A
satisfies s4.

Second: Suppose that “ ∗ ” is the second kind. Let 0 6= s′ ∈ S ∩ Z. Assume that
Π(s′) = 0. Replacing h by s ◦ s′ in (8), where s ∈ S, we have Π(s ◦ s′) = 0; so, Π(s) ◦ s′ +
z(s, s′) = 0, which implies that Π(s) ◦ s′ ∈ Z and, hence, 2Π(s)s′ ∈ Z—that is, Π(s) ∈ Z.
Taking s by s ◦ h in the previous relation, and applying it and (8), where h ∈ H, we see that
Π(s)h ∈ Z. By Lemma 6(i), we obtain Π(s)x ∈ Z for all x ∈ A and s ∈ S. Since Π(s) ∈ Z,
we find that Π(s) = 0 for all s ∈ S or x ∈ Z for all x ∈ A. If x ∈ Z for all h ∈ A, then A
is commutative, a contradiction. If Π(s) = 0 for all s ∈ S, then by using (8), we infer that
Π(x) = 0 for all x ∈ A, a contradiction. Now, assume that Π(s′) 6= 0. Putting h by s ◦ s′

in (8), where s ∈ S, we have Π(s ◦ s′) = 0—that is, Π(s) ◦ s′ + Π(s′) ◦ s + z(s, s′) = 0. It
follows that Π(s) ◦ s′ + Π(s′) ◦ s ∈ Z; so,

2s′Π(s) + Π(s′) ◦ s ∈ Z (17)

for all s ∈ S. Taking s = s′ in (17), we obtain 4s′Π(s′) ∈ Z; so, Π(s′) ∈ Z. Applying the last
relation in (17), we see that 2s′Π(s) + 2Π(s′)s ∈ Z. This implies that [Π(s), s] = 0 for all
s ∈ S. Now, the same as in Subcase (2), we obtain that A satisfies s4.

Case (II): Suppose that [h, x] = λ[Π(h), x] for all h ∈ H and x ∈ A. It follows that
[h− λΠ(h), x] = 0 for all h ∈ H and x ∈ A—that is,

h− λΠ(h) ∈ Z (18)

for all h ∈ H. Replacing h by h ◦ h1 in (18), where h1 ∈ H, we have

hh1 + h1h− λΠ(h)h1 − λh1Π(h)− λΠ(h1)h− λhΠ(h1) ∈ Z.

This implies that

h(h1 − λΠ(h1)) + (h1 − λΠ(h1))h− λΠ(h)h1 − λh1Π(h) ∈ Z.

Using (18) in the above expression, we obtain

2h(h1 − λΠ(h1))− λΠ(h)h1 − λh1Π(h) ∈ Z.

That is, [λΠ(h)h1 + λh1Π(h), h] = 0; so, λ[Π(h)h1 + h1Π(h), h] = 0. Hence, λ = 0 or
[Π(h)h1 + h1Π(h), h] = 0. If λ = 0, then, from (18), we obtain h ∈ Z for all h ∈ H and,
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by Lemma 3, A satisfies s4. From now on, we will assume that λ 6= 0, and so, [Π(h)h1 +
h1Π(h), h] = 0. Applying (2) in the last equation, we see that Π(h)[h1, h] + [h1, h]Π(h) = 0.
Using Lemma 6(ii) in the previous relation, we find that Π(h)[x, h] + [x, h]Π(h) = 0 for
all x ∈ A and h ∈ H. Taking h by h + h1 in the last expression, where h1 ∈ H, we have
Π(h)[x, h1] + Π(h1)[x, h] + [x, h]Π(h1) + [x, h1]Π(h) = 0. Again, taking x by s, and h1 by
s2 in the previous equation, where s ∈ S, we obtain Π(s2)[s, h] + [s, h]Π(s2) = 0. Applying
Lemma 6(ii) in the last relation, we see that Π(s2)[s, x] + [s, x]Π(s2) = 0 for all x ∈ A and
s ∈ S—that is,

Π(s2)sx−Π(s2)xs + sxΠ(s2)− xsΠ(s2) = 0 (19)

for all s ∈ S and x ∈ A. Taking h by s2 in (18), we see that s2 − λΠ(s2) ∈ Z; so, [s2 −
λΠ(s2), s] = 0—that is, λ[Π(s2), s] = 0. Since λ 6= 0, we obtain [Π(s2), s] = 0, and hence,
Π(s2)s = sΠ(s2); then, by using the previous expression in (19), we have Π(s2)sx −
Π(s2)xs + sxΠ(s2)− xΠ(s2)s = 0. Replacing x by xy in the last equation, right multiplying
it by y, and then subtracting them, where y ∈ A, we see that −Π(s2)x[y, s] + sx[y, Π(s2)]−
x[y, Π(s2)s] = 0. Again, replacing x by rx in the last relation, left multiplying it by r, and
then subtracting them, where r ∈ A, we find that [−Π(s2), r]x[y, s] + [s, r]x[y, Π(s2)] = 0.
This implies that [Π(s2), r]x[s, y]− [s, r]x[Π(s2), y] = 0. Applying Lemma 8 in the previous
expression, we infer that [Π(s2), r] = λ0[s, r] or [s, r] = 0. If [s, r] = 0, then S ⊆ Z; by
Lemma 2, we obtain that A satisfies s4. Now, if [s, r] 6= 0, then [Π(s2), r] = λ0[s, r] for all
s ∈ S and r ∈ A. Putting s by−s in the last relation and using it, we obtain 2λ0[s, r] = 0, and
so, λ0[s, r] = 0; since [s, r] 6= 0, we obtain λ0 = 0, and so, [Π(s2), r] = 0. Hence, Π(s2) ∈ Z
for all s ∈ S. Taking h by s2 in (18) and applying the previous expression, we have s2 ∈ Z
for all s ∈ S. Now, the same as in Subcase (2) in (14), we obtain that A satisfies s4.

Corollary 1 ([17], Theorem 3.6). Let A be a non-commutative prime ring, char(A) 6= 2 with
involution “ ∗ ”, and let Π be a CE-Jordan derivation of A. Suppose that [Π(x), x] ∈ Z for all
x ∈ A. Then, Π = 0 or dimC AC ≤ 4.

Corollary 2 ([17], Theorem 3.7). Let A be a non-commutative prime ring, char(A) 6= 2 with
involution “ ∗ ”, and let Π be a CE-Jordan derivation of A. Suppose that [Π(x), x∗] ∈ Z for all
x ∈ A. Then, Π = 0 or dimC AC ≤ 4.

Theorem 2. Let A be a non-commutative prime ring, char(A) 6= 2, 3 with involution “ ∗ ”, and
let Π be a non-zero CE-Jordan derivation of A. Suppose that [Π(s), s] ∈ Z for all s ∈ S. Then, A
satisfies s4.

Proof. Let Z = (0), the same as in Theorem 1. Now, suppose that Z 6= (0). Assume that

[Π(s), s] ∈ Z (20)

for all s ∈ S. By linearizing (20), we have [Π(s), s1] + [Π(s1), s] ∈ Z for all s, s1 ∈ S. Putting
s1 by s3 in the last relation, we obtain [Π(s), s3] + [Π(s3), s] ∈ Z. Using (20) in the previous
expression, we obtain 3[Π(s), s]s2 + [Π(s3), s] ∈ Z—that is, 6[Π(s), s]s2 + 2[Π(s3), s] ∈ Z.
Hence,

6[Π(s), s]s2 + [Π(s2 ◦ s), s] ∈ Z (21)

for all s ∈ S. Again, applying (20) in (21), we see that 6[Π(s), s]s2 + 6[Π(s), s]s2 ∈ Z. Thus,
12[Π(s), s]s2 ∈ Z, and so, [Π(s), s]s2 ∈ Z. Using (20) in the last relation, we find that
[Π(s), s] = 0 or s2 ∈ Z. Suppose that s2 ∈ Z; the same as in the proof of Theorem 2, we
obtain that A satisfies s4. Now, suppose that

[Π(s), s] = 0 (22)
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for all s ∈ S. By linearizing (20), we see that

[Π(s), s1] + [Π(s1), s] = 0 (23)

for all s, s1 ∈ S. Taking s1 by s ◦ h in (23), where h ∈ H, we find that

[Π(s), sh + hs] + [Π(s) ◦ h + s ◦Π(h), s] = 0.

Applying (22) in the above equation, we infer that

s[Π(s), h] + [Π(s), h]s + Π(s)[h, s] + [h, s]Π(s) + s[Π(h), s] + [Π(h), s]s = 0.

Putting h by s1 ◦ s in the above relation, where s1 ∈ S, we conclude that

s[Π(s), s1s + ss1] + [Π(s), s1s + ss1]s + Π(s)[s1s + ss1, s] + [s1s + ss1, s]Π(s)

+ s[Π(s1)s + sΠ(s1) + s1Π(s) + Π(s)s1, s]

+ [Π(s1)s + sΠ(s1) + s1Π(s) + Π(s)s1, s]s = 0

for all s, s1 ∈ S. Using (22) in the above expression, we arrive at

s[Π(s), s1]s + s2[Π(s), s1] + [Π(s), s1]s2 + s[Π(s), s1]s + Π(s)[s1, s]s + Π(s)s[s1, s]

+ [s1, s]sΠ(s) + s[s1, s]Π(s) + s[Π(s1), s]s + s2[Π(s1), s] + s[s1, s]Π(s) + sΠ(s)[s1, s]

+ [Π(s1), s]s2 + s[Π(s1), s]s + [s1, s]Π(s)s + Π(s)[s1, s]s = 0

for all s, s1 ∈ S. Applying (23) in the above relation, we have

Π(s)[s1, s]s + Π(s)s[s1, s] + [s1, s]sΠ(s) + s[s1, s]Π(s)

+ s[s1, s]Π(s) + sΠ(s)[s1, s] + [s1, s]Π(s)s + Π(s)[s1, s]s = 0

for all s, s1 ∈ S. Using (22) in the above equation, we obtain

2Π(s)[s1, s]s + 2Π(s)s[s1, s] + 2[s1, s]sΠ(s) + 2s[s1, s]Π(s) = 0.

That is, Π(s)[s1, s]s + Π(s)s[s1, s] + [s1, s]sΠ(s) + s[s1, s]Π(s) = 0. Applying Lemma 6(i) in
the previous expression, we obtain Π(s)[x, s]s + Π(s)s[x, s] + [x, s]sΠ(s) + s[x, s]Π(s) = 0
for all s ∈ S and x ∈ A. It follows that

Π(s)xs2 −Π(s)sxs + Π(s)sxs−Π(s)s2x + xs2Π(s)− sxsΠ(s) + sxsΠ(s)− s2xΠ(s) = 0

for all s ∈ S and x ∈ A. This implies that Π(s)xs2 −Π(s)s2x + xs2Π(s) − s2xΠ(s) = 0
for all s ∈ S and x ∈ A. Replacing x by xy in the last relation, right multiplying it by
y, and then subtracting them, where y ∈ A, we find that Π(s)x[y, s2] + x[y, s2Π(s)] −
s2x[y, Π(s)] = 0 for all s ∈ S and x, y ∈ A. Again, replacing x by rx in the previous
equation, left multiplying it by r, and then subtracting them, where r ∈ A, we conclude that
[Π(s), r]x[y, s2] + [r, s2]x[y, Π(s)] = 0 for all s ∈ S and x, y, r ∈ A—that is, [Π(s), r]x[s2, y]−
[s2, r]x[Π(s), y] = 0 for all s ∈ S and x, y, r ∈ A. Using Lemma 7 in the last relation, we
arrive at [Π(s), r] = λ[s2, r] for all s ∈ S, r ∈ A, and some λ ∈ C or [s2, r] = 0 for all s ∈ S
and r ∈ A. If [s2, r] = 0, then s2 ∈ Z; so, the same as in the proof of Theorem 2, we obtain
A satisfies s4. Now, suppose that [Π(s), r] = λ[s2, r] for all s ∈ S, r ∈ A, and some λ ∈ C.
Taking s by −s in the last expression and applying it, and since Π is additive, we obtain
[Π(s), r] = 0 for all s ∈ S, r ∈ A; so,

Π(s) ∈ Z (24)

for all s ∈ S. Putting s by s ◦ h in (24) and using it, where h ∈ H, we obtain 2Π(s)h+ sΠ(h)+
Π(h)s ∈ Z. Applying (24) in the previous relation, we see that [sΠ(h) + Π(h)s, h] = 0 for
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all s ∈ S and h ∈ H. By using Lemma 6(i) in the last expression, we find that [xΠ(h) +
Π(h)x, h] = 0 for all x ∈ A and h ∈ H. Taking x by 0 6= z ∈ Z in the previous equation, we
infer that 2z[Π(h), h] = 0 for all h ∈ H; so, [Π(h), h] = 0 for all h ∈ H and, by Theorem 2,
we obtain that A satisfies s4.

In 1998, T. Lee ([34], Theorem 1) proved the following result: Let A be a prime ring
with involution “ ∗ ” and an additive map f : S → A such that [ f (s), s] ∈ Z for all s ∈ S.
Then, there exist λ ∈ C and an additive map µ : S → C, such that f (s) = λs + µ(s) for
all s ∈ S, dimC AC = 4 or 16. Now, from Theorem 2 and Theorem 1 of [34], we have the
following result.

Corollary 3. Let A be a non-commutative prime ring, char(A) 6= 2, 3 with involution “ ∗ ”, and
let Π be a non-zero CE-Jordan derivation of A. Suppose that [Π(s), s] ∈ Z for all s ∈ S. Then,
dimC AC = 4.

4. Results on Centrally Extended Jordan ∗-Derivations

Let A be a ring with involution “ ∗ ”. Recently, Bhushan et al. [17] introduced the
notion of CE-Jordan ∗-derivation: a self-mapping Π of A is called a CE-Jordan ∗-derivation
if Π(a + b) − Π(a) − Π(b) ∈ Z and Π(a ◦ b) − Π(a)b∗ − Π(b)a∗ − aΠ(b) − bΠ(a) ∈ Z
for all a, b ∈ A. They established the following result: if A is a non-commutative prime
ring, char(A) 6= 2 with involution “ ∗ ”, and Π is a CE-Jordan ∗-derivation such that
[Π(a), a] ∈ Z (resp., [Π(a), a∗] ∈ Z) for all a ∈ A, then Π = 0 or dimC AC ≤ 4. They also
proved that a CE-Jordan ∗-derivation Π of a prime ring is additive. Now, we will prove the
following result on CE-Jordan ∗-derivation.

Theorem 3. Let A be a non-commutative prime ring, char(A) 6= 2 with involution “ ∗ ”, and let
Π be a non-zero CE-Jordan ∗-derivation of A. Suppose that [Π(h), h] ∈ Z for all h ∈ H. Then,
Π(x) = λ(x− x∗) for all x ∈ A and some λ ∈ C, or A satisfies s4.

Proof. Assume that [Π(h), h] ∈ Z for all h ∈ H. If Z = (0), then from the definition of
Π, we have that Π is a Jordan ∗-derivation and, by ([14], Theorem 1.2), we obtain that
Π is X-inner—that is, Π(x) = xq− qx∗ for all x ∈ A and some Qms in the case where A
satisfies s4, as desired. Now, suppose that A does not satisfy s4. We will prove that q ∈ C.
Applying our hypothesis in the last relation, we obtain [hq − qh∗, h] = 0 for all h ∈ H.
Hence, [hq− qh, h] = 0 for all h ∈ H. Using Lemma 6(ii) in the previous equation, we see
that [xq− qx, x] = 0 for all x ∈ A. This implies that x[q, x]− [q, x]x = 0 for all x ∈ A. Note
that δ(x) = [q, x] is a derivation; so, xδ(x)− δ(x)x = 0 for all x ∈ A—that is, [δ(x), x] = 0
for all x ∈ A. In particular, [δ(x), x] = 0 for all x ∈ H. By applying Lemma 5 in the last
expression, we find that δ = 0, for all x ∈ A, and so [q, x] = 0 for all x ∈ A; hence, q ∈ C, as
desired. Thus, from now on, we will assume that Z 6= (0).

Since h∗ = h for all h ∈ H, we obtain two cases as in the proof of Theorem 1:

Case (I): Suppose that [Π(h), x] = 0 for all h ∈ H and x ∈ A. From (8), we obtain

Π(h) = 0 (25)

for all h ∈ H. Putting h by s2 in (25), where s ∈ S, we find that [Π(s), s] + z(s2) = 0, and so,

[Π(s), s] ∈ Z (26)

for all s ∈ S. Replacing s by s+ s3 in (26) and using it, we obtain [Π(s), s3] + [Π(s3), s] ∈ Z—
that is, [Π(s), s]s2 + s[Π(s), s2] + [Π(s3), s] ∈ Z. Applying (26) in the last relation, we obtain
3[Π(s), s]s2 + [Π(s3), s] ∈ Z. This implies that 6[Π(s), s]s2 + [Π(s2 ◦ s), s] ∈ Z. Hence,
6[Π(s), s]s2 + [−Π(s2)s + Π(s)s2 + sΠ(s2) + s2Π(s), s] ∈ Z. Putting h = s2 in (25) and
using it in the last expression, we see that 6[Π(s), s]s2 + [Π(s)s2 + s2Π(s), s] ∈ Z. It follows
that 6[Π(s), s]s2 + [Π(s), s]s2 + s2[Π(s), s] ∈ Z. Applying (26) in the previous relation, we
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find that 8[Π(s), s]s2 ∈ Z—that is, [Π(s), s]s2 ∈ Z. Thus, [Π(s), s] = 0 or s2 ∈ Z. Suppose
that s2 ∈ Z; the same as in the proof of Theorem 2, we obtain that A satisfies s4. Now,
suppose that

[Π(s), s] = 0 (27)

for all s ∈ S. Taking s by s+ s ◦ h in (27) and using it, where h ∈ H, we have [Π(s), s ◦ h] + [Π(s ◦
h), s] = 0. Applying (25) in the previous equation, we obtain [Π(s), s ◦ h] + [Π(s) ◦ h, s] = 0.
Using (27) in the last relation, we obtain s ◦ [Π(s), h] + Π(s) ◦ [h, s] = 0. Putting h by s2

1
in the previous expression, where s1 ∈ S, we see that s ◦ [Π(s), s2

1] + Π(s) ◦ [s2
1, s] = 0.

Again, putting s1 by s1 + s2 in the last relation and applying it, where s2 ∈ S, we infer
that s ◦ [Π(s), s1 ◦ s2] + Π(s) ◦ [s1 ◦ s2, s] = 0. Using Lemma 6(i) in the previous equation,
we find that s ◦ [Π(s), x ◦ y] + Π(s) ◦ [x ◦ y, s] = 0 for all s ∈ S and x, y ∈ A. Taking y by
0 6= z ∈ Z in the last relation, we conclude that s ◦ [Π(s), x] + Π(s) ◦ [x, s] = 0 for all s ∈ S
and x ∈ A—that is,

sΠ(s)x− 2sxΠ(s) + 2Π(s)xs− xΠ(s)s−Π(s)sx + xsΠ(s) = 0

for all s ∈ S and x ∈ A. Applying (27) in the above expression, we arrive at Π(s)xs −
sxΠ(s) = 0 for all s ∈ S and x ∈ A. Using Lemma 7, we have Π(s) = λ0s for all s ∈ S and
some λ0 ∈ C or s = 0 for all s ∈ S. If s = 0 for all s ∈ S, then S = (0) and, by Lemma 2, we
obtain that A satisfies s4. Now, suppose that

Π(s) = λ0s (28)

for all s ∈ S. Since x + x∗ ∈ H and x − x∗ ∈ S for all x ∈ A, we obtain 2Π(x) =
Π((x + x∗) + (x− x∗)) = Π(x + x∗) + Π(x− x∗) and, by applying (25) and (28), we see
that 2Π(x) = Π((x + x∗) + (x − x∗)) = 0 + λ0(x − x∗)—that is, 2Π(x) = λ0(x − x∗).
Taking λ = λ0

2 ∈ C in the last relation, we find that Π(x) = λ(x− x∗) for all x ∈ A and
some λ ∈ C, as desired.

Case (II): The same as in Case (II) of Theorem 1.

Corollary 4 ([17], Theorem 4.6). Let A be a non-commutative prime ring, char(A) 6= 2 with
involution “ ∗ ”, and let Π be a CE-Jordan ∗-derivation of A. Suppose that [Π(x), x] ∈ Z for all
x ∈ A. Then, Π = 0 or dimC AC ≤ 4.

Proof. Assume that

[Π(x), x] ∈ Z (29)

for all x ∈ A. Thus, [Π(h), h] ∈ Z for all h ∈ H and, by Theorem 3, we obtain that A satisfies
s4, Π(x) = λ(x− x∗) for all x ∈ A, or Π = 0. If A satisfies s4 and by Lemma 1, we obtain
dimC AC ≤ 4 in case Π = 0, as desired. Now, consider the case where

Π(x) = λ(x− x∗) (30)

for all x ∈ A. In this case, we will prove that it is equivalent to dimC AC ≤ 4, under the
assumption of (29). Using (30) in (29), we see that λ[x∗, x] ∈ Z for all x ∈ A, and so, λ = 0
or [x∗, x] ∈ Z. If λ = 0, then Π = 0, as desired. Suppose that λ 6= 0; hence, [x∗, x] ∈ Z for
all x ∈ A. Applying [35] (Proposition 3.1) in the previous relation, we see that [x∗, x] = 0
for all x ∈ A. Using [35], (Theorem 3.2) in the last equation, there exists λ0 ∈ C and an
additive map µ : A→ C, such that x∗ = λ0x + µ(x) for all x ∈ A—that is,

x∗ − λ0x ∈ C (31)
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for all x ∈ A. Putting x by x ◦ h in (31) and applying it, where h ∈ H, we obtain 2h(x∗ −
λ0x) ∈ C; so, h(x∗ − λ0x) ∈ C and, by using (31) in the last expression, we obtain h ∈ C or
x∗ − λ0x = 0. Suppose that h ∈ C and, by Lemma 3, we find that A satisfies s4, as desired.
If x∗ − λ0x = 0, then x∗ = λ0x for all x ∈ A. Applying the previous equation in (30), we
have Π(x) = λ(1− λ0)x for all x ∈ A. Note that if λ0 = 1, then Π = 0, as desired. Suppose
that 1− λ0 6= 0. We put λ1 = λ(1− λ0) 6= 0; so,

Π(x) = λ1x (32)

for all x ∈ A. From the definition of Π, we have Π(x2) − Π(x)x∗ − xΠ(x) ∈ Z for all
x ∈ A, and by using (32) in the previous relation, we obtain λ1x2 − λ1xx∗ − λ1x2 ∈ Z for
all x ∈ A; so, λ1xx∗ ∈ Z for all x ∈ A and, since λ1 6= 0, we obtain xx∗ ∈ Z for all x ∈ A. In
particular, h2 ∈ Z for all h ∈ H, by Lemma 3 we infer that A satisfies s4, and by Lemma 1
we obtain dimC AC ≤ 4.

Corollary 5 ([17], Theorem 4.7). Let A be a non-commutative prime ring, char(A) 6= 2 with
involution “ ∗ ”, and let Π be a CE-Jordan ∗-derivation of A. Suppose that [Π(x), x∗] ∈ Z for all
x ∈ A. Then, Π = 0 or dimC AC ≤ 4.

Theorem 4. Let A be a non-commutative prime ring, char(A) 6= 2, 3 with involution “ ∗ ”, and
let Π be a non-zero CE-Jordan ∗-derivation of A. Suppose that [Π(s), s] ∈ Z for all s ∈ S. Then,
Π(x) = λ(x− x∗) for all x ∈ A and some λ ∈ C, or A satisfies s4.

Proof. Let Z = (0), the same as in Theorem 3. Now, suppose that Z 6= (0). Assume that

[Π(s), s] ∈ Z (33)

for all s ∈ S. Now, the same as in Theorem 2 in (21)—that is,

6[Π(s), s]s2 + [Π(s2 ◦ s), s] ∈ Z (34)

for all s ∈ S. By applying (33) and definition of Π in (34), we have 8[Π(s), s]s2 ∈ Z for all
s ∈ S. This implies that [Π(s), s]s2 ∈ Z for all s ∈ S. Hence, [Π(s), s] = 0 for all s ∈ S or
s2 ∈ Z for all s ∈ S. Suppose that s2 ∈ Z for all s ∈ S; the same as in Theorem 1, we obtain
that A satisfies s4. Now, suppose that

[Π(s), s] = 0 (35)

for all s ∈ S. By linearizing (35), we see that

[Π(s), s1] + [Π(s1), s] = 0 (36)

for all s, s1 ∈ S. Taking s1 by s ◦ h in (36), where h ∈ H, we find that

[Π(s), s ◦ h] + [Π(s)h−Π(h)s + sΠ(h) + hΠ(s), s] = 0.

Using (35) in the above expression, we infer that

s[Π(s), h] + [Π(s), h]s + Π(s)[h, s] + [h, s]Π(s) + s[Π(h), s]− [Π(h), s]s = 0.

Putting h by s1 ◦ s in the last equation, where s1 ∈ S, we conclude that

s[Π(s), s1s + ss1] + [Π(s), s1s + ss1]s + Π(s)[s1s + ss1, s]

+[s1s + ss1, s]Π(s) + s[Π(s1s + ss1), s]− [Π(s1s + ss1), s]s = 0
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for all s, s1 ∈ S—that is,

s[Π(s), s1]s + s2[Π(s), s1] + [Π(s), s1]s2 + s[Π(s), s1]s + Π(s)[s1, s]s + Π(s)s[s1, s]

+[s1, s]sΠ(s) + s[s1, s]Π(s) + s[−Π(s1)s−Π(s)s1 + sΠ(s1) + s1Π(s), s]

−[−Π(s1)s−Π(s)s1 + sΠ(s1) + s1Π(s), s]s = 0

for all s, s1 ∈ S. Hence,

s[Π(s), s1]s + s2[Π(s), s1] + [Π(s), s1]s2 + s[Π(s), s1]s + Π(s)[s1, s]s + Π(s)s[s1, s]

+[s1, s]sΠ(s) + s[s1, s]Π(s)− s[Π(s1), s]s− sΠ(s)[s1, s] + s2[Π(s1), s] + s[s1, s]Π(s)

−[Π(s1), s]s2 −Π(s)[s1, s]s + s[Π(s1), s]s + [s1, s]Π(s)s = 0

for all s, s1 ∈ S. Applying (36) and (35) in the above relation, we obtain

s[Π(s), s1]s + [Π(s), s1]s2 + 2[s1, s]Π(s)s + 2s[s1, s]Π(s)− s[Π(s1), s]s− [Π(s1), s]s2 = 0.

Again, using (36) in the last equation, we obtain

2s[Π(s), s1]s + 2[Π(s), s1]s2 + 2[s1, s]sΠ(s) + 2s[s1, s]Π(s) = 0.

That is,
s[Π(s), s1]s + [Π(s), s1]s2 + [s1, s]sΠ(s) + s[s1, s]Π(s) = 0.

Applying Lemma 6(i) in the last expression, we see that

s[Π(s), x]s + [Π(s), x]s2 + [x, s]sΠ(s) + s[x, s]Π(s) = 0

for all s, s1 ∈ S and x ∈ A. By using (35) in the above relation, we find that

sΠ(s)xs− sxΠ(s)s + Π(s)xs2 − s2xΠ(s) = 0 (37)

for all s ∈ S and x ∈ A. Replacing s by s + s1 in (37) and applying it, replacing s1 by −s1,
and then subtracting them, where s1 ∈ S, we obtain

sΠ(s)xs1 + s1Π(s)xs + sΠ(s1)xs− s1xΠ(s)s + Π(s1)xs2 − sxΠ(s1)s

−sxΠ(s)s1 + Π(s)xs1s + Π(s)xss1 − s2xΠ(s1)− s1sxΠ(s)− ss1xΠ(s) = 0

for all s, s1 ∈ S and x ∈ A. Taking x by xs in the last equation, right multiplying it by s, and
then subtracting them, we arrive at

sΠ(s)x[s, s1]− sx[s, Π(s1)]s− sxΠ(s)[s, s1]

+Π(s)x[s, s1]s + Π(s)xs[s, s1]− s2x[s, Π(s1)] = 0

for all s, s1 ∈ S and x ∈ A—that is,

{sΠ(s)xs− sxΠ(s)s + Π(s)xs2}s1 − sΠ(s)xs1s + sxΠ(s)s1s−Π(s)xs1s2

−sx[s, Π(s1)]s− s2x[s, Π(s1)] = 0

for all s, s1 ∈ S and x ∈ A. By using (37) in the previous expression, we see that

s2xΠ(s)s1 − sΠ(s)xs1s + sxΠ(s)s1s−Π(s)xs1s2 − sx[s, Π(s1)]s− s2x[s, Π(s1)] = 0 (38)
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for all s, s1 ∈ S and x ∈ A. Putting x by xs1 in (37), we obtain sΠ(s)xs1s − sxs1Π(s)s +
Π(s)xs1s2 − s2xs1Π(s) = 0; so, −sxs1Π(s)s− s2xs1Π(s) = −sΠ(s)xs1s−Π(s)xs1s2. Ap-
plying the last relation in (38), we infer that

s2xΠ(s)s1 − sxs1Π(s)s− s2xs1Π(s) + sxΠ(s)s1s− sx[s, Π(s1)]s− s2x[s, Π(s1)] = 0.

That is,
s2x[Π(s), s1] + sx[Π(s), s1]s− sx[s, Π(s1)]s− s2x[s, Π(s1)] = 0.

Using (36) in the previous equation, we obtain

s2x[Π(s), s1] + sx[Π(s), s1]s + sx[Π(s), s1]s + s2x[Π(s), s1] = 0.

Hence, 2s2x[Π(s), s1] + 2sx[Π(s), s1]s = 0; so, s2x[Π(s), s1] + sx[Π(s), s1]s = 0 for all s, s1 ∈
S and x ∈ A. Applying Lemma 6(i) in the last expression, we obtain

s2x[Π(s), y] + sx[Π(s), y]s = 0 (39)

for all s ∈ S and x, y ∈ A. By using Lemma 8 in (39), we conclude that s = 0 for all s ∈ S
or [Π(s), y] = 0 for all s ∈ S and y ∈ A, unless λ1(s)s + λ2(s)s2 = 0 for all s ∈ S and some
λ1(s), λ2(s) ∈ C. If s = 0 for all s ∈ S, then A satisfies s4. Now, we have the following:

Case (I): If [Π(s), y] = 0 for all s ∈ S and y ∈ A, then

Π(s) ∈ Z (40)

for all s ∈ S. Taking s by s ◦ h in (40) and applying it, where h ∈ H, we have 2Π(s)h +
[s, Π(h)] ∈ Z. Again, by using (40) in the previous relation, we obtain [[s, Π(h)], h] = 0 for
all s ∈ S and h ∈ H. Applying Lemma 6(i) in the last equation, we see that [[x, Π(h)], h] = 0
for all x ∈ A and h ∈ H. Putting x by Π(h)x in the last relation and using it, we find that
[Π(h), h][x, Π(h)] = 0. Again, putting x by xh in the previous expression and applying it,
we infer that [Π(h), h]x[h, Π(h)] = 0. Hence, [Π(h), h] = 0 for all h ∈ H and, by Theorem 3,
we obtain Π(x) = λ(x− x∗) for all x ∈ A and some λ ∈ C, or A satisfies s4.

Case (II): Assume that λ1(s)s + λ2(s)s2 = 0 for all s ∈ S and some λ1(s), λ2(s) ∈ C.
First: Suppose that “ ∗ ” is the first kind. Now, the same as in (15) and the “First” of

Theorem 1, we obtain that A satisfies s4.
Second: Suppose that “ ∗ ” is the second kind. Let 0 6= s′ ∈ S ∩ Z. Replacing s1 by s′

in (36), we find that [Π(s′), s] = 0 for all s ∈ S. Using Lemma 6(i) in the previous relation,
we see that [Π(s′), x] = 0 for all x ∈ A—that is, Π(s′) ∈ Z. Taking s by s + s′ in (39) and
applying the last equation, we have (s + s′)2x[Π(s), y] + (s + s′)x[Π(s), y](s + s′) = 0, and
by using (39) in the last expression, we obtain

2ss′x[Π(s), y] + s′2x[Π(s), y] + sx[Π(s), y]s′ + s′x[Π(s), y]s + s′x[Π(s), y]s′ = 0.

That is, 3sx[Π(s), y] + 2x[Π(s), y]s′ + x[Π(s), y]s = 0. Putting x by rx in the previous
relation, left multiplying it by r, and then subtracting them, where r ∈ A, we have
3[s, r]x[Π(s), y] = 0; so, [s, r]x[Π(s), y] = 0, and hence, [s, r] = 0 for all s ∈ S and r ∈ A, or
[Π(s), y] = 0 for all s ∈ S and y ∈ A. Suppose that [Π(s), y] = 0 for all s ∈ S and y ∈ A, the
same as in Case (I). Now, if [s, r] = 0 for all s ∈ S and r ∈ A, then s ∈ Z for all s ∈ S and, by
Lemma 2, we obtain that A satisfies s4.

The same as in Corollary 3, we have the following result.

Corollary 6. Let A be a non-commutative prime ring, char(A) 6= 2, 3 with involution “ ∗ ”, and
let Π be a non-zero CE-Jordan ∗-derivation of A. Suppose that [Π(s), s] ∈ Z for all s ∈ S. Then,
Π(x) = λ(x− x∗) for all x ∈ A and some λ ∈ C, or dimC AC = 4.
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We will now give an example to verify the necessity of the various conditions stipulated
in the hypothesis of Theorems 1 and 3.

Example 1. Let A1 = Mn(F) be a ring over a field F with involution ∗1, n ∈ Z+ such that n > 4,
let

A2 =


 0 a b

0 0 w
0 0 0

 : a, b, w ∈ Z

 with center Z(A2) =


 0 0 b

0 0 0
0 0 0

 : b ∈ Z

,

and let A = A1 × A2 be a ring with center Z = Z(A1) × Z(A2). Define Π : A → A by
Π(X, Y) = (0, Y′) for all (X, Y) ∈ A, where

Y =

 0 a b
0 0 w
0 0 0

 and Y′ =

 0 0 1
0 0 0
0 0 0

.

Then, Π is a CE-Jordan derivation (moreover, it is a CE-Jordan ∗-derivation) of A and an involution

is given ∗ : A → A by (X, Y)∗ = (X∗1 , Y∗2) for all (X, Y) ∈ A, where Y∗2 =

 0 w b
0 0 a
0 0 0

,

but A is non-commutative, it is not prime, and [Π(N), N] ∈ Z for all N ∈ H. Moreover, A does
not satisfy s4 because n > 4 (see Lemma 1).

5. Future Research

Future studies could examine our results by using generalized CE-Jordan (∗)-derivations
in place of the CE-Jordan (∗)-derivations that we used; further, they could substitute
semiprime rings for prime rings in our results. What can be said about the structures of
A, S, H, Π, ∗, and char(A) then?

6. Conclusions

Unlike the results in [17], the assumptions in this article do not need to be fulfilled for
every x ∈ A in the identities [Π(x), x] ∈ Z or [Π(x), x∗] ∈ Z; it is sufficient for every x to
be in a subset of A as x ∈ H or x ∈ S. Therefore, our results are more general than [17].
Recall that every Jordan derivation (resp., ∗-derivation) is a CE-Jordan derivation (resp.,
∗-derivation), and every derivation is a Jordan derivation; so, our results are more general
than those of [31].
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