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Abstract: In this paper, we introduce soft complete continuity as a strong form of soft continuity and
we introduce soft strong continuity as a strong form of soft complete continuity. Several characteriza-
tions, compositions, and restriction theorems are obtained. Moreover, several preservation theorems
regarding soft compactness, soft Lindelofness, soft connectedness, soft regularity, soft normality, soft
almost regularity, soft mild normality, soft almost compactness, soft almost Lindelofness, soft near
compactness, soft near Lindelofness, soft paracompactness, soft near paracompactness, soft almost
paracompactness, and soft metacompactness are obtained. In addition to these, the study deals
with the correlation between our new concepts in soft topology and their corresponding concepts in
general topology; as a result, we show that soft complete continuity (resp. soft strong continuity) in
soft topology is an extension of complete continuity (resp. strong continuity) in soft topology.
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1. Introduction and Preliminaries

In many fields, such as engineering, the environment, economics, medical science,
and social science, classical mathematical ideas have their own difficulties in dealing
with uncertainty. Fuzzy sets, rough sets, intuitionistic fuzzy sets, and vague sets are
all methods for handling uncertainty [1–4]. According to Molodtsov [5], each of these
structures has particular difficulties. These difficulties are mostly due to the limits of the
parameterization tool. Molodtsov [5] presented soft sets as a solution to these issues and
to handle uncertainty. Many authors have discussed and studied the concepts of soft
sets (see [6,7]). The authors [5,8] used soft sets in many different fields, such as operation
research, game theory, smoothness of function, probability, and measurement theory.

Soft set theory has been used by several researchers to investigate various mathemati-
cal structures. Shabir and Naz [9] introduce soft topology as one of the unique extensions
of classical topology. Many classic topological concepts such as generalized open sets,
separation axioms, covering properties, etc., [10–18] have been extended and expanded in
soft set contexts, but there is still space for substantial contributions. Thus, the study of soft
topology is a current trend among topological researchers.

In this paper, we introduce soft complete continuity as a strong form of soft continuity
and we introduce soft strong continuity as a strong form of soft complete continuity. Several
characterizations, compositions, restrictions, and preservation theorems are obtained. The
study deals with the correlation between our new concepts in soft topology and their
corresponding concepts in general topology. As a result, we show that soft complete
continuity (resp. soft strong continuity) in soft topology is an extension of complete
continuity (resp. strong continuity) in soft topology.

The terms STS and TS, which stand for soft topological space and topological space,
respectively, will be utilized in this paper. The concepts and phrases from [19,20] will be
used throughout this paper.
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This paper is organized as follows:
In Section 2, we introduce the notion of “soft completely continuous mappings”. We

study the correlation between soft completely continuous mappings in soft topology and
completely continuous mappings in general topology, and we characterize soft completely
continuous mappings. Moreover, we show that this class of soft mappings is strictly con-
tained in the class of soft continuous mappings. Moreover, we study the behavior of soft
completely continuous mappings under soft restriction and soft composition. In addi-
tion, via soft completely continuous mappings, we obtain several preservation theorems
regarding some soft topological properties.

In Section 3, we introduce the notion of “soft strongly continuous mappings”. We
study the correlation between soft strongly continuous mappings in soft topology and
strongly continuous mappings in general topology, and we obtain several characterizations
of soft strongly continuous mappings. Moreover, we show that this class of soft map-
pings is strictly contained in the class of soft completely continuous mappings. Moreover,
we study the behavior of soft strongly continuous mappings under soft restriction and
soft composition. In addition, via soft strongly continuous mappings, we obtain several
preservation theorems regarding some soft topological properties.

Let (T, µ) be a TS, (T, π, B) be a STS, U ⊆ T, and G ∈ SS(T, π). Then, the closure of
U in (T, µ), the interior of U in (T, µ), the closure of G in (T, π, B), and the soft interior of
G in (T, π, B) will be denoted by Clµ(U), Intµ(U), Clπ(G), and Intπ(G), respectively; the
family of all closed sets in (T, µ) (resp. soft closed sets in (T, π, B)) will be denoted by µc

(resp. πc); and the family of all clopen sets in (T, µ) (resp. soft clopen sets in (T, π, B)) will
be denoted by CO(T, µ) (resp. CO(T, π, B)).

Definition 1. Let (T, µ) be a TS and let U ⊆ T. Then
(a) Ref. [21] U is called a regular open set in (T, µ) if U = Intµ(Clµ(U)).
(b) Ref. [21] U is called a regular closed set in (T, µ) if T −U is a regular open set in (T, µ).
(c) The family of all regular open sets in (T, µ) will be denoted by RO(T, µ).
(d) The family of all regular closed sets in (T, µ) will be denoted by RC(T, µ).

Definition 2. A function p : (T, µ) −→ (S, δ) between the TSs (T, µ) and (S, δ) is called
(a) Ref. [22] strongly continuous if p

(
Clµ(X)

)
⊆ P(X) for every X ⊆ T.

(b) Ref. [23] completely continuous if p−1(U) ∈ RO(T, µ) for every U ∈ δ.

Definition 3. Let (T, π, B) be a STS and let K ∈ SS(T, B). Then
(a) Ref. [24] K is called a soft regular open set in (T, π, B) if U = Intπ(Clπ(K)).
(b) Ref. [24] K is called a regular closed set in (T, π, B) if 1B − K is a soft regular open set in

(T, π, B).
(c) The family of all regular open sets in (T, π, B) will be denoted by RO(T, π, B).
(d) The family of all regular closed sets in (T, µ) will be denoted by RC(T, π, B).

Definition 4. A soft mapping fpu : (T, π, B) −→ (S, υ, D) is called
(a) Ref. [25] soft almost open if fpu(H) ∈ υ for every H ∈ RO(T, π, B).
(b) Ref. [26] soft weakly continuous if for every bt∈ SP(T, B) and every G ∈ υ such that

fpu(bt)∈̃G, there exists K ∈ π such that bt∈̃K and fpu(K)⊆̃Clυ(G).

Definition 5. A STS (T, π, B) is called
(1) Ref. [27] soft compact (soft Lindelof) if for every A ⊆π such that ∪̃A∈AA = 1B, there

exists a finite (resp. countable) subcollection A ⊆ A1 such that ∪̃A∈A1 = 1B.
(2) Ref. [28] soft connected if CO(T, π, B) = {0B, 1B}.
(3) Ref. [29] soft regular if whenever G ∈ πc and bt∈̃1B −G, then there exists L, N ∈ π such

that bt∈̃L, G⊆̃N, and L∩̃N = 0B.
(4) Ref. [29] soft normal if whenever G, H ∈ πc such that G∩̃H = 0B, then there exists

L, N ∈ π such that G⊆̃L, H⊆̃N, and L∩̃N = 0B.
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(5) Ref. [30] soft almost regular if whenever G ∈ RC(T, π, B) and bt∈̃1B − G, then there
exists L, N ∈ π such that bt∈̃L, G⊆̃N, and L∩̃N = 0B.

(6) Ref. [31] soft mildly normal if whenever G, H ∈ RC(T, π, B) such that G∩̃H = 0B, then
there exists L, N ∈ π such that G⊆̃L, H⊆̃N, and L∩̃N = 0B.

(7) Ref. [32] soft almost compact (soft almost Lindelof) if for everyA ⊆π such that ∪̃A∈AA = 1B,
there exists a finite (resp. countable) subcollection A ⊆ A1 such that ∪̃A∈A1 Clπ(A) = 1B.

(8) Ref. [33] soft nearly compact (soft nearly Lindelof) if for every A ⊆RO(T, π, B) such that
∪̃A∈AA = 1B, there exists a finite (resp. countable) subcollection A ⊆ A1 such that ∪̃A∈A1 A = 1B.

(9) Ref. [28] soft paracompact if for every A ⊆π such that ∪̃A∈AA = 1B, there exists K ⊆π
such that K is soft locally finite, ∪̃K∈KK = 1B, and for each K ∈ K there exists A ∈ A such that
A⊆̃K.

(10) Ref. [33] soft nearly paracompact if for every A ⊆RO(T, π, B) such that ∪̃A∈AA = 1B,
there exists K ⊆ ≈ such that K is soft locally finite, ∪̃K∈KK = 1B, and for each K ∈ K there exists
A ∈ A such that A⊆̃K.

(11) Ref. [34] soft almost paracompact if for every A ⊆π such that ∪̃A∈AA = 1B, there
exists K ⊆π such that K is soft locally finite, ∪̃K∈KClπ(K) = 1B, and for each K ∈ K there exists
A ∈ A such that A⊆̃K.

2. Soft Completely Continuous Mappings

In this section, we introduce the notion of “soft completely continuous mappings”. We
study the correlation between soft completely continuous mappings in soft topology and
completely continuous mappings in general topology, and we characterize soft completely
continuous mappings. Additionally, we show that this class of soft mappings is strictly
contained in the class of soft continuous mappings. Moreover, we study the behavior of
soft completely continuous mappings under soft restriction and soft composition. In addi-
tion, via soft completely continuous mappings, we obtain several preservation theorems
regarding some soft topological properties.

Definition 6. A soft mapping fpu : (T, π, B) −→ (S, υ, D) is soft completely continuous if
f−1
pu (G) ∈ RO(T, π, B) for every G ∈ υ.

Theorem 1. For a soft mapping fpu : (T, π, B) −→ (S, υ, D), the following are equivalent:
(a) fpu is soft completely continuous.
(b) f−1

pu (H) ∈ RC(T, π, B) for every H ∈ υc.

Proof. (a) −→ (b): Let H ∈ υc. Then, 1D − H ∈ υ and by (a), f−1
pu (1D − H) = 1B −

f−1
pu (H) ∈ RO(T, π, B). Hence, f−1

pu (H) ∈ RC(T, π, B).
(b) −→ (a): Let K ∈ υ. Then 1D − K ∈ υc. Then, by (b), f−1

pu (1D − K) = 1B −
f−1
pu (K) ∈ RC(T, π, B). Hence, f−1

pu (H) ∈ RO(T, π, B). Therefore, fpu is soft completely
continuous.

Theorem 2. Let {(T, πi) : i ∈ I} and
{(

S, υj
)

: j ∈ J
}

be two families of TSs. Let p : T −→ S
be a function and u : I −→ J be a bijective function. Then, fpu : (T,⊕i∈Iπi, I) −→

(
S,⊕j∈Jυj, J

)
is soft completely continuous if and only if p : (T, πi) −→

(
S, υu(i)

)
is completely continuous for

all i ∈ I.

Proof. Necessity. Suppose that fpu : (T,⊕i∈Iπi, I) −→
(
S,⊕j∈Jυj, J

)
is soft completely

continuous. Let k ∈ I and let W ∈ υu(k). Then (u(k))W ∈ ⊕j∈Jυj. Since u : I −→ J
is injective, then f−1

pu ((u(k))W) = kp−1(W). Since fpu : (T,⊕i∈Iπi, I) −→
(
S,⊕j∈Jυj, J

)
is soft completely continuous, then f−1

pu ((u(k))W) = kp−1(W) ∈ RO(T, π, B). Thus, by

Proposition 3.28 of [35],
(

kp−1(W)

)
(k) = p−1(W) ∈ RO(T, πk). Hence, p : (T, πk) −→(

S, υu(k)

)
is completely continuous.
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Sufficiency. Suppose that p : (T, πi) −→
(

S, υu(i)

)
is completely continuous for all

i ∈ I. Let G ∈ ⊕j∈Jυj. Then, for every j ∈ J, G(j) ∈ υj. Since u : I −→ J is bijective,

then p :
(

T, πu−1(j)

)
−→

(
S, υj

)
is completely continuous for all j ∈ J. Thus, p−1(G(j)) =((

f−1
pu (G)

))
(u−1(j)) ∈ RO

(
T, πu−1(j)

)
for all j ∈ J. So,

(
f−1
pu (G)

)
(i) ∈ RO(T, πi) for all

i ∈ I. Therefore, by Proposition 3.28 of [35], f−1
pu (G) ∈ RO(T,⊕i∈Iπi, I). It follows that

fpu : (T,⊕i∈Iπi, I) −→
(
S,⊕j∈Jυj, J

)
is soft completely continuous.

Corollary 1. Let p : (T, µ) −→ (S, δ) be a function between two TSs and let u : I −→ J
be a bijective function. Then p : (T, µ) −→ (S, δ) is completely continuous if and only if
fpu : (T, τ(µ), I) −→ (S, τ(δ), J) is soft completely continuous.

Proof. For each i ∈ I and j ∈ J, put πi = µ and υj = δ. Then τ(µ) = ⊕i∈Iπi and
τ(δ) = ⊕j∈Jυj. Thus, by Theorem 2, we obtain the result.

Theorem 3. Every soft completely continuous soft mapping is soft continuous.

Proof. Let fpu : (T, π, B) −→ (S, υ, D) be a soft completely continuous mapping. Let
G ∈ υ. Then, f−1

pu (G) ∈ RO(T, π, B) ⊆ π. Hence, fpu is soft continuous.

Theorem 3’s converse does not necessarily hold in all cases.

Example 1. Let T = {1, 2, 3, 4}, S = {5, 6}, µ = {∅, T, {1, 2}}, δ = {∅, S, {5}}, B = R.
Define p : T −→ S and u : B −→ B as follows: p(1) = p(2) = 5, p(3) = p(4) = 6,
and u(b) = b for all b ∈ B. Since {5} ∈ δ and p−1({5}) = {1, 2} ∈ µ − RO(T, µ), then
p : (T, µ) −→ (S, δ) is continuous but not completely continuous. Therefore, by Theorem 5.31
of [20] and Corollary 1, fpu : (T, τ(µ), B) −→ (S, τ(δ), B) is soft continuous but not soft
completely continuous.

The following example demonstrates how the soft restriction of a soft completely
continuous mapping may not be a soft completely continuous mapping:

Example 2. Let T = {1, 2, 3, 4}, S = {5, 6, 7}, µ = {∅, T, {1, 2}, {3}, {1, 2, 3}},
δ = {∅, S, {5, 6}}, B = R. Define p : T −→ S and u : B −→ B as follows: p(1) = 5,
p(2) = 6, p(3) = p(4) = 7, and u(b) = b for all b ∈ B. Since p−1({5, 6}) = {1, 2} ∈
RO(T, µ), then p : (T, µ) −→ (S, δ) is completely continuous and by Corollary 1, fpu :
(T, τ(µ), B) −→ (S, τ(δ), D) is soft completely continuous. On the other hand, since C{5,6} ∈

τ(δ) and
((

fpu
)
|C{1,4}

)−1(
C{5.6}

)
=
(

f−1
pu

(
C{5.6}

))
∩̃C{1,4} = C{1,2}∩̃C{1,4} = C{1} /∈

RO
(
{1, 4}, (τ(µ)){1,4}, B

)
, then

(
fpu
)
|C{1,4}

:
(
{1, 4}, (τ(µ)){1,4}, B

)
−→ (S, τ(δ), D) is not

soft completely continuous.

Theorem 4. If fp1u1 : (T, π, B) −→ (S, υ, D) is soft completely continuous and fp2u2 : (S, υ, D) −→
(R, γ, E) is soft continuous, then f(p2◦p1)(u2◦u1)

: (T, π, B) −→ (R, γ, E) is soft completely continuous.

Proof. Let H ∈ γ. Since fp2u2 : (S, υ, D) −→ (R, γ, E) is soft continuous, then f−1
p2u2

(H) ∈ υ.

Since fp1u1 : (T, π, B) −→ (S, υ, D) is soft completely continuous, then f−1
p1u1

(
f−1
p2u2

(H)
)
=

f−1
(p2◦p1)(u2◦u1)

(H) ∈ RO(T, π, B). This ends the proof.

Corollary 2. The soft composition of two soft completely continuous mappings is soft completely
continuous.
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Theorem 5. If fp1u1 : (T, π, B) −→ (S, υ, D) is surjective, soft almost open, and soft completely
continuous, and fp2u2 : (S, υ, D) −→ (R, γ, E) is a soft mapping such that f(p2◦p1)(u2◦u1)

:
(T, π, B) −→ (R, γ, E) is soft completely continuous, then fp2u2 : (S, υ, D) −→ (R, γ, E) is soft
continuous.

Proof. Let H ∈ γ. Since f(p2◦p1)(u2◦u1)
: (T, π, B) −→ (R, γ, E) is soft completely contin-

uous, then f−1
(p2◦p1)(u2◦u1)

(H) ∈ RO(T, π, B). Since fp1u1 : (T, π, B) −→ (S, υ, D) is soft al-

most open and fp1u1 is surjective, then fp1u1

(
f−1
(p2◦p1)(u2◦u1)

(H)
)
= fp1u1

(
f−1
p1u1

(
f−1
p2u2

(H)
))

= f−1
p2u2

(H) ∈ υ. This ends the proof.

Theorem 6. If fpu : (T, π, B) −→ (S, υ, D) is surjective and soft completely continuous such
that (T, π, B) is soft nearly compact, then (S, υ, D) is soft compact.

Proof. Let A ⊆υ such that ∪̃A∈AA = 1D. Since fpu : (T, π, B) −→ (S, υ, D) is soft

completely continuous, then
{

f−1
pu (A) : A ∈ A

}
⊆ RO(T, π, B). Since ∪̃A∈A f−1

pu (A) =

f−1
pu
(
∪̃A∈AA

)
= 1B and (T, π, B) is soft nearly compact, then there exists a finite subcollec-

tionA1 ⊆ A such that ∪̃A∈A1 f−1
pu (A) = f−1

pu
(
∪̃A∈A1 A

)
= 1B and thus, fpu

(
f−1
pu
(
∪̃A∈A1 A

))
= fpu(1B). Since fpu is a surjective, then fpu(1B) = 1D and fpu

(
f−1
pu
(
∪̃A∈A1 A

))
= ∪̃A∈A1 A.

Therefore, ∪̃A∈A1 A = 1D. It follows that (S, υ, D) is soft compact.

Theorem 7. If fpu : (T, π, B) −→ (S, υ, D) is surjective and soft completely continuous such
that (T, π, B) is soft nearly Lindelof, then (S, υ, D) is soft Lindelof.

Proof. Let A ⊆υ such that ∪̃A∈AA = 1D. Since fpu : (T, π, B) −→ (S, υ, D) is soft

completely continuous, then
{

f−1
pu (A) : A ∈ A

}
⊆ RO(T, π, B). Since ∪̃A∈A f−1

pu (A) =

f−1
pu
(
∪̃A∈AA

)
= 1B and (T, π, B) is soft nearly Lindelof, then there exists a countable sub-

collection A1 ⊆ A such that ∪̃A∈A1 f−1
pu (A) = f−1

pu
(
∪̃A∈A1 A

)
= 1B. Since fpu is a surjective,

then ∪̃A∈A1 A = 1D. Hence, (S, υ, D) is soft Lindelof.

Theorem 8. Let fpu : (T, π, B) −→ (S, υ, D) be surjective, soft completely continuous, and soft
closed such that f−1

pu (ds) is a soft compact subset of (T, π, B) for all ds ∈ SP(S, D). If (T, π, B) is
soft almost regular, then (S, υ, D) is soft regular.

Proof. Let K ∈ υc and let ds ∈ SP(S, D) such that ds∈̃1D − K. Then, f−1
pu (ds)∩̃ f−1

pu (K) = 0B.
Since fpu : (T, π, B) −→ (S, υ, D) is soft completely continuous, then by Theorem 1,
f−1
pu (K) ∈ RC(T, π, B). For each bt∈̃ f−1

pu (ds), we have bt∈̃1B − f−1
pu (K) and by soft regular-

ity of (T, π, B), there exist Hbt , Gbt ∈ π such that bt∈̃Hbt , f−1
pu (K)⊆̃Gbt , and Hbt ∩̃Gbt = 0B.

Since f−1
pu (ds) is soft compact and f−1

pu (ds)⊆̃∪̃bt∈̃ f−1
pu (ds)

Hbt , then there exists a finite sub-

set M⊆
{

bt : bt∈̃ f−1
pu (ds)

}
such that f−1

pu (ds)⊆̃∪̃bt∈MHbt . Let H = ∪̃bt∈MHbt and G =

∩̃bt∈MGbt . Then, H, G ∈ π such that f−1
pu (ds)⊆̃H, f−1

pu (K)⊆̃G, and G∩̃H = 0B. Let
L = 1D − fpu(1B − H) and N = 1D − fpu(1B − G). Since fpu : (T, π, B) −→ (S, υ, D) is
soft closed, then fpu(1B − H), fpu(1B − G) ∈ υc and thus, L, N ∈ υ.

Claim. 1. ds∈̃L.
2. K⊆̃N.
3. L∩̃N = 0D.

Proof of Claim. 1. Suppose to the contrary that ds∈̃1D − L = fpu(1B − H). Then, there
exists ax∈̃1B − H such that ds = fpu(ax). Thus, ax∈̃ f−1

pu (ds)⊆̃H, a contradiction.
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2. Suppose to the contrary that there exists ey∈̃K − N = K∩̃ fpu(1B − G). Since
ey∈̃ fpu(1B − G), then there exists ax∈̃1B − G such that ey = fpu(ax). However, since ey∈̃K,
then ax∈̃ f−1

pu (K)⊆̃G, a contradiction.
3. We will show that 1D −

(
L∩̃N

)
= 1D. Since fpu is surjective, then fpu(1B) = 1D. So,

1D −
(

L∩̃N
)

= (1D − L)∪̃(1D − N)
= fpu(1B − H)∪̃ fpu(1B − G)
= fpu((1B − H)∪̃(1B − G))
= fpu(1B −

(
H∩̃G

)
)

= fpu(1B − 0B)
= fpu(1B)
= 1D.

Therefore, by the above Claim, (S, υ, D) is soft regular.

Theorem 9. Let fpu : (T, π, B) −→ (S, υ, D) be surjective, soft completely continuous, and soft
closed mapping. If (T, π, B) is soft mildly normal, then (S, υ, D) is soft normal.

Proof. Let M, N ∈ υc such that M∩̃N = 0D. Since fpu : (T, π, B) −→ (S, υ, D) is soft
completely continuous, then by Theorem 1, f−1

pu (M), f−1
pu (N) ∈ RC(T, π, B). Since (T, π, B)

is soft mildly normal, then there exist H, G ∈ υ such that f−1
pu (M)⊆̃H, f−1

pu (N)⊆̃G and
H∩̃G = 0B. Let L = 1D− fpu(1B−H) and K = 1D− fpu(1B−G). Since fpu : (T, π, B) −→
(S, υ, D) is soft closed, then fpu(1B − H), fpu(1B − G) ∈ υc and thus, L, K ∈ υ.

Claim. 1. M⊆̃L.
2. N⊆̃K.
3. L∩̃N = 0D.

Proof of Claim. 1. Since f−1
pu (M)⊆̃H, then 1B − H⊆̃1B − f−1

pu (M) = f−1
pu (1D −M) and so,

fpu(1B − H)⊆̃ fpu

(
f−1
pu (1D −M)

)
= 1D −M. Hence, M⊆̃1D − fpu(1B − H) = L.

2. Since f−1
pu (N)⊆̃G, then 1B − G⊆̃1B − f−1

pu (N) = f−1
pu (1D − N) and so, fpu(1B −

G)⊆̃ fpu

(
f−1
pu (1D − N)

)
= 1D − N. Hence, N⊆̃1D − fpu(1B − G) = K.

3. We will show that 1D −
(

L∩̃N
)
= 1D. Since fpu is surjective, then fpu(1B) = 1D. So,

1D −
(

L∩̃N
)

= (1D − L)∪̃(1D − N)
= fpu(1B − H)∪̃ fpu(1B − G)
= fpu((1B − H)∪̃(1B − G))
= fpu(1B −

(
H∩̃G

)
)

= fpu(1B − 0B)
= fpu(1B)
= 1D.

Therefore, by the above Claim, (S, υ, D) is soft normal.

Definition 7. Let (T, π, B) be a STS and letM⊆SS(T, B). Then
(a)M is soft point finite in (T, π, B) if for every bt ∈ SP(T, B), the set {M ∈ M : bt∈̃M}

is finite.
(b) (T, π, B) is called soft metacompact if for everyK ⊆π such that ∪̃K∈KK = 1B, there exists

a soft point finiteH in (T, π, B) such thatH ⊆π, ∪̃H∈HH = 1B, and for each H ∈ H, there exists
K ∈ K such that K⊆̃H.

Theorem 10. Let fpu : (T, π, B) −→ (S, υ, D) be surjective, soft completely continuous, and soft
open such that f−1

pu (ds) is a soft compact subset of (T, π, B) for each ds ∈ SP(S, D). If (T, π, B) is
soft nearly paracompact, then (S, υ, D) is soft metacompact.

Proof. Let H ⊆υ such that ∪̃H∈HH = 1D. Since fpu is soft completely continuous, then{
f−1
pu (H) : H ∈ H

}
⊆ RO(T, π, B) ⊆ π. Since (T, π, B) is soft nearly paracompact and
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∪̃H∈H f−1
pu (H) = f−1

pu
(
∪̃H∈HH

)
= f−1

pu (1D) = 1B, then there exists a collection K ⊆π such
that K is soft locally finite, ∪̃K∈KK = 1B, and for every K ∈ K there exists H ∈ H such that
K⊆̃ f−1

pu (H). LetM =
{

fpu(K) : K ∈ K
}

.

Claim. 1.M⊆υ.
2. ∪̃M∈MM = 1D.
3. For each M ∈ M, there exists H ∈ H such that M⊆̃H.
4.M is soft point finite.

Proof of Claim. 1. Since K ⊆π and fpu is soft open, thenM =
{

fpu(K) : K ∈ K
}
⊆ υ.

2. Since fpu is surjective, then fpu(1B) = 1D. So, ∪̃M∈MM = ∪̃K∈K fpu(K) =
fpu
(
∪̃K∈KK

)
= fpu(1B) = 1D.

3. Let M ∈ M. Then, there exists K ∈ K such that fpu(K) = M. Choose H ∈ H such

that K⊆̃ f−1
pu (H). Then, M = fpu(K)⊆̃ fpu

(
f−1
pu (H)

)
⊆̃H.

4. Let ds ∈ SP(S, D). Since K is soft locally finite, then for every bt∈̃ f−1
pu (ds),

there exists Gbt ∈ π such that bt∈̃Gbt and the collection
{

K ∈ K : K∩̃Gbt 6= 0B
}

is fi-
nite. For each bt∈̃ f−1

pu (ds), put Sbt =
{

K ∈ K : K∩̃Gbt 6= 0B
}

. Since f−1
pu (ds) is a soft

compact subset of (T, π, B) and f−1
pu (ds)⊆̃∪̃bt∈̃ f−1

pu (ds)
Gbt , then there exists a finite subset

A ⊆
{

bt : bt∈̃ f−1
pu (ds)

}
such that f−1

pu (ds)⊆̃∪̃bt∈AGbt . If ds∈̃ fpu(R) for some R ∈ K, then

there exists wr∈̃R∩̃ f−1
pu (ds). Since wr∈̃ f−1

pu (ds)⊆̃∪̃bt∈AGbt , then there exists bt ∈ A such that
wr∈̃Gbt . Thus, we have wr∈̃R∩̃Gbt and hence R ∈ Sbt . Therefore,

{
K ∈ K : ds∈̃ fpu(K)

}
⊆{

K ∈ K : R ∈ Sbt , bt ∈ A
}

. Since
{

K ∈ K : R ∈ Sbt , bt ∈ A
}

is finite, then{
K ∈ K : ds∈̃ fpu(K)

}
is finite. Hence,M is soft point finite.

Therefore, by the above Claim, (S, υ, D) is soft metacompact.

3. Soft Strongly Continuous Mappings

In this section, we introduce the notion of “soft strongly continuous mappings”. We
study the correlation between soft strongly continuous mappings in soft topology and
strongly continuous mappings in general topology, and we obtain several characterizations
of soft strongly continuous mappings. Moreover, we show that this class of soft map-
pings is strictly contained in the class of soft completely continuous mappings. Moreover,
we study the behavior of soft strongly continuous mappings under soft restriction and
soft composition. In addition, via soft strongly continuous mappings, we obtain several
preservation theorems regarding some soft topological properties.

Definition 8. A soft mapping fpu : (T, π, B) −→ (S, υ, D) is soft strongly continuous if for every
M ∈ SS(T, B), fpu(Clπ(M))⊆̃ fpu(M).

Theorem 11. For a soft mapping fpu : (T, π, B) −→ (S, υ, D), the following are equivalent:
(a) fpu is soft strongly continuous.
(b) f−1

pu (H) ∈ πc for every H ∈ SS(S, D).

Proof. (a) −→ (b): Let H ∈ SS(S, D). Then, by (a), fpu(Clπ( f−1
pu (H)))⊆̃ fpu( f−1

pu (H))⊆̃H

and thus, Clπ( f−1
pu (H))⊆̃ f−1

pu

(
fpu(Clπ( f−1

pu (H)))
)
⊆̃ f−1

pu (H). Therefore, f−1
pu (H) ∈ πc.

(b)−→ (a): Let M ∈ SS(T, B). Then, by (b), f−1
pu ( fpu(M)) ∈ πc. Since M⊆̃ f−1

pu ( fpu(M)),

then Clπ(M)⊆̃Clπ
(

f−1
pu ( fpu(M))

)
= f−1

pu ( fpu(M)), and so fpu(Clπ(M))⊆̃ fpu

(
f−1
pu ( fpu(M))

)
⊆̃ fpu(M). It follows that fpu is soft strongly continuous.

Theorem 12. For a soft mapping fpu : (T, π, B) −→ (S, υ, D), the following are equivalent:
(a) fpu is soft strongly continuous.
(b) f−1

pu (H) ∈ π for every H ∈ SS(S, D).
(c) f−1

pu (H) ∈ CO(T, π, B) for every H ∈ SS(S, D).
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(d) f−1
pu (ds) ∈ π for every ds ∈ SP(S, D).

(e) f−1
pu (ds) ∈ πc for every ds ∈ SP(S, D).

(f) f−1
pu (ds) ∈ CO(T, π, B) for every ds ∈ SP(S, D).

Proof. (a) −→ (b): Let H ∈ SS(S, D). Then, by (a) and Theorem 11, f−1
pu (1D − H) =

1B − f−1
pu (H) ∈ πc. Hence, f−1

pu (H) ∈ π.
(b)−→ (c): Let H ∈ SS(S, D). Then, by (b), f−1

pu (H) ∈ π and 1B− f−1
pu (H) = f−1

pu (1D−
H) ∈ π. Hence, f−1

pu (H) ∈ CO(T, π, B).
(c) −→ (d): Obvious.
(d) −→ (e): Let ds ∈ SP(S, D). Then, by (d), 1B − f−1

pu (ds) = f−1
pu (1D − ds) ∈ π. Hence,

f−1
pu (ds) ∈ πc.

(e) −→ (f): Let ds ∈ SP(S, D). Then, by (e), f−1
pu (ds) ∈ πc and 1B − f−1

pu (ds) =

f−1
pu (1D − ds) ∈ πc. Hence, f−1

pu (ds) ∈ CO(T, π, B).
(f) −→ (a): Let H ∈ SS(S, D). We will apply Theorem 11. By (f), f−1

pu (ds) ∈ π for every
ds∈̃1D − H. Thus, f−1

pu (1D − H) = ∪̃ds∈̃1D−H f−1
pu (ds) ∈ π. Hence, 1B − f−1

pu (1D − H) =

1B −
(

1B − f−1
pu (H)

)
= f−1

pu (H) ∈ πc.

Theorem 13. If fpu : (T, π, B) −→ (S, υ, D) is soft strongly continuous, then p : (T, πb) −→(
S, υu(b)

)
is strongly continuous for all b ∈ B.

Proof. Suppose that fpu : (T, π, B) −→ (S, υ, D) is soft strongly continuous. Let b ∈ B and
let s ∈ S. Then (u(b))s ∈ SP(S, D) and part (d) of Theorem 12, we have f−1

pu ((u(b))s) ∈ π.

Thus,
(

f−1
pu ((u(b))s)

)
(b) = p−1(((u(b))s)(u(b))) = p−1({s}) ∈ πb. Hence, by Theorem

1.1 of [23], p : (T, πb) −→
(

S, υu(b)

)
is strongly continuous.

Theorem 14. Let {(T, πi) : i ∈ I} and
{(

S, υj
)

: j ∈ J
}

be two families of TSs. Let p : T −→ S
be a function and u : I −→ J be a bijective function. Then fpu : (T,⊕i∈Iπi, I) −→

(
S,⊕j∈Jυj, J

)
is soft strongly continuous if and only if p : (T, πi) −→

(
S, υu(i)

)
is strongly continuous for all

i ∈ I.

Proof. Necessity. Suppose that fpu : (T,⊕i∈Iπi, I) −→
(
S,⊕j∈Jυj, J

)
is soft strongly contin-

uous. Let k ∈ I, then by Theorem 13, p : (T, (⊕i∈Iπi)k) −→
(

S,
(
⊕j∈Jυj

)
u(k)

)
is strongly

continuous. However, by Theorem 3.7 of [20], (⊕i∈Iπi)k = πk and
(
⊕j∈Jυj

)
u(k) = υu(k).

Hence, p : (T, πi) −→
(

S, υu(i)

)
is strongly continuous.

Sufficiency. Suppose that p : (T, πi) −→
(

S, υu(i)

)
is strongly continuous for all

i ∈ I. Let G ∈ SS(S, J). Then, for every j ∈ J, G(j) ⊆ S. Since u : I −→ J is bijective,
then p :

(
T, πu−1(j)

)
−→

(
S, υj

)
is strongly continuous for all j ∈ J. Thus, p−1(G(j)) =((

f−1
pu (G)

))
(u−1(j)) ∈ πu−1(j) for all j ∈ J. Hence,

(
f−1
pu (G)

)
(i) ∈ πi for all i ∈ I.

Therefore, f−1
pu (G) ∈ ⊕i∈Iπi. It follows that fpu : (T,⊕i∈Iπi, I) −→

(
S,⊕j∈Jυj, J

)
is soft

strongly continuous.

Corollary 3. Let p : (T, µ) −→ (S, δ) be a function between two TSs and let u : I −→ J
be a bijective function. Then p : (T, µ) −→ (S, δ) is strongly continuous if and only if fpu :
(T, τ(µ), I) −→ (S, τ(δ), J) is soft strongly continuous.

Proof. For each i ∈ I and j ∈ J, put πi = µ and υj = δ. Then τ(µ) = ⊕i∈Iπi and
τ(δ) = ⊕j∈Jυj. Thus, by Theorem 14, we obtain the result.
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Theorem 15. Every soft strongly continuous soft mapping is soft completely continuous.

Proof. Let fpu : (T, π, B) −→ (S, υ, D) be a soft strongly continuous mapping. Let G ∈ υ.
Then by part (c) of Theorem 12, f−1

pu (G) ∈ CO(T, π, B) ⊆ RO(T, π, B). Hence, fpu is soft
completely continuous.

Theorem 15’s converse does not necessarily hold in all cases.

Example 3. Let T = {1, 2, 3, 4}, S = {5, 6, 7}, µ = {∅, T, {1, 2}, {3}, {1, 2, 3}},
δ = {∅, S, {5}, {6}, {5, 6}}, and B = R. Define p : T −→ S and u : B −→ B as follows: p(1) =
p(2) = 5, p(3) = p(4) = 7, and u(b) = b for all b ∈ B. Since p−1({6}) = ∅ ∈ RO(T, µ)
and p−1({5}) = p−1({5, 6}) = {1, 2} ∈ RO(T, µ) − CO(T, µ), then p : (T, µ) −→ (S, δ)
is completely continuous but not strongly continuous. Therefore, by Corollaries 1 and 3, fpu :
(T, τ(µ), B) −→ (S, τ(δ), B) is soft completely continuous but not soft strongly continuous.

Theorem 16. If fpu : (T, π, B) −→ (S, υ, D) is soft weakly continuous such that (S, υ, D) is soft
discrete, then fpu is soft strongly continuous.

Proof. Suppose that fpu : (T, π, B) −→ (S, υ, D) is soft weakly continuous such that
(S, υ, D) is soft discrete. Let ds ∈ SP(S, D). To see that f−1

pu (ds) ∈ π. Let bt∈̃ f−1
pu (ds).

Then, fpu(bt)∈̃ds ∈ υ and by soft weak continuity of fpu, there exists G ∈ π such that
bt∈̃G and fpu(G)⊆̃Clυ(ds) = ds. Thus, we have bt∈̃G⊆̃ f−1

pu
(

fpu(G)
)
⊆̃ f−1

pu (ds). Hence,
f−1
pu (ds) ∈ π.

Corollary 4. If fpu : (T, π, B) −→ (S, υ, D) is soft continuous such that (S, υ, D) is soft discrete,
then fpu is soft strongly continuous.

Theorem 17. If fpu : (T, π, B) −→ (S, υ, D) is a soft mapping such that (T, π, B) is soft discrete,
then fpu is soft strongly continuous.

Proof. Obvious.

Theorem 18. Let fpu : (T, π, B) −→ (S, υ, D) be an injective soft mapping. Then fpu is soft
strongly continuous if and only if (T, π, B) is soft discrete.

Proof. Necessity. Suppose that fpu is soft strongly continuous. We will show that SP(T, B) ⊆
π. Let bt ∈ SP(T, B). Then by soft strong continuity of fpu we have f−1

pu
(

fpu(bt)
)
∈ π.

Since fpu is injective, then f−1
pu
(

fpu(bt)
)
= bt. Therefore, bt ∈ π.

Sufficiency. Follows from Theorem 17.

Theorem 19. A soft homeomorphism fpu : (T, π, B) −→ (S, υ, D) is soft strongly continuous if
and only if (T, π, B) and (S, υ, D) are soft discrete STSs.

Proof. Necessity. Suppose that fpu is soft homeomorphism and soft strongly continuous.
Then fpu is injective and by Theorem 18, (T, π, B) is soft discrete. Since fpu : (T, π, B) −→
(S, υ, D) is soft homeomorphism and (T, π, B) is soft discrete, then (S, υ, D) is soft discrete.

Sufficiency. Follows from Theorem 17.

Theorem 20. For a STS fpu : (T, π, B) −→ (S, υ, D), the following are equivalent:
(a) fpu : (T, π, B) −→ (S, υ, D) is soft strongly continuous.
(b) fpu : (T, π, B) −→ (S, γ, D) is soft continuous for any soft topology γ on S relative to D.

Proof. (a)−→ (b): Let γ be a soft topology on S relative to D. To see that fpu : (T, π, B) −→
(S, γ, D) is soft continuous, let G ∈ γ. Then G ∈ SS(S, D) and by (a), f−1

pu (G) ∈ π.
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(b) −→ (a): By (b), we have fpu : (T, π, B) −→ (S, SS(S, D), D) is soft continuous.
Thus, Corollary 4 ends the proof.

Theorem 21. Let fpu : (T, π, B) −→ (S, υ, D) be soft strongly continuous and X be a non-empty
subset of T. If (X, πX , B) is soft connected, then fpu(CX) is a single soft point.

Proof. Suppose to the contrary that (X, πX , B) is soft connected and fpu(CX) is not a single
soft point. Choose ds∈̃ fpu(CX). Then, by Theorem 12 (f), f−1

pu (ds) ∈ CO(T, π, B). Therefore,
we have f−1

pu (ds)∩̃CX ∈ CO(X, πX , B)− {0B, 1B}. Hence, (X, πX , B) is not soft connected,
a contradiction.

Theorem 22. If fpu : (T, π, B) −→ (S, υ, D) is soft strongly continuous and X is any non-empty
subset of T. Then,

(
fpu
)
|CX

: (X, πX , B) −→ (S, υ, D) is soft strongly continuous.

Proof. Let ds ∈ SP(S, D). Since fpu : (T, π, B) −→ (S, υ, D) is soft strongly continuous,

then f−1
pu (ds) ∈ π, and so

((
fpu
)
|CX

)−1
(ds) = f−1

pu (ds)∩̃CX ∈ πX. Hence,
(

fpu
)
|CX

:
(X, πX , B) −→ (S, υ, D) is soft strongly continuous.

Theorem 23. If fp1u1 : (T, π, B) −→ (S, υ, D) is soft strongly continuous and fp2u2 : (S, υ, D) −→
(R, γ, E) is any soft mapping, then f(p2◦p1)(u2◦u1)

: (T, π, B) −→ (R, γ, E) is soft strongly continuous.

Proof. Let H ∈ SS(R, E). Then, f−1
p2u2

(H) ∈ SS(S, D). Since fp1u1 : (T, π, B) −→ (S, υ, D)

is soft strongly continuous, then f−1
p1u1

(
f−1
p2u2

(H)
)
= f−1

(p2◦p1)(u2◦u1)
(H) ∈ π. This ends the

proof.

Corollary 5. The soft composition of two strongly continuous functions is strongly continuous.

The example shown below shows how Theorem 23’s theorem is not necessarily true
for soft continuous functions.

Example 4. Let T = R, B = N, π = {0B, 1B}, and υ = SS(T, B). Consider the identities
functions p : T −→ T and u : B −→ B. Consider the soft mappings fpu : (T, π, B) −→ (T, π, B)
and fpu : (T, π, B) −→ (T, υ, B). Then, fpu : (T, π, B) −→ (T, π, B) is soft continuous but
f(p◦p)(u◦u) : (T, π, B) −→ (T, υ, B) is not soft continuous.

Theorem 24. If fp1u1 : (T, π, B) −→ (S, υ, D) is a soft weakly continuous mapping and fp2u2 :
(S, υ, D) −→ (R, γ, E) is soft strongly continuous, then f(p2◦p1)(u2◦u1)

: (T, π, B) −→ (R, γ, E)
is soft strongly continuous.

Proof. Let H ∈ SS(R, E). Since fp2u2 : (S, υ, D) −→ (R, γ, E) is soft strongly continuous,
then f−1

p2u2
(H) ∈ CO(S, υ, D). Since fp1u1 : (T, π, B) −→ (S, υ, D) is soft weakly continuous,

then by Theorem 5.1 of [26],
f−1
(p2◦p1)(u2◦u1)

(H) = f−1
p1u1

(
f−1
p2u2

(H)
)

⊆̃ Intπ

(
f−1
p1u1

(
Clυ
(

f−1
p2u2

(H)
)))

= Intπ

(
f−1
p1u1

(
f−1
p2u2

(H)
))

= Intπ

(
f−1
(p2◦p1)(u2◦u1)

(H)
)

.
This ends the proof.

Corollary 6. If fp1u1 : (T, π, B) −→ (S, υ, D) is a soft continuous mapping and fp2u2 : (S, υ, D)
−→ (R, γ, E) is soft strongly continuous, then f(p2◦p1)(u2◦u1)

: (T, π, B) −→ (R, γ, E) is soft
strongly continuous.
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Theorem 25. Let fpu : (T, π, B) −→ (S, υ, D) be a soft strongly continuous such that (T, π, B)
is soft compact. Then, f−1

pu (H) is a soft compact subset of (T, π, B) for every H ∈ SS(S, D).

Proof. Let H ∈ SS(S, D). Since fpu : (T, π, B) −→ (S, υ, D) is soft strongly continuous,
then f−1

pu (H) ∈ πc. Since (T, π, B) is soft compact, then f−1
pu (H) is a soft compact subset of

(T, π, B).

Definition 9. A STS (T, π, B) is said to be a soft C-C space if the soft closed sets in (T, π, B)
coincide with soft compact sets of (T, π, B).

Theorem 26. Let fpu : (T, π, B) −→ (S, υ, D) be a soft mapping such that (T, π, B) is a soft
C-C space and (S, υ, D) is a hereditarily soft compact. Then, the following are equivalent:

(a) fpu is soft strongly continuous.
(b) f−1

pu (H) is a soft compact subset of (T, π, B) for every soft compact subset H of (S, υ, D).

Proof. (a)−→ (b): Let H be any soft compact subset of (S, υ, D). Then, by (a), f−1
pu (H) ∈ πc.

Since (T, π, B) is a soft C-C space, then f−1
pu (H) is a soft compact subset of (T, π, B).

(b) −→ (a): Let H ∈ SS(S, D). Since (S, υ, D) is a hereditarily soft compact, then H is
a soft compact subset of (S, υ, D). Thus, by (b), f−1

pu (H) is a soft compact subset of (T, π, B).
Since (T, π, B) is a soft C-C space, then f−1

pu (H) ∈ πc.

Theorem 27. If fpu : (T, π, B) −→ (S, υ, D) is a soft strongly continuous mapping, then for any
soft compact subset K of (T, π, B), fpu(K) is a finite soft set.

Proof. Let K be any soft compact subset of (T, π, B). Since fpu is soft strongly continuous,

then
{

f−1
pu (ds) : ds ∈ SP(S, D)

}
⊆ π. Since K⊆̃∪̃ds∈SP(S,D) f−1

pu (ds), then there exists a finite

subsetM⊆SP(S, D) such that K⊆̃∪̃ds∈M f−1
pu (ds). Thus, fpu(K)⊆̃ fpu

(
∪̃ds∈M f−1

pu (ds)
)
=

∪̃ds∈M fpu

(
f−1
pu (ds)

)
⊆̃∪̃ds∈Mds. Since ∪̃ds∈Mds is a finite soft set, then fpu(K) is a finite

soft set.

Theorem 28. If fpu : (T, π, B) −→ (S, υ, D) is a soft strongly continuous mapping, then for any
soft Lindelof subset K of (T, π, B), fpu(K) is a countable soft set.

Proof. Let K be any soft Lindelof subset of (T, π, B). Since fpu is soft strongly continuous, then{
f−1
pu (ds) : ds ∈ SP(S, D)

}
⊆ π. Since K⊆̃∪̃ds∈SP(S,D) f−1

pu (ds), then there exists a countable

subsetM⊆SP(S, D) such that K⊆̃∪̃ds∈M f−1
pu (ds). Thus, fpu(K)⊆̃ fpu

(
∪̃ds∈M f−1

pu (ds)
)
=

∪̃ds∈M fpu

(
f−1
pu (ds)

)
⊆̃∪̃ds∈Mds. Since ∪̃ds∈Mds is a countable soft set, then fpu(K) is a

countable soft set.

Theorem 29. Let fpu : (T, π, B) −→ (S, υ, D) be surjective and soft strongly continuous such
that (T, π, B) is soft almost compact. Then, (S, υ, D) is soft compact.

Proof. Let A ⊆υ such that ∪̃A∈AA = 1D. Then, ∪̃A∈A f−1
pu (A) = 1B. Since fpu is soft

strongly continuous, then
{

f−1
pu (A) : A ∈ A

}
⊆ CO(T, π, B) ⊆ π. Since (T, π, B) is soft al-

most compact, then there exists a finite subfamilyA1 ⊆ A such that ∪̃A∈A1 Clπ
(

f−1
pu (A)

)
=

∪̃A∈A1 f−1
pu (A) = f−1

pu
(
∪̃A∈A1 A

)
= 1B and thus, fpu

(
f−1
pu
(
∪̃A∈A1 A

))
= fpu(1B). Since

fpu is surjective, then fpu

(
f−1
pu
(
∪̃A∈A1 A

))
= ∪̃A∈A1 A and fpu(1B) = 1D. Therefore,

∪̃A∈A1 A = 1D. It follows that (S, υ, D) is soft compact.
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Theorem 30. Let fpu : (T, π, B) −→ (S, υ, D) be surjective and soft strongly continuous such
that (T, π, B) is soft almost Lindelof. Then, (S, υ, D) is soft Lindelof.

Proof. LetA ⊆υ such that ∪̃A∈AA = 1D. Then, ∪̃A∈A f−1
pu (A) = 1B. Since fpu is soft strongly

continuous, then
{

f−1
pu (A) : A ∈ A

}
⊆ CO(T, π, B) ⊆ π. Since (T, π, B) is soft almost Lin-

delof, then there exists a countable subfamily A1 ⊆ A such that ∪̃A∈A1 Clπ
(

f−1
pu (A)

)
=

∪̃A∈A1 f−1
pu (A) = f−1

pu
(
∪̃A∈A1 A

)
= 1B and thus, fpu

(
f−1
pu
(
∪̃A∈A1 A

))
= fpu(1B). Since fpu is

surjective, then fpu

(
f−1
pu
(
∪̃A∈A1 A

))
= ∪̃A∈A1 A and fpu(1B) = 1D. Therefore, ∪̃A∈A1 A = 1D.

It follows that (S, υ, D) is soft Lindelof.

Theorem 31. Let fpu : (T, π, B) −→ (S, υ, D) be surjective, soft strongly continuous, and soft
open mapping such that f−1

pu (ds) is a soft compact subset of (T, π, B) for each ds ∈ SP(S, D). If
(T, π, B) is soft almost paracompact, then (S, υ, D) is soft metacompact.

Proof. Let H ⊆υ such that ∪̃H∈HH = 1D. Since fpu is soft strongly continuous, then{
f−1
pu (H) : H ∈ H

}
⊆ CO(T, π, B) ⊆ π. Since (T, π, B) is soft almost paracompact and

∪̃H∈H f−1
pu (H) = f−1

pu
(
∪̃H∈HH

)
= f−1

pu (1D) = 1B, then there exists a collection K ⊆π such
that K is soft locally finite, ∪̃K∈KClπ(K) = 1B, and for every K ∈ K there exists H ∈ H
such that K⊆̃ f−1

pu (H). LetM =
{

fpu(K) : K ∈ K
}

.

Claim. 1.M⊆υ.
2. ∪̃M∈MM = 1D.
3. For each M ∈ M, there exists H ∈ H such that M⊆̃H.
4.M is soft point finite.

Proof of Claim. 1. Since K ⊆π and fpu is soft open, thenM =
{

fpu(K) : K ∈ K
}
⊆ υ.

2. Since fpu is surjective, then fpu(1B) = 1D. Since fpu is soft strongly continu-
ous, then for every K ∈ K, fpu(K) = fpu(Clπ(K)). Thus, ∪̃M∈MM = ∪̃K∈K fpu(K) =
∪̃K∈K fpu(Clπ(K)) = fpu

(
∪̃K∈KClπ(K)

)
= fpu(1B) = 1D.

3. Let M ∈ M. Then, there exists K ∈ K such that fpu(K) = M. Choose H ∈ H such

that K⊆̃ f−1
pu (H). So, M = fpu(K)⊆̃ fpu

(
f−1
pu (H)

)
⊆̃H.

4. Let ds ∈ SP(S, D). Since K is soft locally finite, then for every bt∈̃ f−1
pu (ds),

there exists Gbt ∈ π such that bt∈̃Gbt and the collection
{

K ∈ K : K∩̃Gbt 6= 0B
}

is fi-
nite. For each bt∈̃ f−1

pu (ds), put Sbt =
{

K ∈ K : K∩̃Gbt 6= 0B
}

. Since f−1
pu (ds) is a soft

compact subset of (T, π, B) and f−1
pu (ds)⊆̃∪̃bt∈̃ f−1

pu (ds)
Gbt , then there exists a finite subset

A ⊆
{

bt : bt∈̃ f−1
pu (ds)

}
such that f−1

pu (ds)⊆̃∪̃bt∈AGbt . If ds∈̃ fpu(R) for some R ∈ K, then

there exists wr∈̃R∩̃ f−1
pu (ds). Since wr∈̃ f−1

pu (ds)⊆̃∪̃bt∈AGbt , then there exists bt ∈ A such that
wr∈̃Gbt . Thus, we have wr∈̃R∩̃Gbt and hence R ∈ Sbt . Therefore,

{
K ∈ K : ds∈̃ fpu(K)

}
⊆{

K ∈ K : R ∈ Sbt , bt ∈ A
}

. Since
{

K ∈ K : R ∈ Sbt , bt ∈ A
}

is finite, then{
K ∈ K : ds∈̃ fpu(K)

}
is finite. Hence,M is soft point finite.

Therefore, by the above Claim, (S, υ, D) is soft metacompact.

Theorem 32. Let fpu : (T, π, B) −→ (S, υ, D) be surjective, soft strongly continuous, soft closed,
and soft almost open mapping such that f−1

pu (ds) is a soft compact subset of (T, π, B) for each
ds ∈ SP(S, D). If (T, π, B) is soft nearly paracompact, then (S, υ, D) is soft paracompact.

Proof. Let H ⊆υ such that ∪̃H∈HH = 1D. Since fpu is soft strongly continuous, then{
f−1
pu (H) : H ∈ H

}
⊆ CO(T, π, B) ⊆ π. Since (T, π, B) is soft nearly paracompact and

∪̃H∈H f−1
pu (H) = f−1

pu
(
∪̃H∈HH

)
= f−1

pu (1D) = 1B, then there exists a collection K ⊆π such
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that K is soft locally finite, ∪̃K∈K Intπ(Clπ(K)) = 1B, and for every K ∈ K there exists
H ∈ H such that K⊆̃ f−1

pu (H). LetM =
{

Intυ( fpu(K)) : K ∈ K
}

. Then,M⊆υ.

Claim. 1. ∪̃M∈MM = 1D.
2. For each M ∈ M, there exists H ∈ H such that K⊆̃H.
3.M is soft locally finite.

Proof of Claim. 1. Since fpu is surjective, then fpu(1B) = 1D. Since K ⊆π, then for every
K ∈ K, Intπ(Clπ(K)) ∈ RO (T, π, B). Since fpu is soft almost open, then for every K ∈ K,
fpu(Intπ(Clπ(K))) ∈ υ. Since fpu is soft strongly continuous, then for every K ∈ K,
fpu(Intπ(Clπ(K)))⊆̃ fpu(Clπ(K)) = fpu(K) and thus, fpu(Intπ(Clπ(K)))⊆̃Intυ( fpu(K)).
Therefore,

1D = fpu(1B)
= fpu

(
∪̃k∈K(Intπ(Clπ(K))

)
= ∪̃k∈K fpu(Intπ(Clπ(K)))
⊆̃ ∪̃k∈K Intυ( fpu(K))
= ∪̃M∈MM.

2. Let M ∈ M. Then, there exists K ∈ K such that Intπ

(
fpu(K)

)
= M. Choose H ∈ H

such that K⊆̃ f−1
pu (H). Thus, M = Intπ

(
fpu(K)

)
⊆̃ fpu(K)⊆̃ fpu

(
f−1
pu (H)

)
⊆̃H.

3. Let ds ∈ SP(S, D). Since K is soft locally finite, then for every bt∈̃ f−1
pu (ds), there

exists Gbt ∈ π such that bt∈̃Gbt and the collection
{

K ∈ K : K∩̃Gbt 6= 0B
}

is finite. For each
bt∈̃ f−1

pu (ds), put Sbt =
{

K ∈ K : K∩̃Gbt 6= 0B
}

. Since f−1
pu (ds) is a soft compact subset of

(T, π, B) and f−1
pu (ds)⊆̃∪̃bt∈̃ f−1

pu (ds)
Gbt , then there exists a finite subsetA ⊆

{
bt : bt∈̃ f−1

pu (ds)
}

such that f−1
pu (ds)⊆̃∪̃bt∈AGbt . Let G = ∪̃bt∈AGbt . Then, the collection

{
K ∈ K : K∩̃G 6= 0B

}
is finite. Let S = 1D − fpu(1D − G). Since fpu is soft closed, then fpu(1D − G) ∈ υc. Thus,
we have and ds∈̃S ∈ υ and the collection

{
M ∈ M : M∩̃S 6= 0D

}
is finite. Hence,M is

soft locally finite.
Therefore, by the above Claim, (S, υ, D) is soft paracompact.

4. Conclusions

Numerous facets of our daily existence are uncertain. The soft set theory is one of
the ideas put forth to deal with uncertainty. This study focuses on soft topology, a novel
mathematical framework developed by topologists using soft sets.

In this paper, soft complete continuity and soft strong continuity as stronger forms
of soft continuity are introduced. Several characterizations and relationships related to
them are given. Moreover, several soft mapping theorems regarding soft compactness, soft
Lindelofness, soft connectedness, soft regularity, soft normality, soft almost regularity, soft
mild normality, soft almost compactness, soft almost Lindelofness, soft near compactness,
soft near Lindelofness, soft paracompactness, soft near paracompactness, soft almost
paracompactness, and soft metacompactness are obtained. The link between our novel
concepts in soft topological spaces and their topologically corresponding notions have been
investigated.

The following topics could be considered in future studies: (1) investigating soft
metacompactness; (2) investigating soft C-C spaces.
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