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Abstract: The use of enormous amounts of material is required for production. Due to the current
emphasis on the environment and sustainability of materials, waste products and by-products,
including silica fume and fly ash (FA), are incorporated into concrete as a substitute partially for
cement. Additionally, concrete fine aggregate has indeed been largely replaced by waste materials
like crumb rubber (CR), thus it reduces the mechanical properties but improved some other properties
of the concrete. To decrease the detrimental effects of the CR, concrete is therefore enhanced with
nanomaterials such nano silica (NS). The concrete mechanical properties are essential for the designing
and constRuction of concrete structures. Concrete with several variables can have its mechanical
characteristics predicted by an artificial neural network (ANN) technique. Using ANN approaches,
this paper predict the mechanical characteristics of concrete constructed with FA as a partial substitute
for cement, CR as a partial replacement for fine aggregate, and NS as an addition. Using an artificial
neural network (ANN) technique, the mechanical characteristics investigated comprise splitting
tensile strength (Fs), compressive strength (Fc), modulus of elasticity (Ec) and flexural strength (Ff).
The ANN model was used to train and test the dataset obtained from the experimental program. Fc,
Fs, F; and Ec were predicted from added admixtures such as CR, NS, FA and curing age (P). The
modelling result indicated that ANN predicted the strength with high accuracy. The proportional
deviation mean (MoD) values calculated for F,, Fs, F; and E. values were —0.28%, 0.14%, 0.87% and
1.17%, respectively, which are closed to zero line. The resulting ANN model’s mean square error
(MSE) values and coefficient of determination (R2) are 6.45 x 10~2 and 0.99496, respectively.

Keywords: crumb rubber; fly ash; nano silica; mechanical characteristics; artificial neural network

MSC: 68T07

1. Introduction

Numerous works have been published in the literature to better understand how
well concrete performs mechanically, which is one of the most commonly used artificial
materials in the construction industry. The conceptualization and construction of civil
engineering structures largely depend on the laboratory measurements of the concrete’s
strength properties, which are subjected to environmental condition such as tempera-
ture, humidity, age and concrete compositions etc. [1-3]. In addition, various admixtures
modified both fresh and hardeening properties of concrete which include crumb rubber
(CR) [4,5] nanomaterials [6-9], polymer materials [10-12], fiber-reinforcement [13-17], and
pozzolonic materials [18-20].
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Other waste materials/recycing materials were also used for modifications of different
types of concrete, for example crushed glass waste was used as partial replacement to
aggregates aggregate in concrete and was redported to enhance the flexural strength of the
concrete [21]; waste glass powder as partial substitute to cement decreased the slump and
mechanical strengths of concrete, but when used as partial replacement to aggregates it
improves the concrete’s strengths [22,23]; waste lathe scrap were also found to improve the
compressive strength and mechanical features of reinforced concrete beams [24]; recycled
coal bottom ash as replacement to fine aggregate was found to increase the deflection of re-
inforced concrete beams [25]; waste marble waste as partial subsitutue to cement was found
to reduce the compressive strength and crack behavior of reinforced concrete beams [26].
Therefore, mechanical properties of concrete depends mainly on its constituent material
and admixtures [5,27,28]. Presently, artificial intelligent technique have been demonstrating
a rubost capacity in training complex dataset of estimating purpose. For instance, Chou,
Tsai [29] created an ensemble model using an ANN model, a support vector machine (SVM)
for estimating the concrete’s strength. The compressive strength of the existing concrete
structure has being estimating through different input parameter using ANN model [30].
Chopra, Sharma [31] used genetic programming and an ANN model to analyse the con-
crete’s compressive strength. Rebound hammer and UPV deta sets were applied, as input
parameters.The employment of artificial intelligence tools in data forecasting has been
widely used recently. Among the artificial intelligence technologies utilised in various tech-
nical domains is the ANN, which was inspired by the biological configuration of humans.
In certain works of literature, the mechanical characteristics of cement mortars and concrete
materials were modelled using ANN. Jang and Xing [32] measured the emissions of am-
monia from mortar containing various fly ash types and observed a strongly relationships
between the emissions and the fly ash contents, mortar size and age. Then, they used ANN
models for predicting the concentration of ammonia under different conditions. The study’s
results showed that the genetic algorithm ANN models had the least root mean square error
(RMSE) when compared to real outputs. Althoey, Akhter [33] compared the performace of
different model for Marshall Mix Parameters Using Bio-inspired Genetic Programming and
Deep Machine Learning techniques. The comparison analysis result indicates that ANN,
ANFIS, MEP and DT-Bagging are all effective and reliable technique for the estimation of
Marshall Stability and Marshall Flow. Similarly, Madenci and Ozkilig [34] explore the effect
of porosity on free vibration analysis of functionally graded (FG) beams using analytical
and numerical approaches. An ANN model and backpropagation technique were used
by Felix, Carrazedo [35] to estimate the depth of carbonation in concretes containing fly
ash. For networks with two hidden layers, the ANN model that was developed utilizing a
collection of 90 data points, can create models with determination coefficient higher than
0.8. The optimized configuration was able to give the smallest RMMSE linked with the
highest coefficient of determination. Based on the parametric study, it was found that
fly ash and, CO; ratio, cement contents and relative humidity were the primary factor
which influence the carbonation depth in fly ash-concrete. The suggested models could
also be used for simulating the growth of engineering projects focused on durability as
well as to anticipate the lifespan of concrete structures. In the study by Pazouki [36], three
different models including, group data processing technique, optimization algorithm of
ant colony and ANN supported radial based functional neural network are proposed for
predicting the compressive strength of the fly ash originated from geopolymer concrete. In
this study, 360 samples of fly ash-based geopolymer concrete were used to generate the
data set for this investigation. An accuracy and estimation capacity of the models were
evaluated with statistical formulas and the models were correlated with an experimental
test result. The research revealed that all of the models could predict this mechanical
characteristic of fly ash-originated from geopolymer concrete with acceptable accuracy, but
that the radial-based function neural network had the best correlation when correlated with
the other models. Models to predict the drying shrinkage of alkali-activated fly ash-black
furnace mortars were developed by Adesanya, Aladejare [37]. In the experimental study,
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several factors were taken into account, and the impact of mortars on drying shrinkage was
examined. The drying shrinkage of the mortar at 28 days were estimated using multiple
linear regression and ANN models. Based on the validations, the experimental results
and ANN models were highly correlated. Celik, Yildiz [38] proposed an ANN model to
examine how nano silica combined with a fly ash affects rheological characteristics for
cementitious mortars. Experimental research was conducted on the effects of nanosilica as
an additive upon the plastic viscosities and values of yield stress for cement-based mortars
with varying concentrations of volatile additives as ash mineral additives. In order to use
the results of the experiments to evaluate the plastic viscosities and yield stresses of cement
originated from mortars incorporating nanosilica, a feedforward backpropagation ANN
model has been developed. The proposed models were stated to have very good predictive
accuracy.ANN modelling is getting more popularity and has been used to solve several
engineering tasks. ANN recorded many successes in civil and structural engineering appli-
cation. It has been used to predicts concrete durability [39], estimating load-displacement
curve of concrete [40], and concrete strength [41]. The fundamental benefit of ANNSs is
that no particular equation is required. The relationship between variables is automatically
managed by ANN, which also is adapted according to the training dataset. Several studies
have employed the application of many models, which include ensemble model, hybrid,
and boosted model. However, few studies evaluated the concrete mechanical properties
using a single model. Due to its extremely robust and effectiveness in solving complicated
problems, the study employed ANN model to evaluate mechanical of concrete. Therefore,
the aim of this study was to predict the mechanical properties of concrete containing crumb
rubber, fly ash, and nano silica. The properties of the concrete predicted includes compres-
sive and flexural strengths, and modulus of elasticity. The predicted models will help to
reduce the number of experiments required and save cost and time.

2. Materials and Methods
2.1. Materials

The primary binder material was Grade 42.5R cement (Type I), which meets the
standards for cement composition as forth in ASTM C150 [42]. Table 1 provides a sum-
mary of the cement’s characteristics. A white dispersive powder form of commercially
available nanosilica obtained from Zhengzhou Dongshen Petrochemical Technology Co.,
(Zhengzhou, China) in China was added to the cementitious ingredients by weight. The
amorphous structure of the nanosilica made it suitable to be utilized as a pozzolanic mate-
rial as well as a filler. Table 2 provides a summary of the nanosilica’s characteristics. In this
investigation, cement was partially substituted in high volume with low-calcium Class F
fly ash. The fly ash was obtained from YTL cement Berhad, Kuala Lumpur Malaysia. The
fly ash met the ASTM C618 [43] standard criteria. Table 1 provides a summary of the fly
ash’s characteristics. The fine aggregate utilized was natural sand. The fine aggregate’s
minimum size is 4.75 mm, it has a 2.65 specific gravity, 1.24% water absorption, and a
2.86 fineness modulus. Figure 1 shows the fine aggregate’s particle size gradation. The
particle size gradation of the fine aggregate was carried out in accordance with ASTM
C136 [44]. For the coarse aggregate, natural gravels were crushed. The maximum particle
size for the coarse aggregate is 19 mm, the specific gravity is 2.66, and water absorption is
0.48 percent. The particle size analysis of the coarse aggregate was done in accordance with
ASTM C136 [44], and the gradation curve is presented in Figure 1.
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Table 1. Characteristics of binder.

Quantity by Mass (%)
Composition of Oxides
Cements Fly Ash
Si0; (%) 20.76 57.06
CaO (%) 61.4 9.79
Al O3 (%) 5.54 20.96
FGQO:}, 3.35 4.15
MgO (%) 2.48 0.033
NayO (%) 0.19 2.23
K70 (%) 0.78 1.53
TiO, (%) - 0.68
SO3 (%) 1.49 -
Loss of ignition (%) 22 1.25
Specific gravity 3.15 24
Blaine fineness (m?/kg) 325 290
Table 2. Characteristics of binder.
Items Qualities
Average particle size (nm) 10-25
Hydrophobicity Strong
SiO; (dry base) (%) >92
Si0; (%) (950 °C 2 h) >99.8
Specific surface area (m?/g) 100 £ 25
PH value 6.5-7.5
Surface density (g/mL) <0.15
Hear reduction (%) (105 °C 2 h) <3
Loss of ignition (%) (950 °C 2 h) <6
Dispensability (%) (%) (CCly) >80
Oil-absorbed value (mL/100 g) >250
Hydrophobicity Strong
—o—Fine Aggregate <& Coarse Aggregate — I -Crumb Rubber
100 -
90 -
e 80 -
E 7 |
&
g 60 -
£ 50 -
&
& 40 -
o
§ 30
& 20 -
10 -
0 - )
0.01 . 100
Sieve Sizes (mm)

Figure 1. Aggregate’s particle size distribution.



Axioms 2023, 12, 81

50f19

CR was used to partially replace fine aggregate. The CR was obtained from scrap
tire after it was grinded and reduced to smaller sizes ranging in sizes between 4.75 mm to
75 um. Before adding to the concrete, the CR was thoroughly washed using clean water to
remove all dirts and impurites and then air dried for 48 h to make it completely dry. In
order to get the same gradation with the fine aggregate it is replaced, three different sizes of
CR were blended together. The sizes ae 3-5 mm sizes, 1-3 mm sizes, and mesh 30 (0.6 mm)
sizes, in proportions of 20%, 40% and 40% correspondigly. The particle size gradation of
the CR was determined using the standard procedures outlined in ASTM D5644 [45], and
the gradation curveis shown in Figure 1 and was found to have similar gradation curve
to the fine aggregate it partially replaced. Figure 2 presents the photos of the CR used in
this study. The CR had a specific gravity of 0.93 and bulk density of 978 kg/m> and water
absorpion of 0.6%. The CR was used to replace fine aggregate in different proportions of
0%, 10%, 20% and 30% by volume fraction of the aggregate. The summary of the mass
fractions of the chemical components of the CR is summarized in Table 3.

-

g

(a) Mesh 30 CR (b) 1-3 mm CR

Figure 2. Crumb rubber used.

Table 3. Chemical Composition of CR. Reprinted with permission from Ref. [46] Copyright 2023
Elsevier BV.

Chemical

C (0] Si In S Mg Al

Composition by Mass (%)

87.5 9.24 0.2 1.77 1.07 0.14 0.08
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2.2. Mix Proportioning

This study’s concrete was roller-compacted concrete pavement (RCCP). The mixed
design is completed using the geotechnical method of design (soil compaction procedure),
depending on a flexural strength target of 4.8 MPa, which is equivalent to C30/37 target
compressive strength grade in accordance with the guidelines ACI 211.3R [47] and CRD-C
162 [48]. 13% by weight of the dry aggregates was the cement content used. To achieve the
standard gradation and requirements of ACI 211.3R [47] and CRD-C 162 [48] for RCCP, fine
sand passing 75 um sieve was used as mineral filler. The mineral filler added was 5% of
the total aggregates. To make the mixtures more consistent, a high-range water reduction
additive (superplasticizer) was added. Superplasticizer usage was limited to 1% of the
weight of cementitious materials. In all the mixes, the percentage replacement of cement
with fly ash was kept to 50%. The CR was added at different proportions of 0%, 10%, 20%
and 30% by volume replacement to fine aggregate, and nanosilica was added at 0.0%, 1.0%,
2.0% and 3.0% by weight of binder materials. Table 4 displays the mix proportions and
constituent ingredients for each of the mixes used for the ANN modelling.

Table 4. Mix Proportions.

Variables (%)

Materials Constituent (kg/m?)

Mixes Fly Ash CR NS Cement Fly ash NS A Fine CR Coarse Water SP
ggregate Aggregate

Control 0 0 0 268.69 0 0 1148.05 0 831.88 98.24 2.69
1 50 0 0 134.58 102.54 0 1150.08 0 831.88 96.87 2.37

2 50 0 1 134.58 102.54 2.37 1150.08 0 831.88 96.87 2.39

3 50 0 2 134.58 102.54 474 1150.08 0 831.88 96.87 242

4 50 0 3 134.58 102.54 7.11 1150.08 0 831.88 96.87 2.44

5 50 10 0 134.58 102.54 0 1035.07 115.08 831.88 96.87 2.37

6 50 10 1 134.58 102.54 2.37 1035.07 115.08 831.88 96.87 2.39

7 50 10 2 134.58 102.54 474 1035.07 115.08 831.88 96.87 242

8 50 10 3 134.58 102.54 711 1035.07 115.08 831.88 96.87 2.44

9 50 20 0 134.58 102.54 0 920.06 230.17 831.88 96.87 2.37
10 50 20 1 134.58 102.54 2.37 920.06 230.17 831.88 96.87 2.39
11 50 20 2 134.58 102.54 4.74 920.06 230.17 831.88 96.87 242
12 50 20 3 134.58 102.54 7.11 920.06 230.17 831.88 96.87 2.44
13 50 30 0 134.58 102.54 0 805.05 345.27 831.88 96.87 2.37
14 50 30 1 134.58 102.54 2.37 805.05 345.27 831.88 96.87 2.39
15 50 30 2 134.58 102.54 4.74 805.05 345.27 831.88 96.87 2.42
16 50 30 3 134.58 102.54 7.11 805.05 345.27 831.88 96.87 2.44

2.3. Testing Procedures

The concrete was weighed, batched and mixed in accordance to the procedures out-
lined in ASTM C192/192M [49] standards using a pan type concrete mixer as shown in
Figure 3a. The freshly mixed concrete was cast into the proper moulds after a uniform mix
had been achieved in accordancce with the guidelines outlined in ASTM C1435/C1435M [50].
Since RCCP is a dry, rigid mix, adequate compaction cannot be achieved using the usual
compaction techniques of a vibration table or tamping rod. Therefore, A 50-Hz vibration
hammer is used to compact the mixtures in the molds as shown in Figure 3b. Each layer
was then crushed after being poured into the mould until a ring of mortar had formed
around the plate’s edge that was attached to the hammer. In compliance with the ASTM
C1435/C1435M [50], this compaction was carried out. The concrete was left in the labora-
tory after casting for at least 24 h to settle and solidify. After samples being demolded, then
stored in water till the test day.
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(c) Compressive strength  (d) Splitting tensile strength

—

\)
W

T
=

(e) Flexural strength (f) Modulus of elasticity
Figure 3. Experimental setup.

According to BS EN 12390-3 [51] requirements, the compressive strength’s tests for
concrete was conducted using cubic specimen of (100 x 100 x 100) mm at 3, 7 and 28 days
using a Universal Testing Machine (UTM) with a 2000 kN capacity as shown in Figure 3c.
According to BS EN 12390-6 [52] a cylindrical sample having a diameter and height of
100 mm and 200 mm, respectively was utilized in splitting tensile test as shown in Figure 3d.
A 2000 kN capacity UTM was utilized for the splitting tensile strength test. As per ASTM
C293/C293M [53] specifications, beam samples measuring (100, 100, 500) mm as shown in
Figure 3e were utilized for the flexural strength tests. Beam with center point load method
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was used for measuring the flexural strength. A self-straining loading frame containing a
500 kN dynamic servo-controlled actuator was used for the testing. The load was applied on
the samples at a constant speed of 0.1 mm/s. The modulus of elasticity test was conducted
in accordance with ASTM C469/C469M [54] using a 2000 kN UTM [37], utilizing cylinder
specimen having diameter and height of 150 mm 300 mm, respectively. Longitudinal and
lateral compressormeters of 200 mm effective gauge lengths were mounted centrally at
mid-height of each sample to capture the lateral and longitudinal strain during loading
as presented in Figure 3f. The longitudinal and lateral strains were used to compute the
modulus of elasticity of the samples. For ensure accuracy of each of the tests, three samples
were tested for each experiment and the average value was recorded.

2.4. ANN Modelling

For predicting the values of Fc, Fs, Ff and Ec in relation to CR, NS, FA and P pa-
rameters, a multilayer perceptron (MLP) ANN model was created. Due to their excellent
prediction performance, MLP network models, which possesses a layer design, are one
of the most used models of ANN [55,56]. Fc, Fs, F; and Ec parameters are interpreted
as parameters’ input in the input’s layer of the proposed ANN model, and CR, NS, FA
and p values are estimated in the output’s layer. Among the problems in creating MLP
network is the absent of a rule for estimating neurons’ number contained in the hidden
layer [57]. To address this issue, performance comparisons of models comprising vari-
ous neurons’ number in the hidden layer led to the MLP model with 15 neurons being
favored. Figures 4 and 5 show the architectural configuration and basic composition of the
developed MLP network, respectively.

Input Hidden Output
Layer Layer Layer

Figure 4. The MLP model’s configuration architecture.
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Hidden Qutput

15

Figure 5. Basic structure of the developed MLP network.

It is crucial to optimise the data collection in the best possible way when creating
ANN models [58]. Three major categories that are most frequently utilized in the literature
constitute up the data used in the ANN model, which was created employing a total
of 448 data sets [59]. 15% of the data were utilized for the model’s validation, 15% for
the model’s testing, and 70 percent of the data were employed for the model’s training.
The results from the literature studies were used to choose the Levenberg-Marquards
training’s method that possesses a high capacity for learning, in order to train the MLP
network [60]. Below is a list of the Purelin and Tan-Sig functions employed in hidden and
output layer [61]:

1
~ 1+exp(—x)

f(x)

purelin(x) = x 2

)

2.5. Evaluation Matrices

Equations (3)—(5) are the performance metrics employed in this study to assess the
learning, training, and predicting capabilities of the developed ANN model. They are
frequently used matrices for evaluating how well the proposed model performs. The
formulas used to calculate the performance measures known as mean squared error (MSE),
determination’s coefficient (R), and a margin of deviation (MoD) are provided below [62,63]:

1 N

2
MSE = N 1:21 (Xtarg(i) - XANN(i)) 3)

Z{il (Xtarg(i) - XANN(i)) i

R= [1— 4)
2
Z}il (Xtarg(i))
Xtare — X
MoD = [*gANN} x 100 (%) (5)
Xtarg

3. Results and Discussion
3.1. Optimal Choice of Input Parameters

In order to simulate any data-driven model and provide the desired and precise re-
sults, the choice of potential input parameters is crucial. Therefore, including inappropriate
parameters in artificial intelligent-based modeling reduces the developed model’s perfor-
mance accuracy and increases the computational difficulties [64-66]. However, inadequate
input variables can lead to poor prediction accuracy. As a result, in our work, we used
sensitivity analysis using Pearson’s correlation to choose the critical most input parameter
for predicting the fundamental mechanical characteristic for concrete incorporating admix-
tures. Four output parameters were consider in the modeling, and finding their idividual
releationship with input parameters may be unuseful. However, compressive strength
being the basic mechanical property was considered and evaluated for its correlation rela-
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tionship with input parameters as depicted in the Figure 6. It can be seen that, the curing
age demonstrate highest correlation value of 0.57 with compressive strength, this indicate
curing age is most relevent parameter to mechanical characteristics of concrete incorpo-
rating these admixtures. Fly ash, CR and NS, however, show a negative relationship with
compressive strength. Table 5 provides a summary of the dataset’s statistical description.

CR
1
CR NS 0.8
0.6
NS | 23E17 FA - 0.4
- 0.2
FA | 4.7E-16 1.2E-16 P -0
- -0.2
P| 22E-16 2.3E-18 2.8E-17 Fc - 0.4
-0.6
Fc ‘ -0.078 0.28 =8
-1
Figure 6. Correlation matrix using person correlation matrix.
Table 5. Descriptive statistic of the experimental dataset.
Direction Parameter Symbols Unit Min Max Mean SD Kurtosis Skewness
Inputs Crumb rubber CR % 0 30 15.00 11.215 —1.365 0.00
Nano silica NS % 0 3 1.50 1121 —1.365 0.00
Fly ash FA % 0 50 25.00 25.078 —2.025 0.00
Curing time p days 3 365 98.60 137.22 0.017 1.32
Output Compressive strength F. MPa 11.68 90.86 45.98 17.22 —0.499 0.27
Splitting tensile Fs MPa 1.35 6.41 3.81 1.23 —0.559 0.096
Flexural strength F¢ MPa 2.60 8.89 5.32 1.32 0.482 0.707
Modulus of elasticity Ec GPa 5.79 37.78 19.85 7.53 —0.393 0.440

The relative frequency distribution of the experimental dataset employed to predicts
Fc, Fs, F¢ and Ec is depicted in Figure 7. The distribution plots revealed that some of
the variables in the dataset follow the normal or nearly normal distribution, and some
datasets do not follow the normal distribution. Most of the dataset for nano silica, crumb
rubber, and fly ash have being used. The frequently used value of curing age was between
28 days and 60 days, as shown in Figure 7d. All the independent parameters follows
normal distribution with thier mean value of the dataset located at the centre with highes
frequency value.
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Figure 7. Distribution plot of the experimental dataset.

3.2. Modelling Results

To develop ANN model for the predictiom of mechanical properties of concrete
containing admixtures, MATLAB (2021a) toolbox was used in this work. Each model was
validated using the 10-fold cross-validation method [66—-68]. ANN model was used to
train and test the experimental datasets, including CR, fly ash, NS and curing age of the
concrete, as the input parameters. On the other hand, the target parameters were calculated
including, flexural strength, compressive strength, elastic modulus, and splitting tensile.

Making sure that the learning and training phases of the model are optimally com-
pleted is the first step in examining the predictive performance for ANN model. To
accomplish this, it was first mandatory to look at the performance graph that the ANN
model’s training phase had produced. Examining the training performance graph shown
in Figure 8, These MSE values are higher at the beginning of the MLP network’s training
step, can be shown to decrease with each passing epoch. This decline in MSE value is a sign
that the deviations between the output layer’s Fc, Fs, Ff and Ec values and the actual values
are also declining. The 25th epoch, where the best performance was obtained for each of
the three phases of the dataset, marked the end for training phase of an ANN model. The
results from the performance’s graph indicate that the training stage of an ANN model
created for estimating the values of Fc, Fs, Ff and Ec has been completed finally.

10% |

= =Train
Validation
—==Test

Best

103

Mean Squared Error (MSE)

102}
L)
ST
= —
-
S
101 E N Se—a=T == =
g e
=N
~
100k . . . L )
0 5 10 15 20 25
25 Epochs

Figure 8. MLP model’s training performance status.
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The error histogram of the created ANN model is shown in Figure 9. The values of
error obtained during the training stage are displayed in the error histogram. Whenever
an error histogram is considered, the errors obtained across all three data groups often
frequently located near the zero error line. An error histogram reveals that the errors’
numerical values are also quite small. An error histogram results demonstrate that the
constructed ANN model’s training phase was finally completed with very few errors. The
accuracy of the predictions acquired via the ANN model should be examined once the
training phase has been validated Bulleted lists look like this:

[ | Training
B validation
I Test

Zero Error

0.176
0.2763
0.3766
0.4769
0.5771
0.6774
0.7777

0.878

0 M~
N O
n N
o
)
1

-0.3254
-0.2251
-0.1249
-0.02457
0.07571

Errors = Targets - OQutputs

Figure 9. An Error histogram of ANN model.

3.3. Models Predicted versus Actual Results

For every one of the Fc, Fs, Ff and Ec parameters, Figure 10 displays an ANN predicted
values and target values. The values predicted via the ANN model agree with the goal
values perfectly, according to the results obtained in the Figures. The proposed ANN model
can predict Fc, Fs, Ff and Ec values with excellent accuracy, as evidenced by the ideal fit
between ANN estimations and target values. MoD values were produced for every data
points and they are displayed in Figure 11, which expresses the proportional deviations
between the values predicted from the proposed ANN model and the goal values. The data
points reflecting the MoD values are placed near to the zero line error, when the figures
presented for every of the Fc, Fs, Ff and Ec values are examined. The numbers, however,
make it very evident that the MoD levels are quite low. The predicted mean MoD values
for the Fc, Fs, Ff and Ec values were —0.28%, 0.14%, 0.87% and 1.17%, respectively.

The targeted values of the Fc, Fs, Ff and Ec values differ from the ANN outputs in
Figure 12, and a more thorough investigation of the ANN model’s predictive ability is
planned. The graphs make it abundantly evident that the computed varaition values for
every data points are small. The results of the MoD and difference values demonstrate that
the constructed ANN model was developed to calculate Fc, Fs, Ff and Ec values with very
low errors.
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Figure 13 provides a clearer illustration of the agreement among the targeted values
and ANN outputs. Every data point is illustrated to be close to the zero line error when
looking at the locations of data points displayed for the Fc, Fs, Ff and Ec values. Addition-
ally, it is noted that the data point fall within the 10 percent error limit. The MSE value for
the created ANN model was calculated to be 6.45 x 1072, and the R value to be 0.99496.
The created ANN model could be utilized in predicting Fc, Fs, Ff and Ec values having high
accuracy based on the CR, NS, FA and p values, as can be observed from the perspective of

all these results.
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The ANN model is utilized to simulate the mechanical characteristics of concrete
incorporating crumb rubber, nanosilica, and fly ash, including splitting tensile, compressive
strength, elastic modulus, and flexural strength. The dataset for the modeling was obtained
from the experimental results. The ANN model demonstrate more robust and accurate
prediction skill in estimating the mechanical properties. Sensitivity analysis is utilized to
optimize the ANN model’s parameters, and compressive strength, a fundamental mechani-
cal characteristic of concrete, is used to determine whether there is a linear or nonlinear
relationships among an input parameters and targeted parameters. The outcome suggests
that the most important factor in predicting strength is curing age. During the training
phase, the proposed ANN model showed relatively low errors. The mean MoD values
predicted values for Fc, Fs, Ff and Ec were —0.28%, 0.14%, 0.87% and 1.17%, respectively,
which are near to the zero line. Overall, the ANN model predicted the strength with great
accuracy. According to the experimental findings, fly ash and crumb rubber both reduced
the mechanical strength of the concrete, however, the detrimental impact of the fly ash was
only noticeable at young ages. Both the pozzolanic reactivity of fly ash and an impact of
crumb rubber on mechanical characteristics of the concrete were partially alleviated by the

addition of nanosilica.

Evaluating different properties such as durability generated from the modified con-
crete through adding admixtures in concrete such as, fibre, nanomaterial, ground glass
fibre Therefore, it is recommended to capture and predict the overall concrete behavior con-
sidering these materials, and future work should focus on durability-related properties etc.
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