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Abstract: The spread of COVID-19 started in late December 2019 and is still ongoing. Many countries
around the world have faced an outbreak of COVID-19, including Thailand, which must keep an
eye on the spread and find a way to deal with this extreme outbreak. Of course, we are unable to
determine the number of people who will contract this disease in the future. Therefore, if there is
a tool that helps to predict the outbreak and the number of people infected, it will be able to find
preventive measures in time. This paper aims to develop a mathematical model suitable for the
lifestyle of the Thai population facing the COVID-19 situation. It has been established that after close
contact with an infected person, a group of individuals will be quarantined and non-quarantined.
If they contract COVID-19, they will enter the incubation period of the infection. The incubation
period is divided into the quarantine class and the exposed class. Afterwards, both classes will move
to the hospitalized infected class and the infected class, wherein the infected class is able to spread
the disease to the surrounding environment. This study describes both classes in the SQEIRP model
based on the population segmentation that was previously discussed. After that, the positive and
bounded solutions of the model are examined, and we consider the equilibrium point, as well as the
global stability of the disease-free point according to the Castillo-Chavez method. The SQEIRP model
is then numerically analyzed using MATLAB software version R2022a. The cumulative percentage of
hospitalized and non-hospitalized infections after 7 days after the commencement of the infection
was determined to be 11 and 34 percent of the entire population, respectively. The Next-Generation
Matrix approach was used to calculate the Basic Reproduction Numbers (R0). The SQEIRP model’s
R0 was 3.78, indicating that one infected individual can result in approximately three additional
infections. The results of this SQEIRP model provide a preliminary guide to identifying trends in
population dynamics in each class.

Keywords: coronavirus disease 2019 (COVID-19); SQEIRP epidemic model; reproduction numbers (R0)
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1. Introduction

Humans are social animals. The existence of human society may lead to the emergence
of contagions [1]. Some contagions can cause epidemics that spread rapidly among many
people in the community at the same time, such as Spanish Flu, SARS, H7N9, Ebola, Zika,
MERS, and others [2].

In December 2019, the coronavirus disease 2019 (COVID-19) was discovered. COVID-
19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previ-
ously provisionally known as the 2019 novel coronavirus (2019-nCoV) [3–6]. Subsequently,
this virus spread rapidly from human to human and spread to many countries around the
world, causing the World Health Organization (WHO) to declare a global health emergency
in late January 2020 [7–9] due to the rapid increase in the number of infected people. Conse-
quently, the number of medical personnel, as well as the amount of medication and medical
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equipment, were insufficient to cope with the increasing number of infected people [10,11].
Many countries are interested in the spread of this virus and are urgently trying to find
ways to support the growing number of patients to prevent increased mortality. According
to the WHO report on 8 December 2022, the total number of cases worldwide has reached
642,924,560 and there have been over 6,625,029 deaths. In Thailand, there were 4,711,528
cases in total, with 33,285 deaths [12]. It is anticipated that the number of people infected
and deaths will undoubtedly increase in the future if we are unable to control this virus.

Transmission of SARS-CoV-2 occurs when infected people cough and sneeze. After
that, contamination of the virus with these aerosols can cause infection in the air or envi-
ronment around the infected individual [13–15]. For this reason, if an infected person has
contact with or lives with others, the infection will easily spread to others. Thus, there have
been many SARS-CoV-2 infections. The diagnosis of COVID-19 requires either laboratory
testing or the use of specialized detection equipment [6,16–18]. Typical symptoms of people
who contract COVID-19 include fever, coughing, sneezing, shortness of breath, sore throat,
loss of sense of smell or taste, as well as complications such as pneumonia. Moreover, the
virus can affect the respiratory system of the infected person as well [19]. The incubation
period after this virus enters a patient’s body is approximately 2 to 14 days after infection,
but there is an incubation period of 5 to 6 days in most cases [9,20]. As I mentioned earlier,
the incubation period of COVID-19 and specialized diagnostic tests is quite long. Therefore,
it is difficult to detect the infected person in a timely manner.

The spread of the virus not only affects the medical field. Other areas, such as trans-
portation, industries, public health, consumption, agriculture, pandemic vulnerability
index (PVI), and other fields are also affected [21]. Many countries around the world
have been affected in this way. The outbreak illustrates the urgent need for public health
response and preparedness to help mitigate the impact of COVID-19. In each country, it is
imperative to assess the situation and find appropriate ways to control the outbreak in a
timely manner. However, it is difficult to predict future situations in order to mitigate their
potential impact. As such, if there is a tool that helps to assess the situation in advance, it
will be possible to find ways to prevent the outbreak in a timely manner.

For this reason, one of the interesting tools for assessing the epidemic situation is a
mathematical model. Mathematical models are applications of mathematics to describe
natural problems such as biology, chemistry, environmental engineering, environmental
ecology, physics, social sciences, statistics, wildlife management statistics, etc. In this
epidemic situation, mathematical models are tools for predicting future epidemics. The
result will guide the development of strategies for the prevention and elimination of
epidemics [22,23]. For instance, what is the trend of increasing the number of infected
people, so that each country finds a suitable way to prevent the number of infected people,
leading to a decrease in the number of deaths? Therefore, the model is valuable for assessing
the epidemic situation, providing guidelines for finding appropriate measures to control
the epidemic. Mathematical models are abstract structures that use mathematical concepts
to describe and develop behavioral systems [6,22]. The mathematical tools convert real
situations into problems that mimic real situations, which solve problems mathematically
and then interpret them to predict events in real situations [24–26].

Therefore, this paper aims to develop a mathematical model for the COVID-19 epi-
demic in Thailand. This model is based on the SEIR epidemic model, together with the
quarantined population and the pathogens that are transmitted from the infected popula-
tion to the environment. The model is illustrated in the Materials and Methods section.

2. Materials and Methods

The aim of this paper is to develop mathematical models for the COVID-19 epidemic
in Thailand. The methodology is as follows. First, we study the epidemic of COVID-19 and
the epidemic model. Next, we develop a mathematical model for the COVID-19 epidemic.
After that, we perform a stability analysis to verify the stability of the model and find the
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basic reproduction number (R0) to determine the degree of infection. Finally, we consider
finding solutions from the model to assess the COVID-19 outbreak.

2.1. Model Development for COVID-19

Several models have been used to study the COVID-19 epidemic such as SIR, SIRS,
SEIR, and others. This research studies the spread of COVID-19 by dividing the human
population into six main groups: susceptible class (S), quarantine class (Q), exposed class
(E), hospitalized infected class (Ih), infected class (I), and recovered class (R), in conjunction
with pathogens (P) in the environment spread by an infected class as shown in Figure 1.
The model name is SQEIRP, and the model was presented in Equation (1) and Equations
(3)–(8). The idea for this model comes from Samuel Mwalili and Ebrahem A. Algehyne,
who studied the spread of COVID-19 using the SEIRP model in 2020 and SQIR model in
2021, respectively.

Figure 1. The population class of SQEIRP model used to determine the COVID-19 epidemic.

In the first section, consider the susceptible class as representing a healthy or disease-
free population. The susceptible class is transferred to the incubation period after exposure
to an infected population or to pathogens transmitted from an infected population to the
environment. Another inevitable factor is that population dynamics in the susceptible class
depend on the natural birth and death of the population. The dynamic of the susceptible
class is shown in Equation (1).

dS
dt

= A + mR− σαSP
1 + ω1P

− σβS(I + Ih)

1 + ω2(I + Ih)
− (1− σ)αSP

1 + ω1P
− (1− σ)βS(I + Ih)

1 + ω2(I + Ih)
− dS (1)

dS
dt

= A + mR− αSP
1 + ω1P

− βS(I + Ih)

1 + ω2(I + Ih)
− dS (2)

Second, consider the incubation period population. The population during the incu-
bation period is divided into two classes: quarantine and exposed classes. Both classes
represent the populations in quarantine and not in quarantine during the incubation pe-
riod, respectively. After that, the quarantine and exposed classes are transformed into the
hospitalized infected and infected classes, respectively, but if symptoms are severe, some
exposure classes may require hospitalization. In addition, consider that the population of
quarantine and exposed classes has decreased due to natural mortality. The dynamic of the
quarantine and exposed class are shown in Equations (3) and (4), respectively.

dQ
dt

=
σαSP

1 + ω1P
+

σβS(I + Ih)

1 + ω2(I + Ih)
− γ1Q− dQ (3)

dE
dt

=
(1− σ)αSP

1 + ω1P
+

(1− σ)βS(I + Ih)

1 + ω2(I + Ih)
− θγ2E− (1− θ)γ2E− dE (4)
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Third, consider the dynamics of the infected population, comprising the hospitalized
infected and the infected classes. The increase in both classes as a result of the incubation
period converts to the infected class, and then they are converted to the recovered class.
Population dynamics in the hospitalized infected and infected classes are also associated
with natural mortality and mortality caused by COVID-19. In addition, the infected class
can also spread the pathogens to the environment. The dynamic of the hospitalized infected
and the infected classes are shown in Equations (5) and (6), respectively.

dIh
dt

= γ1Q + (1− θ)γ2E− η1 Ih − (d + δ)Ih (5)

dI
dt

= θγ2E− η2 I − (d + δ)I (6)

Next, the part of the recovered class depends on the recovery of the population in the
infected class. In this population, if there is a loss of immunity, it becomes the susceptible
class. After recovering from COVID-19, permanent immunity is not possible. The dynamic
of the infected class is shown in Equation (7).

dR
dt

= η1 Ih + η2 I −mR− dR (7)

Finally, the part of the pathogens class determines the increase in pathogens in the
environment caused by coughing or sneezing of the infected class. The pathogens also
have a natural death rate. The dynamic of the pathogens class is shown in Equation (8).

dP
dt

= µI − dpP (8)

Here, this research considers the total human population as N = S + Q + E + Ih + I +
R and the number of pathogens present in the environment as P. The initial conditions are
as follows: S(0) > 0, Q(0) > 0, E(0) > 0, Ih(0) > 0, I(0) > 0, R(0) > 0 and P(0) > 0. An
overview of the population for the spread of COVID-19 is shown in Figure 2.

Figure 2. The SQEIRP mathematical model for the COVID-19 epidemic.

The parameters and parameter descriptions of the SQEIRP model are shown in Table 1.
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Table 1. The value of the parameter of the SQEIRP model.

Parameter Description Symbol Value Source

Birth rate of the human population A 0.000028 days−1 [27]

Natural human death rate d 0.000021 days−1 [27]

Probability of the population of σ 0.0397 [28]
the susceptible class that has been quarantined

Probability of the exposed population θ 0.8 [28]
changing to the infected population

Rate of transmission from susceptible class α 0.00414 days−1 [23]
to exposed class due to the pathogens

Rate of transmission from susceptible class β 0.333333 days−1 [Assume]
to exposed class due to the infected

Proportion of interaction with an infected environment ω1 0.1 [23]

Proportion of interaction with an infected individual ω2 0.1 [23]

Rate of transmission from quarantine class γ1 1/5.2 days−1 [28]
to hospitalized infected class

Rate of transmission from exposed class to infected class γ2 1/5.2 days−1 [28]

Rate of recovery of the hospitalized infected population η1 1/10 days−1 [28]

Rate of recovery of the infected population η2 1/8 days−1 [28]

Death rate due to the coronavirus δ 0.00011 days−1 [28]

Rate of virus spread to environment by infected class µ 0.1 days−1 [23]

Natural death rate of pathogens in the environment dp 0.1724 days−1 [23]

Rate of recovered population transferring into a
susceptible class m 1/90 days−1 [Assume]

2.2. The Preconditions and Boundedness of the SQEIRP Model Solutions

The consideration of positive solutions and the bounded solutions of SQEIRP are
considered in Theorems 1 and 2, respectively.

Theorem 1. The solutions of the mathematical model SQEIRP are positive for all t > 0.

Proof of Theorem 1. Let S(0) = S0 > 0, Q(0) = Q0 > 0, E(0) = E0 > 0, Ih(0) = Ih0 > 0,
I(0) = I0 > 0, R(0) = R0 > 0 and P(0) = P0 > 0. Considering Equation (2), we get

dS
dt
≥ − αSP

1 + ω1P
− βS(I + Ih)

1 + ω2(I + Ih)
− dS,

dS
dt
≥
(
− αP

1 + ω1P
− β(I + Ih)

1 + ω2(I + Ih)
− d
)

S,

1
S

dS ≥
(
− αP

1 + ω1P
− β(I + Ih)

1 + ω2(I + Ih)
− d
)

dt,

∫ 1
S

dS ≥
∫ (
− αP

1 + ω1P
− β(I + Ih)

1 + ω2(I + Ih)

)
dt−

∫
(d)dt, (9)

ln |S| ≥ −
(

αP
1 + ω1P

+
β(I + Ih)

1 + ω2(I + Ih)

)
t− dt + C,

S(t) ≥ e
−
(

αP
1+ω1P +

β(I+Ih)
1+ω2(I+Ih)

)
t−dt+C

,
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S(t) ≥ S0e
−
(

αP
1+ω1P +

β(I+Ih)
1+ω2(I+Ih)

)
t−dt

> 0.

As for Q(t), E(t), Ih(t), I(t), R(t) and P(t), considering Equations (3)–(8), respectively,
results in the following

Q(t) ≥ Q0e−(γ1+d)t > 0, (10)

E(t) ≥ E0e−(γ2+d)t > 0, (11)

Ih(t) ≥ Ih0 e−(η1+d+δ)t > 0, (12)

I(t) ≥ I0e−(η2+d+δ)t > 0, (13)

R(t) ≥ R0e−(m+d)t > 0, (14)

and
P(t) ≥ P0e−dpt > 0. (15)

Then, S(t), Q(t), E(t), Ih(t), I(t), R(t) and P(t) of the SQEIRP mathematical model
are non-negative for all t > 0.

Theorem 2. The solution for the SQEIRP model is within the boundary

Ω =

{
(S, Q, E, Ih, I, R, P) ∈ R7 : 0 ≤ N(t) ≤ A

d
, 0 ≤ P(t) ≤ µA

ddp

}
.

Proof of Theorem 2. For the human population, let N(t) = S(t) + Q(t) + E(t) + Ih(t) +
I(t) + R(t) and N(0) = N0.

Consider dN
dt

=
dS
dt

+
dQ
dt

+
dE
dt

+
dIh
dt

+
dI
dt

+
dR
dt

,

dN
dt

= A− dS− dQ− dE− (d + δ)Ih − (d + δ)I − dR,

dN
dt

= A− d(S + Q + E + Ih + I + R)− δ(Ih + I), (16)

dN
dt

= A− dN − δ(Ih + I); N = S + Q + E + Ih + I + R,

dN
dt
≤ A− dN.

Therefore,
N(t) ≤ A

d
(1− e−dt) + N0e−dt,

and get,

lim sup
t→∞

N(t) ≤ lim sup
t→∞

(
A
d
(1− e−dt) + N0e−dt

)
=

A
d

.

For the pathogen population P(t), let P(0) = P0.
Consider

dP
dt

= µI − dpP,

dP
dt
≤ µ

A
d
− dpP.

Therefore,

P(t) ≤ µA
dpd

(1− e−dpt) + P0e−dpt,

and get,

lim sup
t→∞

P(t) ≤ lim sup
t→∞

(
µA
dpd

(1− e−dpt) + P0e−dpt
)
=

µA
dpd

.
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3. Stability Analysis of Development for COVID-19

This research presents the SQEIRP model for the COVID-19 epidemic, as shown
in Equation (1) and Equation (3) through (8). This research examines the behavior of
this model using stability analysis. First, we find the equilibrium point of the system
of equations of the developed COVID-19 model. Then, the stability by the roots of the
characteristic equation is determined by considering |J − λI| = 0.

3.1. Equilibrium Point of the SQEIRP Model

The equilibrium point of the SQEIRP model for the COVID-19 epidemic can be found
by assigning the derivative of the model equal to 0.

3.1.1. Disease-Free Equilibrium Point of the SQEIRP Model

The disease-free point of the SQEIRP model is

X0 = (S∗, Q∗, E∗, Ih
∗, I∗, R∗, P∗) =

(
A
d

, 0, 0, 0, 0, 0, 0
)

.

3.1.2. Epidemic Equilibrium Point of the SQEIRP Model

The epidemic equilibrium point of the SQEIRP model is

X∗ = (S∗, Q∗, E∗, Ih
∗, I∗, R∗, P∗),

where

S∗ =
A
d
+

m
d

R∗ − γ1 + d
d

Q∗ − γ2 + d
d

E∗, Q∗ =
η1 + d + δ

γ1
Ih
∗ − (1− θ)γ2

γ1
E∗, E∗ =

η2 + d + δ

θγ2
I∗,

Ih
∗ =

A− dN∗

δ
− I∗, I∗ =

−A2 +
√

A2
2 − 4A1 A3

2A1
, R∗ =

η1 Ih
∗ + η2 I∗

m + d
, P∗ =

µI∗

dp
,

and
A1 = ((1− σ)αµ + y1ω1µ)(−y2 + y3)− y4ω1µ,

A2 = ((1− σ)αµ + y1ω1µ)

(
A + y2

(
A− dN∗

δ

))
− y1dp(−y2 + y3)− y4dp,

A3 = y1dp

(
A + y2

(
A− dN∗

δ

))
,

with

y1 =
(1− σ)β(A− dN∗)
δ + ω2(A− dN∗)

, y2 =
mη1

m + d
− (γ1 + d)(η1 + d + δ)

γ1
,

y3 =
mη2

m + d
+

η2 + d + δ

θγ2

(
(1− θ)γ2(γ1 + d)

γ1
− (γ2 + d)

)
, y4 =

d(γ2 + d)(η2 + d + δ)

θγ2
.

3.2. Basic Reproduction Numbers (R0) of the SQEIRP Model

The value of R0 is calculated from the next-generation matrix (G) method, as follows.
First, consider

dX
dt

= Fi(X)−Vi(X),

where X = [Q, E, Ih, I, P]t, Fi(X) is the matrix of the rate of appearance of new infections in
compartment i and Vi(X) is the matrix of rate of other transitions between compartment i
and other infected compartments. Thus, we get
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Fi(X) =



σαSP
1+ω1P + σβS(I+Ih)

1+ω2(I+Ih)
(1−σ)αSP

1+ω1P + (1−σ)βS(I+Ih)
1+ω2(I+Ih)

0
0
0

, Vi(X) =


γ1Q + dQ

θγ2E + (1− θ)γ2E + dE
η1 Ih + (d + δ)Ih − γ1Q− (1− θ)γ2E

η2 I + (d + δ)I − θγ2E
−µI + dpP

.

Next, the Jacobian of Fi(X) at the disease-free equilibrium is

F =


0 0 σβA

d
σβA

d
σαA

d
0 0 (1−σ)βA

d
(1−σ)βA

d
(1−σ)αA

d
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and the Jacobian of Vi(X) at the disease-free equilibrium is

V =


γ1 + d 0 0 0 0

0 γ2 + d 0 0 0
−γ1 −(1− θ)γ2 η1 + d + δ 0 0

0 −θγ2 0 η2 + d + δ 0
0 0 0 −µ dp

.

Then, the next-generation matrix is

FV−1 =



σβAγ1
dk1k3

σβA(1−θ)γ2
dk2k3

+ σβAθγ2
dk2k4

+ σαAθγ2µ
dk2k4dp

σβA
dk3

σβA
dk4

+ σαAµ
dk4dp

σαA
ddp

(1−σ)βAγ1
dk1k3

(1−σ)βA(1−θ)γ2
dk2k3

+ (1−σ)βAθγ2
dk2k4

+ (1−σ)αAθγ2µ
dk2k4dp

(1−σ)βA
dk3

(1−σ)βA
dk4

+ (1−σ)αAµ
dk4dp

(1−σ)αA
ddp

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

with k1 = γ1 + d, k2 = γ2 + d, k3 = η1 + d + δ and k4 = η2 + d + δ.
Therefore, the basic reproductive number given by the spectral radius of the matrix is

R0 = ρ
(

FV−1
)
=

(1− σ)βA(1− θ)γ2

dk2k3
+

(1− σ)βAθγ2

dk2k4
+

(1− σ)αAθγ2µ

dk2k4dp
+

σβAγ1

dk1k3
.

Global Stability Analysis of Disease-free Equilibrium Point of the SQEIRP Model When
R0 < 1

Next, we consider the global stability of the disease-free equilibrium point of the
SQEIRP model with the method of Castillo-Chavez et al. [29]. First, the model is divided
into two parts, as shown in Equations (17) and (18).

dY1

dt
= G(Y1, Y2) (17)

dY2

dt
= H(Y1, Y2) (18)

where Y1 represents the uninfected populations; Y1 = (S, R) ∈ R2,and Y2 represent the
infected populations; Y2 = (Q, E, Ih, I, P) ∈ R5.

Next, the global stability of the disease-free equilibrium was determined according to
the following conditions, with the disease-free equilibrium X0 =

(
Y1

0, 0
)

.



Axioms 2023, 12, 75 9 of 14

(i) For dY1
dt = G(Y1, 0), Y1

0 is globally asymptotically stable.
(ii) H(Y1, Y2) = BY2 − Ĥ(Y1, Y2) where hatH(Y1, Y2) > 0 for all (Y1, Y2) ∈ Ω.

Theorem 3. The disease-free equilibrium point (X0) of the SQEIRP model is globally asymptoti-
cally stable.

Proof of Theorem 3. Let Y1 = (S, R) ∈ R2, Y2 = (Q, E, Ih, I, P) ∈ R5 and X0 =
(

Y1
0, 0
)

;

Y1
0 =

(
A
d , 0
)

, and get

dY1

dt
= G(Y1, Y2) =

[
A + mR− αSP

1+ω1P −
βS(I+Ih)

1+ω2(I+Ih)
− dS

η1 Ih + η2 I −mR− dR

]
, (19)

dY2

dt
= H(Y1, Y2) =



σαSP
1+ω1P + σβS(I+Ih)

1+ω2(I+Ih)
− γ1Q− dQ

(1−σ)αSP
1+ω1P + (1−σ)βS(I+Ih)

1+ω2(I+Ih)
− θγ2E− dE

γ1Q + (1− θ)γ2E− η1 Ih − (d + δ)Ih
θγ2E− η2 I − (d + δ)I

µI − dpP

. (20)

First, consider dY1
dt = G(Y1, 0) by defining S = S0, R = R0 and G(Y1, 0) = 0, and get

G(Y1, 0) =
[

A + mR− dS
−mR− dR

]
= 0. (21)

According to Equation (21), then Y1 → Y1
0 as t → ∞. So Y1 = Y1

0 is globally
asymptotically stable.

Next, consider H(Y1, Y2) = BY2 − Ĥ(Y1, Y2) by defining

B =


−γ1 − d 0 σβA

d
σβA

d
σαA

d
0 −γ2 − d (1−σ)βA

d
(1−σ)βA

d
(1−σ)αA

d
γ1 (1− θ)γ2 −η1 − d− δ 0 0
0 θγ2 0 −η2 − d− δ 0
0 0 0 µ −dp

,

where B is an M-matrix (the off-diagonal elements are non-negative) and

Ĥ(Y1, Y2) =



σβA(Ih+I)
d + σαAP

d − σαSP
1+ω1P −

σβS(I+Ih)
1+ω2(I+Ih)

(1−σ)βA(Ih+I)
d + (1−σ)αAP

d − (1−σ)αSP
1+ω1P −

(1−σ)βS(I+Ih)
1+ω2(I+Ih)

0
0
0

, (22)

and get
σβA(Ih + I)

d
+

σαAP
d

>
σαSP

1 + ω1P
+

σβS(I + Ih)

1 + ω2(I + Ih)
, (23)

and
(1− σ)βA(Ih + I)

d
+

(1− σ)αAP
d

>
(1− σ)αSP

1 + ω1P
+

(1− σ)βS(I + Ih)

1 + ω2(I + Ih)
. (24)

This implies that Ĥ(Y1, Y2) ≥ 0 for all (Y1, Y2) ∈ Ω.
Therefore, by proving the above two conditions, the disease-free equilibrium point(

X0) of the SQEIRP model is globally asymptotically stable.
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4. Results

The development of a mathematical model for the outbreak of COVID-19 in Thailand
was achieved by dividing the population into two groups, such as the human population
(N) and the pathogen population (P) transmitted from infected people to the environment.
This article considers the model of the COVID-19 epidemic in Thailand, dividing the
incubation period and infected population into two lines. The first line represents the
quarantined population. This population has contracted the virus. After division, the
population in the incubation period is quarantined in hospitals or government-provided
residences and eventually infected. The second line represents the mild or asymptomatic
population. This population is incubated but not quarantined. Some infected people are
not admitted to hospitals or government-provided residences, so these people can spread
the disease into the environment. The non-quarantined population will be hospitalized
after they present severe symptoms.

The parameter values and the source parameters of this model are shown in Table 1. The
natural birth and death rates of the population in Thailand in 2021 are 10.25 per 1000 people
and 7.66 per 1000 people, respectively, with A = 10.25

356×1000 days−1 and d = 7.66
356×1000 days−1 [27].

In addition, those returning to a susceptible class can be re-infected, considering the loss of
immunity after recovery of approximately 3 months or 90 days [30]. Therefore, the rate of the
recovered population converting to the susceptible class is equal to 1/90 days−1. The model’s
hospital infection estimate used the parameters shown in Table 1 compared with actual data
in Thailand in January 2022, where the COVID-19 variant omicron outbreak was detected [31].
Figure 3 shows the model solution based on actual data from 1 January 2022 to 17 January 2022.
Based on this time period, the model’s solution compared to the actual data shows that the
trend of the graph is in the same direction.

Figure 3. The simulation of the hospitalized infected population compared to the actual data from 1
January 2022 to 17 January 2022.

4.1. The Numerical Analysis of the SQEIRP Model

The numerical analysis of the SQEIRP model using MATLAB software version R2022a
with the initial values of S(0), Q(0), E(0), Ih(0), I(0), R(0), and P(0) are equal to 66,170,000;
12; 6,331; 0; 0; 0; and 500, respectively [23,27,32]. Therefore, the numerical analysis of
the SQEIRP model is shown as follows. Figure 4 shows an overview of the dynamics of
the human population and the pathogen population from 0–90 days. The dynamics of
the human population infected with the virus but during the incubation period and the
dynamics of the infected population are shown in Figures 5 and 6, respectively.
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Figure 4. The simulation of human and pathogen population from 0 to 90 days.

The dynamic of the susceptible population declines rapidly over a period of 0–3 days,
with the initial population set at 66,170,000. This decline in population shifts to populations
that are in the incubation period after exposure to the virus. The incubation period popula-
tion dynamics are divided into two types: quarantine class, and exposed class, as shown in
Figure 5a,b respectively. The dynamics of the quarantine and exposed class increase rapidly
over the period of 0–1 day. The maximum population of the quarantine class is approximately
2,200,000, which is less than the maximum population of the exposed class of approximately
53,000,000. After day 1, the dynamics of both populations decline rapidly.

(a) (b)
Figure 5. The simulated of quarantine (a) and exposed population (b) from 0 to 90 days.

The dynamics of the hospitalized infected and infected population are related to
the dynamics of the quarantine and exposed population, respectively. As a result of
the incubation period population changes to the infected population, the dynamics of
hospitalized infected population and infected population increase rapidly over 0–7 days,
with the peak population estimated at 7,500,000 and 22,700,000, respectively. After that, it
declines rapidly. The dynamics of the hospitalized infected and infected population are
shown in Figure 6a,b respectively.
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(a) (b)
Figure 6. The simulated of hospitalized infected (a) and infected population (b) from 0 to 90 days.

The final part of the human population dynamics is expressed in the recovered popu-
lation dynamics, increasing gradually over 0–30 days, and after that, it begins to stabilize.
Part of the pathogens population in the environment is caused by the infectious population.
The initial population of pathogens was set at 500. At 0–12 days, the number of pathogens
increases sharply and then decreases. The dynamics of the recovered population and the
pathogen population are shown in Figure 4.

4.2. The Value of Basic Reproduction Numbers (R0)

The dynamic simulation of each population is shown in Figure 4. This paper considers
the basic reproduction numbers (R0) to determine how many infections will originate from
one infected person. Where R0 is greater than 1, it means that one infected person can
increase the number of infected people to more than one, which could cause an outbreak.
Similarly, a value of R0 less than 1 would not result in an outbreak. In this work, the R0
values of the SQEIRP model were considered, together with the parameters assigned to be
as relevant as possible for the outbreak in Thailand. The R0 value of the SQEIRP model is
3.78, meaning that one patient can lead to approximately three additional infections.

5. Discussions

The concept of pathogens being transmitted to the environment around infected
people is supported by Samuel Mwalili’s research. The concept of quarantined and non-
quarantined population segments is supported by Ebrahem A. Algehyne’s research, as
well as the COVID-19 situation report provided by the Ministry of Health in Thailand. The
parameters used in the model to estimate the epidemic situation in Thailand are presented
in Table 1, which refers to the research of Jankhonkhan et al., who studied the spread of
COVID-19 in Thailand from 1 November 2020 to 19 August 2021. The parameters also
related to the pathogen research by Samuel Mwalili, as well as the report on the COVID-19
epidemic in Thailand. However, this article considers adjusting parameters that correspond
to an increase in the number of infected people based on the outbreak of the COVID-19
variant omicron that began to spread in Thailand in early January 2022. Here, we consider
the tendency to change the solution of patients admitted to the hospitalization compared to
the actual data from 1 January 2022, to 17 January 2022.

The solution of this model only applies to the beginning of the outbreak of the COVID-
19 variant omicron, during which time people were very careful. Thus, there was strict
prevention of the disease. As a result, the number of infected people was low. Afterward,
people reduced epidemic prevention, and new COVID-19 variants occurred; as a result, the
number of infected people increased. Therefore, the parameter representing the number of
infected people had to be adjusted. The result of this model assigns all populations in the
country as a susceptible class. Then, the number of infected people is quite high. Therefore,
it is possible to analyze the susceptible class more accurately.
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6. Conclusions

This article aimed to develop a mathematical model suitable for Thai people’s lifestyle
during the COVID-19 epidemic in Thailand. The SEIR model was developed alongside
the SQEIRP model by adding parts of the quarantine population and the pathogens that
spread in the environment. Then, we found parameters suitable for the epidemic situation.
The results of the SQEIRP model showed that approximately 7 days after the onset of the
infection, the number of hospitalized infected and infected cases was as high as 7,500,000
and 22,700,000 or 11 and 34 percent of the total population, respectively. Moreover, the
maximum number of infected people provides a guideline for the government and people
to prevent the spread of COVID-19 such that the number of patients does not increase to
exceed the estimated number of the model. Therefore, we suggest adjusting parameters
according to infected tendencies, including estimating the number of susceptible classes
accurately. Thus, the model results will be able to predict the epidemic situation better.

Finally, the researcher expects the SQEIRP model will adapt to the Thai people’s
lifestyle and the transmission characteristics of COVID-19. This will lead to results used to
predict the spread of COVID-19 in Thailand in order to provide guidelines for assessing
the transmission situation epidemic and finding ways to prevent the epidemic in a timely
manner next time.
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