
Citation: Shaikh, T.S.; Akgül, A.;

Rehman, M.A.u.; Ahmed, N.; Iqbal,

M.S.; Shahid, N.; Rafiq, M.; De la Sen,

M. Analysis of a Modified System of

Infectious Disease in a Closed and

Convex Subset of a Function Space

with Numerical Study. Axioms 2023,

12, 79. https://doi.org/10.3390/

axioms12010079

Academic Editor: Clemente Cesarano

Received: 5 December 2022

Revised: 4 January 2023

Accepted: 7 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Analysis of a Modified System of Infectious Disease in a Closed
and Convex Subset of a Function Space with Numerical Study
Tahira Sumbal Shaikh 1, Ali Akgül 2,3,4,* , Muhammad Aziz ur Rehman 5, Nauman Ahmed 6 ,
Muhammad Sajid Iqbal 7 , Naveed Shahid 6, Muhammad Rafiq 4,8 and Manuel De la Sen 9

1 Department of Mathematics, Lahore College for Women University, Lahore 54000, Pakistan
2 Department of Computer Science and Mathematics, Lebanese American University,

Beirut 1102-2801, Lebanon
3 Department of Mathematics, Art and Science Faculty, Siirt University, 56100 Siirt, Turkey
4 Department of Mathematics, Mathematics Research Center, Near East University, Near East Boulevard,

99138 Nicosia, Turkey
5 Department of Mathematics, University of Management and Technology, Lahore 54000, Pakistan
6 Department of Mathematics and Statistics, The University of Lahore, Lahore 54000, Pakistan
7 Department of Humanities & Basic Sciences, MCS, National University of Sciences and Technology,

Islamabad 44010, Pakistan
8 Department of Mathematics, Faculty of Science and Technology, University of Central Punjab,

Lahore 54000, Pakistan
9 Department of Electricity and Electronics, Institute of Research and Development of Processes, Faculty of

Science and Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
* Correspondence: aliakgul00727@gmail.com

Abstract: In this article, the transmission dynamical model of the deadly infectious disease named
Ebola is investigated. This disease identified in the Democratic Republic of Congo (DRC) and Sudan
(now South Sudan) and was identified in 1976. The novelty of the model under discussion is the
inclusion of advection and diffusion in each compartmental equation. The addition of these two terms
makes the model more general. Similar to a simple population dynamic system, the prescribed model
also has two equilibrium points and an important threshold, known as the basic reproductive number.
The current work comprises the existence and uniqueness of the solution, the numerical analysis of
the model, and finally, the graphical simulations. In the section on the existence and uniqueness of
the solutions, the optimal existence is assessed in a closed and convex subset of function space. For
the numerical study, a nonstandard finite difference (NSFD) scheme is adopted to approximate the
solution of the continuous mathematical model. The main reason for the adoption of this technique is
delineated in the form of the positivity of the state variables, which is necessary for any population
model. The positivity of the applied scheme is verified by the concept of M-matrices. Since the
numerical method gives a discrete system of difference equations corresponding to a continuous
system, some other relevant properties are also needed to describe it. In this respect, the consistency
and stability of the designed technique are corroborated by using Taylor’s series expansion and Von
Neumann’s stability criteria, respectively. To authenticate the proposed NSFD method, two other
illustrious techniques are applied for the sake of comparison. In the end, numerical simulations are
also performed that show the efficiency of the prescribed technique, while the existing techniques fail
to do so.
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1. Introduction

In 1976, the first case of Ebola virus disease was observed in the Democratic Repub-
lic of Congo (DRC). Ebola hemorrhagic fever is considered the most infectious deadly
disease that is a member of the family “Filoviridae” and the genus “Ebola virus”. Ebola
virus infect humans, bats, and monkeys, but species such as fawns and mice can also
contract an infection. There are six types of Ebola virus, including Bundibugyo ebolavirus,
Zaire ebolavirus, Sudan ebolavirus, Tai forest ebolavirus, Reston ebolavirus, and Bombali
ebola virus. But only Bundibugyo ebolavirus, Zaire ebolavirus, Sudan ebolavirus and
Tai forest ebolavirus are the source of infection in people, while Reston ebolavirus infects
non-human primates [1–3].

This deadly disease has affected a large number of people globally. In the first wave
of the disease in the DRC, the mortality rate was 88%, the number of exposed cases was
318, and 280 deaths were recorded. The second wave of the disease occurred in South
Sudan, where the mortality rate, number of exposed cases, and total deaths were 53%, 284,
and 151, respectively. After the first wave, Ebola virus disease occurred in several countries
of the world, including Gabon, Guinea, Liberia, Sierra Leone, South Africa, Spain, Sudan,
Uganda, the United Kingdom and the United States of America [4]. It is endemic in some
parts of Africa.

In 1995, Ebola virus disease emerged again in the DRC with an estimation of 315
cases and 250 expired people. During 2014–2016, this epidemic re-emerged in West African
countries. Approximately 11,300 people lost their lives, and 28,600 people were infected in
Liberia, Guinea and Sierra Leone [5]. The case mortality rates in these countries were 42%,
60%, and 22%, respectively [6]. Approximately 2500 deaths were recorded in Guinea by
May 2018. The Ugandan Ministry of Health confirmed the first case of Ebola virus disease
on 11 June 2019; after that, the number of cases increased day by day. In 2019, about 2763
cases and 1841 deaths were reported in North Ituri and Kivu provinces, as confirmed by the
DRC ministry of health [7]. According to recent figures, in 2020, 130 new infectious cases
and 55 deaths were recorded, with a mortality rate of 42.3% in the Democratic Republic of
Congo. However, the Ministry of Health and WHO declared on 18 November 2020 that
the wave was terminated in the DRC [4]. In July 2016, Liberia was reported as Ebola-free.

The Ebola virus is transmitted to others by direct or indirect contact with infected
individuals and animals. The bats-to-mammals route of transmission occurrs when land
mammals eat fruits that were partially eaten by bats [8]. Initially, domestic and wild
animals spread the virus to people. The human–human transference of the virus occurs
through close contact with the infected person’s blood, tears, saliva, feces, bile, mucus,
sweat, breast milk, urine, vomit, and spinal column fluid. The virus may also be transferred
using needles and syringes contaminated by Ebola patients and by touching patients’ beds
and clothes. People may contract an infection from an infected dead person during funeral
rites without taking suitable precautions [9]. Unprotected healthcare workers may also
contract an infection when treating the affected patients in hospitals and healthcare centers.
The possibility of transmitting the virus increases among those people who look after their
infected relatives.

During the infection period, the virus can be identified by an RT-PCR test or by im-
munological methods (ELISA) [10]. Usually, Ebola virus-infected persons show symptoms
such as fever, fatigue, headache, bloody diarrhea, nausea, abdominal pain, loss of ap-
petite, sore throat, and muscle pain [11]. The time from infection to the first appearance
of symptoms is called the incubation period, which is normally 2 to 21 days for Ebola
virus disease.

Mathematical modeling of the Ebola virus disease has been the concern of many re-
searchers for the recent few years to understand the epidemiological and dynamical features
of this challenging disease [12–17]. Weitz and Dushoff made control strategies to reduce
the transmission of Ebola virus disease from infected dead bodies [18]. The researchers
introduced and analyzed the optimal control mathematical problems by using various
techniques and strategies for Ebola virus disease [19–21]. A. Mhlanga studied the two-patch
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model SIRD to study the dynamics of Ebola virus disease and developed time-dependent
controls in his model. He calculated the basic reproductive number, the equilibrium points,
and two boundary equilibria. He implemented the control measures to reduce the Ebola
virus disease in specific areas [22]. Ahmed et al. [23] proposed the SEIR model with some
new compartments, such as hospitalization, quarantine, and vaccination. In hospitalization
and vaccination cases, optimal control strategies are used to control disease transmis-
sion and give the powerful impact of vaccination to the infected population. Tulu et al.
introduced a mathematical model including quarantine and vaccination to analyze the
disease dynamics [24]. They investigated the model using fractional-order derivatives and
verified the existence and positive solution of their introduced model. They used Euler
and Markov Chain Monte Carlo (MCMC) methods to generate the simulations. Their out-
comes illustrated that the quarantine and vaccinations played an important part to control
the Ebola outbreak. Area et al. presented a mathematical model with the vaccination of
susceptible individuals to control disease transmission [25]. They studied two optimal
control problems associated with Ebola disease transmission with vaccination. They con-
sidered three vaccination constraints to show the impact of vaccination. A SIR model was
constructed with direct and indirect transmissions by Berge et al. [26]. They proved the
local and global asymptotic stability of the endemic equilibrium points and developed
the nonstandard finite difference scheme, which is dynamically consistent with the model.
Kabli et al., in 2018, used the cooperative systems theory to examine the global stability
of the epidemic SEIHR model of Ebola disease [27]. Rafiq et al., in 2020, constructed an
SEIR model of nonlinear differential equations [28]. They obtained the threshold quantity
and equilibrium points and checked the stability of their proposed model. They proved
that the equilibrium points are locally asymptotically stable. The Lyapunov function was
used to check the global stabilities. They developed a fourth-order Runge–Kutta method
and a nonstandard finite difference scheme for the proposed model and demonstrated
that the RK-4 method failed at certain step sizes, while the NSFD scheme conserved all
the dynamical properties of the model at large step sizes. Okyere et al. examined the
optimal control analysis of epidemiological models such as SIR and SEIR using vaccination,
treatment, and educational campaigns as time-dependent control functions [29]. They used
the forward-backward sweep method with the RK-4 method to explain the optimal system
for different control strategies. Ahmed et al. [30], in 2020, established a mathematical model
SVEIR by introducing the new sub-population class of vaccinated people into the SEIR
model [31]. They also presented the equilibrium points and stability analysis of the model.
Both the disease-free and endemic equilibrium points are locally and globally stable. They
justified their concluded theoretical outturn by applying RK-4 and NSFD schemes. Their
work shows that through voluntary vaccinations, the transmission of the Ebola virus can be
controlled. A work regarding a fuzzy epidemic model with an NSFD scheme is presented
by Dayan et al. [32].

Some innovative studies for epidemic models in the set of fractional calculus have been
conducted. The referred articles are of importance in this connection [33,34]. In the existing
theories, advection and diffusion phenomena are considered for the propagation of disease
in the defined population. The existing epidemic models deal with the disease dynamics
depending on time. However, they do not examine the effect of advection and diffusion
factors simultaneously. For that reason, there is no numerical design for this type of model
in the running literature, which is, in this context, the generalized epidemic Ebola model,
namely the advection–diffusion Ebola model. Moreover, the existing numerical schemes
do not preserve the positivity property, which is the essential feature of the solutions to the
population systems. Additionally, they lead toward a false steady state. This was a major
drawback in some of the present numerical designs. The scheme proposed and developed
in this article ensures positive solutions, stability, and convergence toward the true steady
state. Hence, the extended model is productive and enriched with disease dynamics.

As far as the limitations of the research work are concerned, the initial and boundary
conditions of the underlying model should be continuous functions. If these conditions
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are discontinuous, piecewise continuous, or nonlocal conditions, then they cannot be
considered. The other limitation is related to the existence and uniqueness of the solution.
The continuity of the solution lies in a restricted domain. Equivalently, the maximum
length of continuity is short.

2. Modified Ebola Virus Model

A compartmental model of the Ebola virus is designed for the numerical study in
Section 2. The model under study deals with the spatio-temporal dynamics of the Ebola
virus disease. Due to the involvement of space as well as time, the domain for the cur-
rent model is assumed to be Ω = (0, L) × (0, T) ⊆ R2, where L and T are real num-
bers, such that T > 0. Suppose that the state variables for the system are S = S(x, t),
E = E(x, t), I = I(x, t), and R = R(x, t), which are the real functions defined on Ω and are
described as the subpopulation sizes of the compartments susceptible, exposed, infected,
and recovered, respectively, at any time t. Further, let S = S(x, t), E = E(x, t), I = I(x, t),
R = R(x, t) ∈ C2,1[Ω,R]. Additionally, suppose that ζ1(x), ζ2(x) and ζ3(x) are three real-
valued functions such that ζ1(x), ζ2(x), and ζ3(x) ∈ C1[(0, L),R]. The state variables of the
model and parameters used in the prescribed system are stated in Table 1.

Table 1. Values of the parameters.

Notations Description

S(x, t) No. of susceptible individuals at time t and space x

E(x, t) No. of exposed individuals at time t and space x

I(x, t) No. of infected individuals at time t and space x

R(x, t) No. of recovered individuals at time t and space x

p1 Birth rate as well as death rate

p2 Contact rate for the individuals from the susceptible with infected class

p3 Transmission rate of exposed persons to the infected person

p4 Treatment rate

a1 Rate of advection for the susceptible class

a2 Rate of advection for the exposed class

a3 Rate of advection for the infected class

a4 Rate of advection for the recovered class

δ1 Diffusion rate of advection for the susceptible class

δ2 Diffusion rate of advection for the exposed class

δ3 Diffusion rate of advection for the infected class

δ4 Diffusion rate of advection for the recovered class

The spatio-temporal model of Ebola virus disease including advection and diffusion
is given as follows [35]:

∂S(x, t)
∂t

+ a1
∂S(x, t)

∂x
= p1 − p2S(x, t)E(x, t)− p1S(x, t) +

δ1
d2S(x, t)

dx2 , (1)

∂E(x, t)
∂t

+ a2
∂E(x, t)

∂x
= p2S(x, t)E(x, t)− p3E(x, t)− p1E(x, t) +

δ2
d2E(x, t)

dx2 , (2)
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∂I(x, t)
∂t

+ a3
∂I(x, t)

∂x
= p3E(x, t)− (p1 + p4)I(x, t) + δ3

d2 I(x, t)
dx2 , (3)

∂R(x, t)
∂t

+ a4
∂R(x, t)

∂x
= p4 I(x, t)− p1R(x, t) + δ4

d2R(x, t)
dx2 . (4)

Since all of the above equations are independent of R(x, t), thus, the system (1)–(4)
reduces to the system of the first three Equations (1)–(3).

∂S(x, t)
∂t

+ a1
∂S(x, t)

∂x
= p1 − p2S(x, t)E(x, t)− p1S(x, t) +

δ1
d2S(x, t)

dx2 , (5)

∂E(x, t)
∂t

+ a2
∂E(x, t)

∂x
= p2S(x, t)E(x, t)− p3E(x, t)− p1E(x, t) +

δ2
d2E(x, t)

dx2 , (6)

∂I(x, t)
∂t

+ a3
∂I(x, t)

∂x
= p3E(x, t)− (p1 + p4)I(x, t) + δ3

d2 I(x, t)
dx2 . (7)

Additionally, the initial and boundary conditions

S(x, 0) = ζ1(x), for all x ∈ [0, L], (8)

E(x, 0) = ζ2(x), for all x ∈ [0, L], (9)

I(x, 0) = ζ3(x), for all x ∈ [0, L], (10)

and

∂

(
S(x, t)

)
∂η

=

∂

(
E(x, t)

)
∂η

=

∂

(
I(x, t)

)
∂η

= 0, (11)

for every ordered pair (x, t) ∈ ∂Ω, ∂
∂η represent outward normal derivatives on ∂Ω, a

boundary of Ω where η is the outward unit normal vector on the boundary. Further-
more, S(x, t), E(x, t), I(x, t), R(x, t) are Lebesgue-integrable functions in the domain men-
tioned above.

The prescribed system (1)–(4) reflects the dynamical behaviour of the fatal Ebola
virus disease, for which S(x, t), E(x, t), I(x, t) and R(x, t) depict the sub-population sizes of
respective compartments at point x and time t, respectively. Due to biological reasoning, it
is assumed that S, E, I and R are the nonnegative functions of x and t [36–38].

For the equilibrium points, set all instantaneous changes with respect to time and
space equal to zero in (5)–(7).

Thus, the Ebola-free equilibrium point of the continuous system is:

E0 = (1, 0, 0, 0).

Additionally, the endemic equilibrium of the model, obtained by equating all deriva-
tives to zero, is [35]:

Ee = (S̃, Ẽ, Ĩ, R̃),

where
S̃ =

p1 + p3

p2
, Ẽ =

p1(1− S̃)
p2S̃

, Ĩ =
p3Ẽ

p1 + p4
, R̃ =

p4 Ĩ
p1

.
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Additionally, the value of the reproductive number R0 can be evaluated by using a
next-generation matrix.[

E′

I′

]
=

[
p2S 0
0 0

][
E
I

]
−
[

p3 + p1 0
−p3 p1 + p4

][
E
I

]
.

Since S = 1

F =

[
p2 0
0 0

]
, V =

[
p3 + p1 0
−p3 p1 + p4

]
.

Because R0 is defined as the spectral radius of FV−1, thus,

R0 = ρ(FV−1),

=
p2

p1 + p3
.

To make the dynamical system more realistic, many researchers examined advection
and diffusion phenomena in highly non-linear continuous mathematical models, which
reflect the real significance in the dynamics of the systems [39,40]. The current article
addresses the advection and diffusive impacts of an epidemic model’s compartmental
population.

The approach of the nonstandard finite difference scheme for the model (1)–(4) is
adopted with the defined initial and boundary conditions in the next section with the
supplementary data (8)–(11).

2.1. Optimal Analysis of the Model

The above system (1)–(4) of Ebola disease and its dynamics depend upon the ad-
vection and diffusion properties with respect to each of the state variables S, E, I, and R.
The first three partial differentials are mutually coupled, while the last partial differential
Equation (4) is completely independent of the rest of the coupled system. Since this model
primarily describes the population model, where the sum S + E + I + R = N (the total
population), therefore, physically, if the total population is known, the three components
are computed from the partial differential Equations (1)–(4). Then, obviously, the fourth
tuple of the vector of unknown functions is retained without computing the fourth partial
differential Equation (4). Thus, potentially, Equation (4) can be set aside for the upcoming
existence analysis, the same as it is in the computations. Now, we will consider System
(1)–(3) with the conditions (8)–(11). Without any inconvenience, the first time derivative
appearing in the system can be inverted, and in concise form, the solutions S, E, I can be
written as follows:

S = S0 +
∫ t

0
z1

(
S, E, I,

∂S
∂x

,
∂2S
∂x2

)
(s)ds,

E = E0 +
∫ t

0
z2

(
S, E, I,

∂E
∂x

,
∂2E
∂x2

)
(s)ds,

I = I0 +
∫ t

0
z3

(
S, E, I,

∂I
∂x

,
∂2 I
∂x2

)
(s)ds.

If we set
(

S, E, I
)

=

(
u1, u2, u3

)
, the more compact form of System (1)–(4) and,

consequently, Equations (5)–(7) can be written as:

∂ui

∂t
= zi

(
u1, u2, u3,

∂ui

∂x
,

∂2ui

∂x2

)
, (12)

where u1, u2, u3, i = 1, 2, 3 represent the unknown functions S, E, and I, respectively.
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The classical triple
(

u1, u2, u3
)

needs to be in the function space C1[0,T]× C2[a, b]

for finite numbers a, b and the finite positive number T. The compact embedding of the
function spaces leads to the fact that the function space C1[0,T] is compactly embedded as
C0[0,T]; consequently, we can have the consideration of the space of continuous functions
as our primary Banach space for the solution tuple to be fit in the space C0[0,T], equipped
with the usual supremum norm. Furthermore, we strictly assume that, with respect to the
space variable, this ui ∈ C2[a, b] for i = 1, 2, 3, that is, we invert System (12) with the initial
conditions (8)–(10) in the form of the Volterra integral equation as follows:

ui = ui
0 +

∫ t

0
zi

(
u1, u2, u3,

∂ui

∂x
,

∂2ui

∂x2

)
(s)ds, for i = 1, 2, 3. (13)

The integral Equation (13) can be written in the following operator’s form:

Ui = ui
0 +

∫ t

0
zi

(
u1, u2, u3,

∂ui

∂x
,

∂2ui

∂x2

)
(s)ds, for i = 1, 2, 3. (14)

Since System (1)–(4) reduced to (14) is a physical system, prior to the computational
technique, we can predict the behaviour of the solution. Besides the many advantages of
the existence theory, there is one serious restriction, which is that, in general, the solution
does not exist in the large domain. However, we can construct an a priori condition on the
bound of the solution in a special environment called the Schauder-type estimates. This fact
leads to the nice idea of the optimization of the function space. The following subsection
deals with the important dimension of the analysis.

Fixed-Point Optimization in Banach Spaces

Primarily, we will consider the contraction-mapping principle on the space of continu-
ous functions, and we choose the following balls with arbitrary radii r > 0 (to be bounded
later) defined by

Bri [ui
0] =

{
ui ∈ C0[0, ρ],

∥∥∥∥ui − ui
0 ≤ ri

∥∥∥∥}, i = 1, 2, 3. (15)

We choose the initial values as the center of the balls, and we set∥∥∥∥ui
∥∥∥∥ ≤ ri + ui

0.

Again, considering the operator Equation (14), we examine the following conditions:

(i) Self-mapping; that is, Ui : Br[ui
0]→ Br[ui

0],

(ii) Contractivity; that is,
∥∥∥∥Ui

1 −U2
i

∥∥∥∥ ≤ ki

∥∥∥∥ui
1 − ui

2

∥∥∥∥.

To verify the first condition, we take the norm of Equation (14), and we obtain∥∥∥∥Ui − ui
0

∥∥∥∥ ≤ ∫ t

0

∥∥∥∥zi

∥∥∥∥dr,

≤ Ki(r)
∫ t

0
ds, because zi are bounded and the norm

can be estimated by the radius r.

≤ Ki(r)ρ,

≤ r.
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This implies that

ρ ≤ r
Ki(r)

(16)

The condition (16) is necessary for the existence of a solution and gives explicit bounds
for the length of the continuity of intervals of solutions. For contractivity, we take two
images Ui

1 and Ui
2 for two pre-images ui

1 and ui
2, respectively, from (14), and we can rewrite

this as follows:

Ui
1 −Ui

2 =
∫ t

0
zi

(
ui

1,
∂ui

1
∂t

,
∂2ui

1
∂t2

)
(s)ds−

∫ t

0
zi

(
ui

2,
∂ui

2
∂x

,
∂2ui

2
∂x2

)
(s)ds,

Ui
1 −Ui

2 =
∫ t

0

{
zi

(
ui

1,
∂ui

1
∂x

,
∂2ui

1
∂x2

)
−zi

(
ui

2,
∂ui

2
∂x

,
∂2ui

2
∂x2

)}
(s)ds. (17)

Now, suppose that zi, i = 1, 2, 3 all satisfy the Lipschitz condition of spatial type as
defined by ∥∥∥∥zi(ui

1)−zi(ui
2)

∥∥∥∥ ≤ Li(r)
∥∥∥∥ui

1 − ui
2

∥∥∥∥
C2[a,b]

. (18)

Equation (17) implies∥∥∥∥Ui
i −Ui

2

∥∥∥∥ ≤ ρLi(r)
∥∥∥∥ui

1 − ui
2

∥∥∥∥
C2[a,b]

,

and for some positive constant Mi, we can always have∥∥∥∥Ui
i −Ui

2

∥∥∥∥ ≤ ρMiLi(r)
∥∥∥∥ui

1 − ui
2

∥∥∥∥
C2[a,b]

.

For contractivity, we have the following condition:

ρ <
1

MiLi(r)
, (19)

that is, we have more restrictions on the length of the interval of continuity depending on
time. For more precise results, the Lipschitz constant must be small enough.

Hence, the following result has been verified.

Theorem 1. Suppose that the state variables S, E, I and R are in C1[0,T]×C2[a, b]; then, provided
that S, E, I and R satisfy the Lipschitz condition of the type of Equation (18), the initial boundary
value problem (1)–(4) with (8)–(11) is uniquely solvable.

Theorem 2. Suppose that the state variables S, E, I and R are in C1[0,T]× C2[a, b]; then, the
continuity and the uniqueness of the solution of System (1)–(4) is given by the inequality,

ρ <
r

ki(r)
=

1
MiLi(r)

.

Since the epidemic models contain a number of parameters, it becomes an uphill task
to find the exact solutions of these models. In some cases, it even becomes impossible to
evaluate the problem exactly. The numerical solutions then numerical solutions become
inevitable for these types of nonlinear epidemic systems.

In the subsequent section, a non-standardized algebraic scheme is designed to attain
the numerical solutions of the underlying model.
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2.2. Numerical Modeling

Let M and M∗ be two natural numbers and m = L
M , ` = T

M∗ be the positive real
numbers. Additionally, let [0,L] and [0,T] be the spatial and temporal intervals, respectively,
for the proposed problem. Thus, the intervals [0,L] and [0,T] are partitioned into m and `
subintervals, respectively. Suppose also that the partition norm of the interval [0,L] is m,
while the partition norm for the interval [0,T] is `. Define xj = jm and tk = k`, for which
j ∈ {0, 1, 2 . . . , M} and k ∈ {0, 1, 2 . . . , M∗}. Additionally, suppose that Sk

j , Ek
j , Ik

j , and Rk
j

are the approximate values of the exact values of the functions S(xj, tk), E(xj, tk), I(xj, tk),
and R(xj, tk) respectively, at the mesh point (jm, k`) for j ∈ Z and 0 ≤ j ≤ M and k ∈ Z
and 0 ≤ j ≤ M∗. Additionally, if U is the arbitrary function values from the set {S, E, I, R},
then we define

Uk = (Uk
0 , Uk

1 , . . . , Uk
M), k ∈ Z and 0 ≤ j ≤ M∗.

The continuous model (1)–(3) is converted in to a system of difference equations with
the help of some discrete functions. The procedure of conversion is explained as follows:

Sk+1
j − Sk

j

`
+ a1

{Sk+1
j − Sk+1

j−1

m

}
= p1 − p2Sk+1

j Ek
j − p1Sk+1

j +

δ1

{Sk+1
j+1 − 2Sk+1

j + Sk+1
j−1

m2

}
, (20)

Ek+1
j − Ek

j

`
+ a2

{Ek+1
j − Ek+1

j−1

m

}
= p2Sk

j Ek
j − p3Ek+1

j − p1Ek+1
j +

δ2

{Ek+1
j+1 − 2Ek+1

j + Ek+1
j−1

m2

}
, (21)

Ik+1
j − Ik

j

`
+ a3

{ Ik+1
j − Ik+1

j−1

m

}
= p3Ek

j − (p1 + p4)Ik+1
j +

δ3

{ Ik+1
j+1 − 2Ik+1

j + Ik+1
j−1

m2

}
. (22)

After simplifications, (20)–(22) gives

−(λ1 + µ1)Sk+1
j−1 + (1 + λ1 + `p1 + `p2Ek

j + 2µ1)Sk+1
j − µ1Sk+1

j+1 = `p1 + Sk
j , (23)

−(λ2 + µ2)Ek+1
j−1 + (1 + λ2 + `(p1 + p3) + 2µ2)Ek+1

j −

µ2Ek+1
j+1 = Ek

j + p2Sk
j Ek

j , (24)

−(λ3 + µ3)Ik+1
j−1 + (1 + λ3 + `(p1 + p4) + 2µ3)Ik+1

j − µ3 Ik+1
j+1 = Ik

j + p3Ek
j , (25)

where λ1 = a1`
m , µ1 = δ1`

m2 , λ2 = a2`
m , µ2 = δ2`

m2 , λ3 = a3`
m and µ3 = δ3`

m2 for j ∈ {1, 2, . . . , M}
and k ∈ {0, 1, 2, . . . , M∗ − 1}.

The auxiliary data are discretized as:

S0
j = k1(xj),

E0
j = k2(xj),

I0
j = k3(xj), for j ∈ {1, 2, . . . , M},
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and

δSk
1 = δEk

1 = δIk
1 = 0,

δSk
M = δEk

M = δIk
M = 0, for k ∈ {0, 1, 2, . . . , M∗}.

A comparison of numerical scheme (20)–(22) with the other existing methods makes it
clear that (20)–(22) gives us more reliable results. Thus, to see the strength of our proposed
scheme, two well-known schemes are also applied to the proposed system (1)–(3). One is
the up-wind implicit scheme, which is constructed as

−(λ1 + µ1)Sk+1
j−1 + (1 + λ1 + 2µ1)Sk+1

j − µ1Sk+1
j+1 = Sk

j + `p1 −

`p2Sk
j Ek

j − `p1Sk
j , (26)

−(λ2 + µ2)Ek+1
j−1 + (1 + λ2 + 2µ2)Ek+1

j − µ2Ek+1
j+1 = Ek

j +

p2`Sk
j Ek

j − `p3Ek
j − `p1Ek

j , (27)

−(λ3 + µ3)Ik+1
j−1 + (1 + λ3 + 2µ3)Ik+1

j − µ3 Ik+1
j+1 = Ik

j +

p3`Ek
j − p4 Ik

j − p1 Ik
j . (28)

The second is the Crank–Nicolson method, constructed for System (1)–(3):

−
(

λ1

4
+

µ1

2

)
Sk+1

j−1 + (1 + µ1)Sk+1
j +

(
λ1

4
− µ1

2

)
Sk+1

j+1 =(
λ1

4
+

µ1

2

)
Sk

j−1 +

(
1− `p2Ek

j − `p1 − µ1

)
Sk

j +

(
µ1

2
− λ1

4

)
Sk

j+1 + `p1, (29)

−
(

λ2

4
+

µ2

2

)
Ek+1

j−1 + (1 + µ2)Ek+1
j +

(
λ2

4
− µ2

2

)
Ek+1

j+1 =(
λ2

4
+

µ2

2

)
Ek

j−1 +

(
1 + `p2Sk

j − `p3 − `p1 − µ2

)
Ek

j +

(
µ2

2
− λ2

4

)
Ek

j+1, (30)

−
(

λ3

4
+

µ3

2

)
Ik+1
j−1 + (1 + µ3)Ik+1

j +

(
λ3

4
− µ3

2

)
Ik+1
j+1 =(

λ3

4
+

µ3

2

)
Ik
j−1 +

(
1− `p4 − `p1 − µ3

)
Ik
j −

(
µ3

2
− λ3

4

)
Ik
j+1 + `p3Ek

j . (31)

Remark 1. The proposed NSFD scheme can be developed by taking unequal step sizes of both time
and space.

3. Physical Features of the Numerical Method

This portion is fixed for the significant characteristics of System (5)–(7). These features
play a paramount role to attain the numerical solutions of the nonlinear epidemic models.
To discuss these important features, it is important to review some definitions.

Definition 1. A matrix A with real entries is described as a Z-matrix if every element of it is
non-positive except diagonal elements.

Definition 2. A square matrix A with real entries is described as an M-matrix if it satisfies the
following properties:

(i) The matrix A is a Z-matrix;
(ii) Every main diagonal entry of the matrix A is positive;
(iii) The matrix A is diagonally dominated, strictly.
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The theory of the M-matrix plays an important role in proving the positivity of
the state variables involved in the model of various fields of engineering, mathematics,
economics, physics, and many more. The subsequent outcome grantees the non-negativity
of the numerical solutions to the discrete System (20)–(22). This feature of the numerical
scheme can be expressed by applying the M-matrix technique. Moreover, every M-matrix
is inverted with real positive entries.

Remark 2. Every M-matrix has an inversion with positive entries [41].

The following are the important properties of the proposed scheme for the model
under discussion.

3.1. Positivity

For a population dynamical system, the positivity of the state variables plays a vital
role. Thus, it must be preserved after employing the numerical scheme on the model.
The following theorem reflects the positivity property.

Theorem 3. Assume that k1, k2 and k3 are the positive real-valued functions depending on x
defined in the interval (0, L); then, System (20)–(22), with the supportive data (8)–(11), has a
solution ∀ m > 0 and l > 0. Moreover, the solutions are positive.

Proof. Since the left hand sides of (20)–(22) are the implicit relations, we can write it in the
vector representation as:

USk+1 = Sk
j + `p1, (32)

VEk+1 = Ek
j + p2Sk

j Ek
j , (33)

WIk+1 = Ik
j + p3Ek

j , (34)

in which U, V and W are defined as (M + 1)× (M + 1) matrices. By using the initial and
boundary conditions (8)–(11), we can find the matrices U, V and W. Then,

U =



(γ1)
k
0 γ2 0 · · · · · · · · · · · · 0

γ3 (γ1)
k
1 γ4

. . .
...

0 γ3 (γ1)
k
2 γ4

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . γ3 (γ1)

k
M−2 γ4 0

...
. . . γ3 (γ1)

k
M−1 γ4

0 · · · · · · · · · · · · 0 γ3 (γ∗1)
k
M



,
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V =



(ξ1)
k
0 ξ2 0 · · · · · · · · · · · · 0

ξ3 (ξ1)
k
1 ξ4

. . .
...

0 ξ3 (ξ1)
k
2 ξ4

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . ξ3 (ξ1)

k
M−2 ξ4 0

...
. . . ξ3 (ξ1)

k
M−1 ξ4

0 · · · · · · · · · · · · 0 ξ3 (ξ∗1)
k
M



,

and

W =



($1)
k
0 $2 0 · · · · · · · · · · · · 0

$3 ($1)
k
1 $4

. . .
...

0 $3 ($1)
k
2 $4

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . $3 ($1)

k
M−2 $4 0

...
. . . $3 ($1)

k
M−1 $4

0 · · · · · · · · · · · · 0 $3 ($∗1)
k
M



,

where

(γ1)
k
j = 1 + λ1 + `p1 + `p2Ek

j + 2µ1,

(ξ1)
k
j = 1 + λ2 + `(p1 + p3) + 2µ2,

($1)
k
j = 1 + λ3 + `(p1 + p4) + 2µ3,

(γ∗1)
k
M = 1 + λ1 + `p1 + `p2Ek

M + µ1,

(ξ∗1)
k
M = 1 + λ2 + `(p1 + p3) + µ2,

($∗1)
k
M = 1 + λ3 + `(p1 + p4) + µ3,

γ2 = −(λ1 + 2µ1), ξ2 = −(λ2 + 2µ2), $2 = −(λ3 + 2µ3),

γ3 = −(λ1 + µ1), ξ3 = −(λ2 + µ2), $3 = −(λ3 + µ3),

γ4 = −µ1, ξ4 = −µ2, $4 = −µ3.

Now, the method of mathematical induction is applied to prove the positivity of the
corresponding discrete system of Equations (20)–(22). According to the initial data, S0, I0

A
and I0

C are positive, so it is assumed that Sk, Ek and Ik, k ∈ 0, 1, 2, . . . , M∗ − 1 are positive
component vectors. The above calculation indicates that U, V, and W are the M-matrices,
so they are invertible and have positive inverses. Moreover, the expressions that occurred
on the right-hand side of each of the equations in System (20)–(22) are positive. Therefore,

Sk+1 = U−1(`p1 + Sk
j ),

Ek+1 = V−1(Ek
j + p2Sk

j Ek
j ),

Ik+1 = W−1(Ik
j + p3Ek

j ),

all the state variables are positive quantities for every k = 0, 1, 2, · · ·, M∗ − 1.
Hence, the theory of mathematical induction grantees the required solutions.
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Definition 3. Suppose Ωm =

{
xj ∈ R : j ∈ Z | 0 ≤ j ≤ M

}
is the set of mesh points, Γm

contains the real functions defined on Ωm. Also, Γm forms a vector space.
A norm ‖.‖ from Γm to R is defined as:

‖z‖ =

√√√√ M

∑
j=1
|zj|2, for all z ∈ Γm,

and

‖z‖∞ = max
{
|zj| : j ∈ {0, 1, 2, · · ·, M}

}
, ∀ z ∈ Γm.

The consistency of a numerical scheme is an important structural feature since the
consistency determines the relationship between the exact solutions of both continuous
and corresponding discrete systems. To that end, we define the following differential
transformation.

ν1 =
∂S(x, t)

∂t
+ a1

∂S(x, t)
∂x

− p1 + p2S(x, t)E(x, t) + p1S(x, t)−

δ1∇2S(x, t), (35)

ν2 =
∂E(x, t)

∂t
+ a2

∂E(x, t)
∂x

− p2S(x, t)E(x, t) + p3E(x, t) + p1E(x, t)−

δ2∇2E(x, t), (36)

ν3 =
∂I(x, t)

∂t
+ a3

∂I(x, t)
∂x

− p3E(x, t) + (p1 + p4)I(x, t)− δ3∇2 I(x, t). (37)

Moreover, the discrete operator is defined in the following:

ν∗1
k+1 = δtSk+1

j + δxSk+1
j − p1 + p2Sk+1

j Ek
j + p1Sk+1

j − δ1δxxSk+1
j , (38)

ν∗2
k+1 = δtEk+1

j + a2δxEk+1
j − p2Sk

j Ek
j + p3Ek+1

j + p1Ek+1
j − δ2δxxEk+1

j , (39)

ν∗3
k+1 = δt Ik+1

j + a3δx Ik+1
j − p3Ek

j + (p1 + p4)Ik+1
j − δ3δxx Ik+1

j . (40)

3.2. Consistency

The accuracy of the proposed numerical scheme is investigated by Taylor’s theory.
Suppose that

ΦS =
S(x, t + `)− S(x, t)

`
+ a1

S(x, t + `)− S(x−m, t + `)

m
− p1 +

p2S(x, t + `)E(x, t) + p1S(x, t + `)−
δ1

m2 {S(x + m, t + `)− 2S(x, t + `) + S(x−m, t + `)}.

After applying Taylor’s classical theory, we reach the following expression

ΦS →
∂S
∂t

+ a1
∂S
∂x
− p1 + p2SE + p1S− δ1

∂2S
∂x2 as m→ 0, `→ 0,
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and

ΦE =
E(x, t + `)− E(x, t)

`
+ a2

E(x, t + `)− E(x−m, t + `)

m
−

p2S(x, t)E(x, t + `) + p1E(x, t + `) + p3E(x, t + `)−
δ2

m2 {E(x + m, t + `)− 2E(x, t + `) + E(x−m, t + `)},

ΦE →
∂E
∂t

+ a2
∂E
∂x
− p2SE + p1E + p3E− δ2

∂2E
∂x2 as m→ 0, `→ 0.

Similarly,

ΦI →
∂I
∂t

+ a3
∂I
∂x
− p3E + p1 I + p4 I − δ3

∂2 I
∂x2 as m→ 0, `→ 0.

Thus, the designed numerical algorithm is consistent with the underlying model of
differential Equations (5)–(7).

Using Definition 3 and Equations (35)–(40), the following result may be established.

Theorem 4. If the state variables S, E, I, R ∈ C2,2
x,t (Ω̄), then there exists ξ > 0, which is indepen-

dent of ` and m, with the following inequality:

max
{
‖θ − θ′‖∞, ‖φ− φ′‖∞, ‖ψ− ψ′‖∞

}
≤ ξ(m + l).

3.3. Stability

Since the main purpose of this article is to find the numerical solution of the system
of partial differential equations, it is necessary to prove the stability of the numerical
scheme. For the stability of the numerical scheme, we consider the propagation of rounding-
off errors in the approximate solutions. In other words, we can say that a numerical
technique for the system of differential equations is unstable if a minor variation in the initial
data produces an abrupt change in the target variables of the model under consideration.
Likewise, if the negligible change in the state variable does not lead to a gigantic change
in the solution, then the numerical scheme is stable. Von Neumann criteria are applied
to investigate the stability of the designed numerical scheme. To that end, we split the
numerical error that arose in approximate solutions in the form of Fourier series.

Thus, the linearization of the Equations (20)–(22) and some substitutions leads us to
the following expressions:

Sk
j = Ψ1(t)eiωx,

Sk+1
j = Ψ1(t + ∆t)eiωx,

Sk
j+1 = Ψ1(t)eiω(x+∆x),

Sk
j−1 = Ψ1(t)eiω(x−∆x),

We obtain ∣∣∣∣Ψ1(t + ∆t)
Ψ1(t)

∣∣∣∣ ≤ 1.
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By substituting

Ek
j = Ψ + 2(t)eiωx,

Ek+1
j = Ψ2(t + ∆t)eiωx,

Ek
j+1 = Ψ2(t)eiω(x+∆x),

Ek
j−1 = Ψ2(t)eiω(x−∆x),

we have ∣∣∣∣Ψ2(t + ∆t)
Ψ2(t)

∣∣∣∣ ≤ 1.

Similarly, from (22), we have ∣∣∣∣Ψ(t + ∆t)
Φ(t)

∣∣∣∣ ≤ 1.

Hence, the projected scheme is stable in the sense of Von Nuemann.

4. Numerical Illustrations

In the current section, we established two examples: one consists of a model with an
unequal birth rate and death rate. The validity of our proposed scheme with the help of
empirical data about the outbreak of the Ebola virus that appeared in Liberia in 2014 [42]
is performed. In the other example, we consider the equal death rate and birth rate with
general numerical simulations for both disease-free equilibrium and endemic equilibrium.

Example 1. The SEIR advection-reaction-diffusion Ebola model with unequal birth and death rates
with vital dynamics is numerically solved.

∂S(x, t)
∂t

+ a1
∂S(x, t)

∂x
= p0 − p2S(x, t)E(x, t)− p1S(x, t) +

δ1
d2S(x, t)

dx2 ,

∂E(x, t)
∂t

+ a2
∂E(x, t)

∂x
= p2S(x, t)E(x, t)− p3E(x, t)− p1E(x, t) +

δ2
d2E(x, t)

dx2 ,

∂I(x, t)
∂t

+ a3
∂I(x, t)

∂x
= p3E(x, t)− (p1 + p4)I(x, t) + δ3

d2 I(x, t)
dx2 ,

∂R(x, t)
∂t

+ a4
∂R(x, t)

∂x
= p4 I(x, t)− p1R(x, t) + δ4

d2R(x, t)
dx2 ,

with a birth rate of p0 and a death rate of p1.

The threshold quantities for this model are slightly different from Model (1)–(4) and are
presented as:
Disease-free equilibrium: (

p0

p1
, 0, 0

)
,

Endemic equilibrium:

(S∗, E∗, I∗), where
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S∗ =
p1 + p3

2
, E∗ =

p0 − p1S∗

p2s∗
, I∗ =

p3E∗

p1 + p4
(41)

Note: Since first, three equations of the above model are independent of R, we can solve only
these equations, and also, since the total population is considered bounded, we can estimate the value
of R by subtracting the values of S, E, and I from the total population.

The above model is simulated by using the parameters reported in [43,44]. These parameters are:

p2 = 0.2, p3 = 0.1887, p4 = 0.1.

These parameters are based on the numerical findings of [43,44] in which susceptible indi-
viduals are 88% of the whole population, 7% of the total population is exposed (infected but not
infectious), and the infectious are 5%. Additionally, the initial conditions are recorded as:

S(0) = 0.88, E(0) = 0.07, I(0) = 0.05.

The birth rate p0 and death rate p1 are taken from the empirical data about the population of Liberia
in 2014 are [45]:

p0 = 0.03507, p1 = 0.0099.

4.1. Simulations

The above figures depict the evolution of the sub-population over time and space.
In Figure 1, the graphical resolution of the model gives the value S∗ = 0.99, which is equal
to the theocratical value of S∗ calculated from (41). From Figure 2, the evolution of the
exposed individuals can be visualized over a time t and space x. When we calculate the
value of E∗ from the analytical result of (41), it gives the value E∗ = 0.12. This is exactly
the same as the proposed scheme gives in the graph of E(x, t). Similarly, from Figure 3,
the value of I∗, in the evolution of infected persons at any point (x, t), can be seen which
is equal to 0.217. It coincides with the analytically calculated value from (41). Thus, we
can conclude that the numerical solution of the prescribed model using the efficient non-
standard finite difference scheme converges to the equilibrium point that is calculated
analytically. Finally, Figure 4 reflects the 2-D plot graph of the state variables, and we can
observe their convergence to the true steady state.

Figure 1. Numerical solution of S(x, t) (susceptible individuals) by employing upwind NSFD
technique at endemic equilibrium point with p0 = 0.03507, p1 = 0.0099, p2 = 0.2, p3 = 0.1887,
p4 = 0.1.
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Figure 2. Numerical solution of E(x, t) (exposed individuals) by employing upwind NSFD technique
at disease-free point with p0 = 0.03507, p1 = 0.0099, p2 = 0.2, p3 = 0.1887, p4 = 0.1.

Figure 3. Numerical solution of I(x, t) (infected individuals) by employing upwind NSFD technique
at disease-free point with p0 = 0.03507, p1 = 0.0099, p2 = 0.2, p3 = 0.1887, p4 = 0.1.
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Figure 4. Numerical solution of S(x, t), E(x, t), and I(x, t) by employing upwind NSFD technique at
disease-free point with p0 = 0.03507, p1 = 0.0099, p2 = 0.2, p3 = 0.1887, p4 = 0.1.

Example 2. The supplementary data are defined as follows:

S(x, 0) =
{

0.4x 0 ≤ x ≤ 1/2,
0.4(1− x) 1/2 ≤ x ≤ 1,
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E(x, 0) =
{

0.3x 0 ≤ x ≤ 1/2,
0.3(1− x) 1/2 ≤ x ≤ 1,

I(x, 0) =
{

0.2x 0 ≤ x ≤ 1/2,
0.2(1− x) 1/2 ≤ x ≤ 1,

The set of parametric values [43,46] chosen in this work are p1 = 0.5, p3 = 0.1887, p4 = 0.1,
δ1 = δ2 = δ3 = 0.02, and a1 = a2 = a3 = 0.01.

For the endemic point, we take p2 = 0.5, and for the infection-free point, we take p2 = 0.9,
where the physical meanings of these parametric constants may be perceived from the parametric
description of the model, stated earlier in Section 2. Now, we present the simulated graphs for
ascertaining the pre-results. In the propagation of an infectious disorder, the value of R0 reflects the
vital role to determine the stability of the numerical at the steady state of the model. The Ebola virus
model with advection and diffusion parameters has two different fixed states, namely the infection-
free and disease-persisting steady states, depending upon the value of the basic reproduction number.

Next, the dynamical behaviour of the state variables at both the steady states is exhibited
graphically using the proposed numerical method.

4.2. Disease-Free Point

Figure 5 shows the graphical behavior of the state variables that are involved in the
reaction–advection–diffusion ebola model. The values of the parameters associated with
the model are selected according to the nature of the disease-free stability point.

The graphical solution illustrated in Figure 5 shows the corresponding values of
susceptible individuals for different values of space and time variables; that is, values of
S(x, t) are obtained against the variables x and t. There is no abrupt change in the graph,
and it converges smoothly toward the true value of the disease-free state. Additionally,
in the infection-free state, the values of other state variables become zero, and the whole
population becomes susceptible at this stage. This fact is in accordance with the biological
procedure of the infection. So, the biological situation strongly supports the numerical
situation, obtained by the hybridized upwind nonstandard finite difference scheme.

1
0.8

0.6

Upwind NSFD finite difference scheme

0.4

x
0.2

00t

50

0

0.2

0.4

0.6

0.8

1

100

S
(x

,t)

Figure 5. Numerical solution of S(x, t) (susceptible individuals) by employing upwind NSFD
technique at disease-free point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

Likewise, Figure 6 shows that the graphical solution obtained by the prescribed scheme
ultimately converges towards the acceptable steady state. Additionally, the graph shows
that at a certain time t = 0, the disease exists in the population in a certain region of the
space. However, as time grows, the size of the exposed population gradually becomes zero.
This fact is according to the biological scenario because when the disease dies out from a
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population, the infected individuals become zero. Thus, the numerical solution depicted
by Figure 6 is in line with the physical phenomenon of the disease biologically.
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Figure 6. Numerical solution of E(x, t) (exposed individuals) by employing upwind NSFD technique
at disease-free point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

The numerical pattern in Figure 7 illustrates the numerical behavior of the infected
individuals at a different moment of time and a certain location of space. Certain parametric
values are selected to draw this pattern. Initially, the infected individuals take some non-
zero values, that is, at t = 0 and x = 0, I(x, t) 6= 0 However, with the passage of time,
the state variable I(x, t) approaches zero for the whole space. This is in accordance with
biological facts. As the disease dies out, the infected populace becomes zero over the whole
space under consideration. Moreover, the proposed design also provides us with the exact
solution as computed analytically [47].
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Figure 7. Numerical solution of I(x, t) (infected individuals) by employing upwind NSFD technique
at disease-free points with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

In Figure 8, 2-D templates of the three populaces, that is, S(x, t), E(x, t) and I(x, t),
are presented. Here, space coordinate x is fixed as 1, and the behavior of the different
groups of individuals is studied with respect to time. The curved graph behaves according
to the mathematical results. Thus, this scheme can be used to predict the behavior of the
dynamics of the state variables.
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Figure 8. Numerical behavior of all subpopulations by employing upwind NSFD technique at
disease-free point with x = 1, λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

4.3. Endemic Point

Figure 9 shows the dynamics of the state variable S(x, t) at the endemic point. The val-
ues of the control parameters are selected under specifically defined criteria. One such
criterion is that the value of the basic reproductive number is greater than unity. Other
conditions are mentioned in the relevant sections. The graph shows that in this case, the
whole population is not susceptible, unlike it was in the disease-free case. The mesh graph
of S(x, t) also depicts how the susceptible state variable graphically moves toward the
endemic state. On the basis of this graph, the prediction of disease dynamics can be made
on a certain instant of time and location of space.
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Figure 9. Numerical solution of S(x, t) (susceptible individuals) by employing the proposed scheme
at endemic point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

Similarly, Figure 10 is the graphical representation of the exposed persons represented
by E(x, t). All the parametric values are kept the same for this state variable E(x, t).
The graph shows that the number of exposed individuals has the same positive value
because, at the endemic equilibrium point, the value of E(x, t) cannot be zero. Additionally,
the graphical value obtained by the numerical scheme coincides with the mathematical
value. This graph also reflects the pattern of exposed populace dynamics. Figure 11 shows
the numerical solution for the infected individuals in the confined area for a certain time.
The graph of the numerical solution is positive and overlaps with the analytical solution.
The values of all the parameters are kept fixed for all the state variables at endemic points.
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The graph hits the true value of the stable endemic point, which shows that the scheme is
quite capable of attaining the exact mathematical value at the infection-free state as well as
the endemic state.
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Figure 10. Numerical solution of E(x, t) (exposed individuals) by employing the proposed scheme at
an endemic point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.
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Figure 11. Numerical solution of I(x, t) (infected individuals) by employing the proposed scheme at
an endemic point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

Lastly, Figure 12 shows the behavior of the sub-populace for a fixed area over a
particular time duration. All other parameters are kept the same to unveil the facts related
to the infection propagation. Every population in the graph shows positive and bounded
behavior, which are the strong properties of the current numerical scheme. In the end, it is
notable that the projected scheme preserves the structure of the system.
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Figure 12. Numerical behavior of all subpopulations by employing upwind NSFD technique at an
endemic point with x = 1, λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

4.4. Comparison of Proposed Scheme with Crank Nicolson

This section is devoted to the comparison of our proposed scheme with other existing
schemes. Firstly, a comparison of the proposed scheme with the Crank–Nicolson scheme is
made. Here, only the graphs of the expected population are compared at both equilibrium
points. The plot in Figure 13 shows the negative solution, which is physically meaningless in
the current situation. Similarly, Figure 14 reflects the negative behavior at the endemic state
by applying the Crank–Nicolson scheme. On the other hand, graphs in Figures 15 and 16
are plotted with the help of the proposed upwind NSFD method. Both the graphs exhibit
the positivity property at the disease-free and endemic states, respectively.

The value for each of the parameters mentioned for Figures 13–16 are:
p1 = 0.5, p3 = 0.1887, p4 = 0.1, δ1 = δ2 = δ3 = 0.02 and a1 = a2 = a3 = 0.01. Now, for the
endemic point, we take p2 = 0.2, and for the disease-free point, we take p2 = 0.9.

Figure 13. Numerical solution of E(x, t) (exposed individuals) by employing Crank–Nicolson tech-
nique at disease-free point with λ1 = λ2 = λ3 = 0.16 and µ1 = µ2 = µ3 = 64.



Axioms 2023, 12, 79 23 of 27

Figure 14. Numerical solution of E(x, t) (exposed individuals) by employing Crank–Nicolson tech-
nique at endemic point with λ1 = λ2 = λ3 = 0.16 and µ1 = µ2 = µ3 = 64.

Figure 15. Numerical solution of E(x, t) (exposed individuals) by employing upwind NSFD technique
at disease-free point with λ1 = λ2 = λ3 = 0.16 and µ1 = µ2 = µ3 = 64.

Figure 16. Numerical behavior of E(x, t) (infected individuals) by employing upwind NSFD tech-
nique at endemic point with λ1 = λ2 = λ3 = 0.16 and µ1 = µ2 = µ3 = 64.

4.5. Comparison of Proposed Scheme with Upwind Scheme

The graphs in Figures 17 and 18 show the numerical behavior of the upwind implicit
and newly designed NSFD method. It is evident in Figure 17 that the upwind implicit
scheme exhibits negative behavior, while the proposed NSFD scheme provides a positive
solution for the same parametric values as chosen for the famous upwind technique.
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Figure 17. Numerical solution of E(x, t) (exposed individuals) by employing upwind implicit
technique at disease-free point with λ1 = λ2 = λ3 = 0.3 and µ1 = µ2 = µ3 = 180.

Figure 18. Numerical solution of E(x, t) (exposed individuals) by employing NSFD technique at
disease-free point with λ1 = λ2 = λ3 = 0.3 and µ1 = µ2 = µ3 = 180.

The following values are chosen for the parameters: p1 = 0.6, p3 = 0.5887, p4 = 0.5,
p2 = 0.01, δ1 = δ2 = δ3 = 0.2, and a1 = a2 = a3 = 0.01.

5. Conclusions

The current study deals with the dynamics of the Ebola virus disease by developing
an advective–diffusive nonlinear physical system. The present article elucidates the conse-
quential dynamics of a nonlinear epidemic model of a murderous disease known as the
Ebola virus disease. The model of this disease is considered in the generic form; that is,
in this model, the advective and diffusive transmission of the virus is kept at a constant
rate. The existing epidemic models do not consider the random and directed motions
simultaneously in their study. Thus, their studies cannot predict the disease dynamics
closely. However, this work seems better for investigating the disease dynamics. Addi-
tionally, some widely used schemes in the literature provide negative solutions to the state
variables, which are physically meaningless. Therefore, it is a novelty of this scheme that it
confirms the positivity as well as the other fundamental traits of the numerical solution.
Hence, the developed scheme is a reliable tool to solve the nonlinear epidemic model
by taking into account the advection and diffusion situation. This article is composed of
two main types of analysis: one is optimal existence analysis and the other is numerical
analysis. The results regarding the feasible solutions for the proposed Ebola virus epidemic
model are formulated. The analysis regarding the solutions to the considered problem is
addressed under some special conditions. The supplementary data (auxiliary data) are also
examined. As in the dynamical models, the associated solutions of the model’s equations
belong to the set of continuous functions, but it is expedient to look at the particular subsets
of the Banach space. A closed subset is considered for the objective optimal values that are
explored. The solutions of the model are guaranteed with the help of Schauder’s fixed-point
theorem under some feasible constraints. The extension of advection and diffusion terms
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with constant rates in the equations of the model under study make the study more useful
and practical. In the second half of the paper, a numerical analysis is studied. First, the nu-
merical solutions are computed by a well-known nonclassical finite difference template.
By adopting the formulas to approximate the derivatives as a function of space and the
derivatives as a function of time, a compatible discrete model is designed. It can be observed
that the used numerical technique is structure-preserving, which is an important property
that should be possessed by the numerical scheme, i.e., the discretized system devised
from the numerical template keeps the same features that the associated continuous set
of differential equations has retained. We also examined whether a projected formulation
is coherent with the planned numerical design. The reliability of the numerical program
is validated by applying the Von Neumann condition. Another significant attribute is the
non-negativity of the solution variables involved in the model under consideration. Thus,
the M-matrix criteria guarantee the positivity of the solutions. Moreover, the assertions
are ascertained by some feasible numerical experiments. Numerical simulations of all
the considered and proposed schemes are also presented. The simulated graphs depict
the various physical features of the relevant scheme. For instance, our scheme provides
positive, bounded, and convergent solutions. Thus, all the results reflected by the simu-
lated graphs are in accordance with the pre-assumptions. The results obtained by applying
different schemes are also used for comparing the efficacy of the schemes. From the future
perspective, this work may be extended to two and three dimensions. The reader should
study the physical system by including the advection–diffusion terms in it and construct
some structure-preserving numerical schemes for such types of systems.
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