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Abstract: In many real-life scenarios, systems frequently perform badly in difficult operating sit-
uations. The multiple failures that take place when systems reach their lower, higher, or extreme
functioning states typically receive little attention from researchers. This study uses generalized
progressive hybrid censoring to discuss the inference of R = P(X < Y < Z) for a component when it
is exposed to two stresses, Y, Z, and it has one strength X that is regarded. We assume that both the
stresses and strength variables follow an exponentiated exponential distribution with a common scale
parameter. We obtain R’s maximum likelihood estimator and approximate confidence intervals. In
addition, the Bayesian estimators for symmetric, such as squared error, and asymmetric loss functions,
such as linear exponential, are developed. Credible intervals with the highest posterior densities are
established. Monte Carlo simulations are used to evaluate and compare the effectiveness of the many
proposed estimators. The process is then precisely described using an analysis of real data.

Keywords: stress–strength model; exponentiated exponential; generalized progressive hybrid cen-
soring; maximum likelihood method; Bayesian inference

MSC: 62F10; 62F15; 62F03; 62N01; 62N05

1. Introduction

The stress–strength system is one of the most widely used data analysis methods
in a variety of fields, including industrial engineering, military applications, health, and
applied sciences. The stress–strength system reliability is the evaluation of a component’s
reliability in terms of the random variable X that represents the stress of the component that
is exposed to Y that represents the component’s strength available to overcome the possible
stress. When the stress exceeds the strength of the system, it fails. Due to its practical
applications, Bhattacharyya and Johnson [1] were the first researchers to be interested in
investigating and deriving the reliability of the stress–strength model. In recent years, a lot
of works have been conducted on the problem of estimating the stress–strength model; see,
for example, Ahmad et al. [2], Saraçoglu et al. [3], Hassan et al. [4], Kotb and Raqab [5],
and Jana and Bera [6].

This paper is interested in the model R = P(X < Y < Z) that discusses the case where
the strength Y should not only be greater than stress X but also be smaller than stress Z.
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The model R = P(X < Y < Z) is necessary when devices cease to function under extreme
lower as well as extreme upper stress operating environments. The main idea of this model
was first introduced by Chandra and Owen [7]. For example, a person’s blood pressure has
two limits, systolic and diastolic, and their blood pressure should lie within these limits.
As another example, some electrical components malfunction when positioned below and
above a specific power generator. In a similar vein, many gadgets are non-functional in
both high and low temperatures. The R = P(X < Y < Z) stress–strength models have a
wide range of applications in engineering, psychology, genetics, clinical trials, and other
fields; see Kotz et al. [8].

In the literature, Chandra and Owen [7] developed maximum likelihood estimators
(MLEs) and uniform minimum unbiased estimators (UMVUEs) for R = P(X < Y < Z).
The lowest variance unbiased and the MLEs of R = P(X < Y < Z) were investigated
by Singh [9], where X, Y, and Z are mutually independent random variables that fol-
low the normal distribution. Dutta and Sriwastav [10] addressed the estimation of R
when X, Y, and Z are exponentially distributed. Ahmad et al. [11] discussed the com-
parative inference on reliability estimation for a multi-component stress–strength model
under power Lomax distribution. Almetwally et al. [12] developed an optimal censor-
ing plan for multi-stress—strength reliability based on progressive first failure utilising
Bayesian and non-Bayesian methods. Ivshin [13] presented the MLE and UMVUE of R
when X, Y, and Z are either uniform or exponential random variables. The estimation
of R = P(X < Y < Z) for the Weibull distribution in the presence of k outliers have been
provided by Hassan et al. [14]. The estimation of the stress–strength reliability for a new
exponential inverted Topp–Leone distribution has been provided by Metwally et al. [15].
Estimation by using various estimation methods of the stress–strength reliability of the ex-
ponentiated inverted Weibull distribution has been obtained by Abu El Azm et al. [16]. The
inference of a fuzzy stress–strength reliability model for the inverse Rayleigh distribution
has been discussed by Sabry et al. [17].

Under the assumption that the three samples were independent, Wang et al. [18] used
nonparametric normal approximations and the Jackknife empirical likelihood to make a
statistical inference for R. Patowary et al. [19] used the Monte Carlo simulation to study
the technique of the reliability estimation for R = P(X < Y < Z) of n standby systems
(n = 1, 2). Yousif et al. [20] proposed the estimation reliability for R = P(X < Y < Z)
using the exponentiated inverse Rayleigh distribution. Hameed et al. [21] discussed the
estimation of R = P(Y1 < X < Y2) using the inverse Kumaraswamy distribution. Attia
and Karam [22] studied the Bayesian estimation of R = P(X < Y < Z) for the Dagum
distribution. Some estimation methods of R = P(X < Y < Z) for the inverse Rayleigh
distribution were considered by Raheem et al. [23] and Abd Elfattah and Taha [24]. Yousef
and Almetwally [25] provided different estimates for a multi-stress–strength model when
data are observed from the Kumaraswamy distribution.

Life testing studies, which can be characterized as mathematical and statistical models
of survival analysis, are frequently employed in engineering, biology, mechanical, and
other disciplines of research. In fact, we are unable to observe the failure time of all the
units due to a variety of constraints, such as time and cost. Before all the observations fail,
it is typical to stop in the middle of the process. Type-I and Type-II censoring schemes
are the two most common censoring schemes among all censoring cases (see, for example,
Meeker and Escobar [26]).

Before the final termination, an inevitable pause or loss of the experiment units is
likely to occur. The constraint in those two censoring techniques, however, is that the units
cannot be removed during the trial. Cohen [27] initially proposed a progressive censoring
strategy to address this inflexibility. According to the progressive Type-II censored schemes
defect, if the experimental units are highly trustworthy, this experiment will last a long
period. As a result, Kundu and Joarder [28] proposed the progressively hybrid censoring
scheme. Moreover, El-Sherpieny et al. [29] introduced progressive Type-I and Type-II
hybrid censored schemes based on the maximum product spacing method as an alterna-
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tive estimation method for this scheme. The implementation of n independent identical
distributed units is employed for the censoring scheme. At min(T, Xm), the experimenter
will terminate the operation. The time T as well as 1 ≤ m ≤ n are predetermined in this
case. In the context of the progressive type-II censored approach, the experiment span
will not be more than T. However, the observations we acquired would be insufficient if
the predetermined termination time T is small. Cho et al. [30] presented a new censoring
scheme called the generalized progressive hybrid censoring (GPHC) scheme, which allows
us to obtain a specified series of failures.

The estimation of the parameters for the Gompertz distribution was obtained us-
ing the ML and the Bayesian methods under different loss functions based on Mohie
El-Din et al. [31]. Tu and Gui [32] considered the estimation for the Kumaraswamy distri-
bution under the GPHC. Nagy et al. [33] used a GPHC sample from the Burr XII distribution
to estimate the unknown parameters, reliability, and hazard functions. Maswadah [34]
improved the ML estimation method using the Runge–Kutta technique.

The goal of this paper is to establish the reliability inferences for the stress–strength
variables that follow the exponentiated exponential distributions (EEDs) with a similar
scale parameter. As far as we know, no earlier work has attempted to estimate R using an
EED under the GPHC scheme. As a result, the estimations of R’s statistical inference based
on data from a GPHC scheme will be discussed in this study. The lifetime distributions of
the one strength Y and two stresses, X and Z, are considered to have independent EEDs
with the same scale parameter. MLEs as well as Bayesian estimators under different loss
functions of R are derived. The asymptotic confidence intervals as well as Bayesian credible
intervals are created. To compare the different methodologies, extensive simulations were
run, and dataset was evaluated for demonstration reasons.

This paper proceeds as follows: First, data description and reliability model are
mentioned in Section 2. The MLEs as well as the approximate confidence intervals of R will
be derived in Section 3. We calculate the Bayesian estimators with different loss functions
in Section 4. Furthermore, we apply the Markov chain Monte Carlo (MCMC) algorithm to
derive the Bayesian estimators and establish the highest posterior density (HPD) intervals
under the sample generated by the MCMC algorithm in Section 5. Then, in Section 6, the
data analysis is demonstrated. Finally, conclusions are arranged in the last Section 7.

2. Data Description and Reliability Model

Ahuja and Nash [35] presented the two-parameter EED which was subsequently
investigated by Gupta and Kundu [36]. The shape and scale parameters of this distribution
are similar to those of the gamma and Weibull distributions. In many circumstances, it has
a better fit than the Weibull and Gamma distributions (Raja and Mir [37]). The applications
of the EED were substantial, and we point out: models to determine bout standards for
analysis of animal conduct (Yeates et al. [38]); software reliability increase fashions for vital
best metrics (Subburaj et al. [39]); models for episode height and period for eco-hydro-
climatic packages (Biondi et al. [40]); and therapy price modeling (Kannan et al. [41]). The
probability density function (PDF) and cumulative distribution function (CDF) of EED are
defined as

f (x) = αλe−λx(1− e−λx)α−1; x > 0, α, λ > 0, (1)

and

F(x) = (1− e−λx)α, (2)

respectively, for x > 0, α > 0 and λ > 0. We write X ∼ EED(λ, α), and here, α is the shape
parameter and λ is the scale parameter.
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Let X ∼ EED(λ, α1), Y ∼ EED(λ, α2), and Z ∼ EED(λ, α3), and they are independent.
The reliability formula of the stress–strength model that the probability of a component
strength falling in between two stresses is given by:

R =
∫ ∞

0

∫ ∞

x

∫ z

x
f (x) f (y) f (z)dydzdx,

=
α2α3

(α1 + α2)(α1 + α2 + α3)
. (3)

The reliability R of stress–strength model with different values of parameters, see
Figure 1.
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Figure 1. The reliability R of stress–strength model with different values of parameters.

Figure 1 shows the reliability R of the stress–strength model where the higher the
value of parameter α3, the higher the reliability value. We also note that with the change
in the parameter values, the reliability rating changes, and in most matters, it gives high
results and covers most of the values.

Assume that our research group is made of n independent units with the same lifetime
distribution, where X1, X2, . . . , Xn represent the corresponding lifetime. The integers k
and m, k < m, as well as R1, R2, . . . , Rm, which can satisfy the equation ∑m

i=1 Ri + m = n
function as preplanned integers, have been under predetermination between zero and n.
On the arrival of the first failure X1, we withdraw R1 units. When the second failure, X2,
occurs, we remove R2 units at random from the n− 2− R1 survivors. With the rest of the
survival units removed, the procedure is repeated and ended at T∗ = max(min(T, Xm), Xk).
It vastly improved prior approaches by allowing us to choose whether or not to continue the
experiment if the sample size is insufficient at the predetermined cut-off time T. Researchers
would prefer to obtain m failures under the GPHC scheme, but they can alternatively choose
k failures, which are considered the bare minimum. The GPHC scheme is referred to as
R1, R2, . . . , Rm. Let D be the observed failure times before arriving at the predefined time T.

The GPHC scheme can be classified into the following categories:

Case 1: X1, . . . , Xd, . . . , Xk for T < Xk < Xm,
Case 2: X1, . . . , Xk, . . . , Xd for Xk < T < Xm,
Case 3: X1, . . . , Xk, . . . , Xm for Xk < Xm < T,

According to the GPHC scheme, the joint density function for three different cases is
as follows:

fX(x) = A∗
D

∏
i=1

f (xi;m;n)[F̄(xi;m;n)]
R∗i [F̄(T)]R

∗
τ , (4)
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where

D =


k If T < Xk,m,n < Xm,m,n
d If Xk,m,n < T < Xm,m,n
m IfXk,m,n < Xm,m,n < T

, A∗ =
D

∏
i=1

m

∑
j=i

(R∗j + 1),

R∗ =


(R1, . . . , Rd, 0, . . . , 0, R∗k = n− k−∑d

j=1 Rj) If T < Xk,m,n < Xm,m,n

(R1, . . . , Rd) If Xk,m,n < T < Xm,m,n
(R1, . . . , Rm) IfXk,m,n < Xm,m,n < T

with R∗τ the number of surviving units that are removed at T, given by

R∗τ =


0 If T < Xk,m,n < Xm,m,n

n− d−∑d
j=1 Rj If Xk,m,n < T < Xm,m,n

0 IfXk,m,n < Xm,m,n < T
.

3. Maximum Likelihood Estimation

The ML procedure is a popular and effective strategy used by statisticians when
dealing with reliability issues and survival analysis. This section provides the MLE of R
and the approximate CI is established.

3.1. Maximum Likelihood Estimator of R

Here, the MLE of R is determined, first by obtaining the MLEs of α1, α2, α3, and λ.
Plugging the PDF and CDF of the EED, i.e., (1) and (2), into the likelihood formula (4), the
likelihood function of α1, α2, α3, and λ is expressed as:

l(α1, α2, α3, λ) = A∗1 A∗2 A∗3αD1
1 αD2

2 αD3
3 λD1+D2+D3

×
D1

∏
j=1

e−λxj(1− e−λxj)α1−1(1− (1− e−λxj)α1)Rj1(1− (1− e−λT1)α1)R∗d1+1

×
D2

∏
j=1

e−λyj(1− e−λyj)α2−1(1− (1− e−λyj)α2)Rj2(1− (1− e−λT2)α2)R∗d2+1

×
D3

∏
j=1

e−λzj(1− e−λzj)α3−1(1− (1− e−λzj)α3)Rj3(1− (1− e−λT3)α3)R∗d3+1 . (5)

Taking the logarithm for (5), we obtain the log-likelihood function

L = ln l(α1, α2, α3, λ) = ln A∗1 A∗2 A∗3 + D1 ln α1 + D2 ln α2 + D3 ln α3 + (D1 + D2 + D3) ln λ

− λ[
D1

∑
j=1

xj +
D2

∑
j=1

yj +
D3

∑
j=1

zj] + (α1 − 1)
D1

∑
j=1

ln ψ1(xj, λ) + (α2 − 1)
D2

∑
j=1

ln ψ2(yj, λ)

+ (α3 − 1)
D3

∑
j=1

ln ψ3(zj, λ) +
D1

∑
j=1

Rj1 ln(1− (ψ1(xj, λ))α1) +
D2

∑
j=1

Rj2 ln(1− (ψ2(yj, λ))α2)

+
D3

∑
j=1

Rj3 ln(1− (ψ3(zj, λ))α3) + R∗d1+1 ln(1− (ψ1(T1, λ))α1) + R∗d2+1 ln(1− (ψ2(T2, λ))α2)

+ R∗d3+1 ln(1− (ψ3(T3, λ))α3) (6)
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where 
ψ1(xj, λ) = 1− e−λxj ,

ψ2(yj, λ) = 1− e−λyj ,

ψ3(zj, λ) = 1− e−λzj ,

(7)

and ψ1(T1, λ) is as given by (7) with xj = T1. Similarly for ψ2(T2, λ) and ψ3(T3, λ). We take
the partial derivatives of (6) for α1, α2, α3, and λ, respectively, and obtain a set of likelihood
equations as follows:

∂L
∂α1

=
D1

α1
+

D1

∑
j=1

[ln ψ1(xj, λ)− Rj1E1(ψ1(xj, λ), α1)]− R∗d1+1E1(ψ1(T1, λ), α1),

∂L
∂α2

=
D2

α2
+

D2

∑
j=1

[ln ψ2(yj, λ)− Rj2E2(ψ2(yj, λ), α2)]− R∗d2+1E2(ψ2(T2, λ), α2),

∂L
∂α3

=
D3

α3
+

D3

∑
j=1

[ln ψ3(zj, λ)− Rj3E3(ψ3(zj, λ), α3)]− R∗d3+1E3(ψ3(T3, λ), α3),

∂L
∂λ

=
D1 + D2 + D3

λ
− [

D1

∑
j=1

xj +
D2

∑
j=1

yj +
D3

∑
j=1

zj] + (α1 − 1)
D1

∑
j=1

Q1(ψ1(xj, λ), λ) + (α2 − 1)
D2

∑
j=1

Q2(ψ2(yj, λ), λ)

+ (α3 − 1)
D3

∑
j=1

Q3(ψ3(zj, λ), λ)−
D1

∑
j=1

Rj1S1(ψ1(xj, λ), λ)−
D2

∑
j=1

Rj2S2(ψ2(yj, λ), λ)−
D3

∑
j=1

Rj3S3(ψ3(zj, λ), λ)

− R∗d1+1S1(ψ1(T1, λ), λ)− R∗d2+1S2(ψ2(T2, λ), λ)− R∗d3+1S3(ψ3(T3, λ), λ),

(8)

where

Ei(ψi(wj, λ), αi) =
(ψi(wj, λ))αi

1− (ψi(wj, λ))αi
ln ψi(wj, λ),

Ei(ψi(Ti, λ), αi) =
(ψi(Ti, λ))αi

1− (ψi(Ti, λ))αi
ln ψi(Ti, λ),

Qi(ψi(wj, λ), λ) =
wje
−λwj

ψi(wj, λ)
,

Si(ψi(wj, λ), λ) =
αi(ψi(wj, λ))αi

1− (ψi(wj, λ))αi
Qi(ψi(wj, λ), λ),

where w = x, y, z, i = 1, 2, 3.
There are no analytical solutions for the unknown parameters α1, α2, α3, and λ from (8).

As a result, (8) may be maximized using a fairly straightforward iterative approach such as
the Newton–Raphson (NR) procedure to obtain the appropriate MLEs of α1, α2, α3, and λ.
The corresponding precise distribution (or exact confidence intervals (CIs) ) of α1, α2, α3,
and λ cannot be obtained because the MLEs of α1, α2, α3, and λ cannot be obtained in closed
form. For this purpose, we recommend implementing the ‘maxLik’ package for any given
dataset (α1, α2, α3, λ) and then performing ML calculations using the NR iterative method.
We can substitute these estimates to obtain the MLE of R as:

R̂ =
α̂2α̂3

(α̂1 + α̂2)(α̂1 + α̂2 + α̂3)
. (9)

3.2. Asymptotic Confidence Interval

CIs, which contain the population parameter with a given high probability, show the
level of uncertainty in an estimate derived from sample data. Utilizing the large-sample
normal distribution of the MLE is the most popular technique for establishing confidence
bounds for the parameters. For a large sample size, MLEs are consistent and asymptotically
normally distributed.
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Here, the asymptotic CI of R is determined using the asymptotic distribution of R̂,
which was obtained from the asymptotic distribution of α1, α2, α3, and λ. The observed
Fisher information matrix is denoted by

I(θ) = [Iij] =

[
− ∂2L

∂θi∂θj

]
, i, j = 1, 2, 3.

The elements in lines of the I(θ) matrix can be obtained by differentiating from (8) two
times with respect to α1, α2, α3, and λ:

I11 = −
[

D1

α2
1
+

D1

∑
j=1

Rj1
∂E1(ψ1(xj, λ), α1)

∂α1
+ R∗d1+1

∂E1(ψ1(T1, λ), α1)

∂α1

]
,

I22 = −
[

D2

α2
2
+

D2

∑
j=1

Rj2
∂E2(ψ2(yj, λ), α2)

∂α2
+ R∗d2+1

∂E2(ψ2(T2, λ), α2)

∂α2

]
,

I33 = −
[

D3

α2
3
+

D3

∑
j=1

Rj3
∂E3(ψ3(zj, λ), α3)

∂α3
+ R∗d3+1

∂E3(ψ3(T3, λ), α3)

∂α3

]
,

I14 =
D1

∑
j=1

[
Q1(ψ1(xj, λ)− Rj1

∂E1(ψ1(xj, λ), α1)

∂λ

]
− R∗d1+1

∂E1(ψ1(T1, λ), α1)

∂λ
,

I24 =
D2

∑
j=1

[
Q2(ψ2(yj, λ)− Rj2

∂E2(ψ2(yj, λ), α2)

∂λ

]
− R∗d2+1

∂E2(ψ2(T2, λ), α2)

∂λ
,

I34 =
D3

∑
j=1

[
Q3(ψ3(zj, λ)− Rj3

∂E3(ψ3(zj, λ), α3)

∂λ

]
− R∗d3+1

∂E3(ψ3(T3, λ), α3)

∂λ
,

I44 = −D1 + D2 + D3

λ2 + (α1 − 1)
D1

∑
j=1

∂Q1(ψ1(xj, λ), λ)

∂λ
+ (α2 − 1)

D2

∑
j=1

∂Q2(ψ2(yj, λ), λ)

∂λ
,

+ (α3 − 1)
D3

∑
j=1

∂Q3(ψ3(zj, λ), λ)

∂λ
−

D1

∑
j=1

Rj1
∂S1(ψ1(xj, λ), λ)

∂λ
−

D2

∑
j=1

Rj2
∂S2(ψ2(yj, λ), λ)

∂λ
,

−
D3

∑
j=1

Rj3
∂S3(ψ3(zj, λ), λ)

∂λ
− R∗d1+1

∂S1(ψ1(T1, λ), λ)

∂λ
−

R∗d2+1
∂S2(ψ2(T2, λ), λ)

∂λ
− R∗d3+1

∂S3(ψ3(T3, λ), λ)

∂λ
,

I12 = I21 = I13 = I31 = I32 = I23 = 0,

where

∂Ei(ψi(wj, λ), αi)

∂αi
=

(Ei(ψi(wj, λ), αi))
2

(ψi(wj, λ))αi
,

∂Ei(ψi(Ti, λ), αi)

∂αi
=

(Ei(ψi(Ti, λ), αi))
2

(ψi(Ti, λ))αi
,

∂Ei(ψi(wj, λ), αi)

∂λ
= Si(ψi(wj, λ), λ)[

1
αi

+ ln ψi(wj, λ) + Ei(ψi(wj, λ), αi)],

∂Qi(ψi(wj, λ), λ)

∂λ
= −Qi(ψi(wj, λ), λ)((wj + Qi(ψi(wj, λ), λ)),

∂Si(ψi(wj, λ), λ)

∂λ
= Si(ψi(wj, λ), λ)[(αi − 1)Qi(ψi(wj, λ), λ) + Si(ψi(wj, λ), λ)− wj],
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where w = x, y, z, i = 1, 2, 3.
As D1 → ∞, D2 → ∞, D3 → ∞, then

[
√

n1(α̂1 − α1),
√

n2(α̂2 − α2),
√

n3(α̂3 − α3)]→ N(0, I−1(α1, α2, α3)),

where

I−1(α1, α2, α3) =


1

I11
0 0

0 1
I22

0
0 0 1

I33

.

The asymptotic distribution of R̂ is found as

[(R̂− R)]→ N(0, σ2
R),

where σ2
R = MT I−1M is the asymptotic variance of R, and

M =

(
∂R
∂α1

,
∂R
∂α2

,
∂R
∂α3

)
,

where

∂R
∂α1

=
−α2α3(2(α1 + α2) + α3)

(α1 + α2)2(α1 + α2 + α3)2 ,

∂R
∂α2

=
−α3(α1(α1 + α3)− α2

2)

(α1 + α2)2(α1 + α2 + α3)2 ,

∂R
∂α3

=
α2

(α1 + α2 + α3)2 .

Therefore, a 100(1− γ)% asymptotic CI of R can be constructed as,

(R̂− z1− γ
2

√
σ̂2

R, R̂ + z1− γ
2

√
σ̂2

R),

where z γ
2

is the 100γ th standard normal percentile and σ̂R is the standard deviation of the
MLE of R.

4. Bayesian Estimation

In this section, the Bayesian estimation of R is obtained when data are observed using
the GPHC based on the squared error loss function (SELF) and linear exponential (Linex)
loss function, which are defined, respectively, by

L1 = (ϑ, ϑ̌) = (ϑ̌− ϑ)2,

L2 = (ϑ, ϑ̌) = eg(ϑ̌−ϑ) − g(ϑ̌− ϑ)− 1,

where ϑ̌ is an estimator of ϑ. Denote the prior and posterior distributions of ϑ by π(ϑ) and
π∗(ϑ | x), respectively. Under the SELF and Linex loss function, the Bayesian estimation of
any function B(ϑ) of ϑ is given by

B(ϑ)SE = E[B(ϑ) | x] =
∫ ∞

0
B(ϑ)π∗(ϑ | x)dϑ,

B(ϑ)LN =
−1
c

ln
(

E(e−cB(ϑ))
)
=
−1
c

ln
(∫ ∞

0
e−cB(ϑ)π∗(ϑ | x)dϑ

)
.

Prior distribution is important for the development of Bayes estimators.
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Under the assumption of gamma prior distributions, we investigate at this estimate
problem. The gamma family of distributions is particularly adaptable and can be thought
of as an appropriate prior for any unknown parameter(s) because it has a wide variety
of shapes depending on its parameter values; for further information, see references
Kundu [42] and Dey et al. [43]. Furthermore, the independent gamma priors are simple
and transparent, which may help to avoid many challenging inferential problems.

Therefore, it is assumed here that α1, α2, α3, and λ follow independent gamma dis-
tributions with α1 ∼ G(η1, ζ1), α2 ∼ G(η2, ζ2), α3 ∼ G(η3, ζ3), and λ ∼ G(η4, ζ4), with
probability densities given by, respectively,

π(αi) =
α

ηi−1
i

Γ(ηi)ζ
ηi
i

e−
αi
ζi , π(λ) =

λη4−1

Γ(η4)ζ
η4
4

e−
λ
ζ4 , αi > 0, ηi, ζi > 0, i = 1, 2, 3. (10)

Using the informative prior (10) and the likelihood function (5), the joint posterior
density can be derived as follows:

π∗(α1, α2, α3, λ) =
3

∏
i=1

A∗i
α

Di+ηi−1
i

Γ(ηi)ζ
ηi
i

λη4−1+∑3
i=1 Di

Γ(η4)ζ
η4
4

e−
λ
ζ4

× e−∑
D1
i=1

[
λxi+

α1
ζ1
−(α1−1) ln ψ1(xi ,λ)−Ri1 ln(1−(ψ1(xi ,λ))α1 )

]
+R∗d1+1 ln(1−(ψ1(T1,λ))α1 )

× e−∑
D2
i=1

[
λyi+

α2
ζ2
−(α2−1) ln ψ2(yi ,λ)−Ri2 ln(1−(ψ2(yi ,λ))α2 )

]
+R∗d2+1 ln(1−(ψ2(T2,λ))α2 )

× e−∑
D3
i=1

[
λzi+

α3
ζ3
−(α3−1) ln ψ3(zi ,λ)−Ri3 ln(1−(ψ3(zi ,λ))α3 )

]
+R∗d3+1 ln(1−(ψ3(T3,λ))α3 ).

Then, the Bayes estimates of R under the SELF and Linex loss function, say R̃SE and
R̃LN are given by

R̃SE =
∫ ∞

0

∫ ∞

0

∫ ∞

0
Rπ∗(α1, α2, α3, λ)dα1dα2dα3,

R̃LN =
−1
c

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−cRπ∗(α1, α2, α3, λ)dα1dα2dα3.

(11)

Obviously, it is not possible to compute (11) analytically. The MCMC approaches can
be applied to approximate (11).

The marginal posterior densities of the parameters α1, α2, α3, and λ can be derived as

π∗(α1) ∝ α
D1+η1−1
1 e−∑

D1
i=1

[
α1(

1
ζ1
−ln ψ1(xi ,λ))−Ri1 ln(1−(ψ1(xi ,λ))α1 )

]
+R∗d1+1 ln(1−(ψ1(T1,λ))α1 )

π∗(α2) ∝ α
D2+η2−1
2 e−∑

D2
i=1

[
α2(

1
ζ2
−ln ψ2(yi ,λ))−Ri2 ln(1−(ψ2(yi ,λ))α2 )

]
+R∗d2+1 ln(1−(ψ2(T2,λ))α2 )

π∗(α3) ∝ α
D3+η3−1
3 e−∑

D3
i=1

[
α3(

1
ζ3
−ln ψ3(zi ,λ))−Ri3 ln(1−(ψ3(zi ,λ))α3 )

]
+R∗d3+1 ln(1−(ψ3(T3,λ))α3 )

π∗(λ) ∝ λη4−1+∑3
i=1 Di e−

λ
ζ4 e−∑

D1
i=1[λxi−(α1−1) ln ψ1(xi ,λ)−Ri1 ln(1−(ψ1(xi ,λ))α1 )]+R∗d1+1 ln(1−(ψ1(T1,λ))α1 )

× e−∑
D2
i=1[λyi−(α2−1) ln ψ2(yi ,λ)−Ri2 ln(1−(ψ2(yi ,λ))α2 )]+R∗d2+1 ln(1−(ψ2(T2,λ))α2 )

× e−∑
D3
i=1[λzi−(α3−1) ln ψ3(zi ,λ)−Ri3 ln(1−(ψ3(zi ,λ))α3 )]+R∗d3+1 ln(1−(ψ3(T3,λ))α3 ),

(12)

The marginal posterior densities in (12) are not well-known distributions, so we will
use the Metropolis–Hastings (MH) sampler to generate the values of α1, α2, α3, and λ with
normal proposal distribution to generate samples from it in (12)

Furthermore, the approach of Chen and Shao [44] was extensively used to construct
HPD intervals with unknown benefit distribution parameters for Bayesian estimate. For
example, a 95% HPD interval can be created using two endpoints from the MCMC sample
outputs: 2.5% and 97.5% percentiles, respectively. The Θ parameters’ Bayes, trustworthy
intervals are calculated as follows:
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1. Sorted parameters as α̃
[1]
l < α̃

[2]
l < . . . < α̃

[N]
l ; l = 1, 2, 3, λ̃[1] < λ̃[2] < . . . < λ̃[N], and

R[1] < R[2] < . . . < R[N], and N is the length of MCMC generated.

2. The 95% symmetric credible intervals of α̃1, α̃2, α̃3, λ̃, and R̃ become
(

α̃
L 25

1000
l , α̃

L 975
1000

l

)
,(

λ̃L 25
1000 , λ̃L 975

1000

)
, and

(
R̃L 25

1000 , R̃L 975
1000

)
.

5. Simulation Study

We give some simulation results in this section to show how the various strategies
presented in this paper perform in practice. Different situations have been used as:

Case I: α1 = 0.5, α2 = 4, α3 = 20, λ = 0.5 and T1 = 14, T2 = 6, T3 = 18.
Case II: α1 = 0.8, α2 = 5, α3 = 12, λ = 1.5 and T1 = 1.6, T2 = 2, T3 = 2.5.
Case III: α1 = 0.3, α2 = 2, α3 = 15, λ = 0.5 and T1 = 3.5, T2 = 3, T3 = 6.
Case IV: α1 = 0.7, α2 = 3, α3 = 8, λ = 2 and T1 = 1, T2 = 1.5, T3 = 1.9.

We have considered different sample sizes (n) for each sample as n1 = 20, n2 = 25,
n3 = 15, and n1 = 30, n2 = 40, n3 = 30; different effective sample sizes (m) for each
sample as m1 = 15, m2 = 18, m3 = 12, and m1 = 17, m2 = 22, m3 = 14; different k val-
ues for each sample as k1 = 12, k2 = 16, k3 = 10, and k1 = 15, k2 = 20, k3 = 12; and
two different progressive censoring schemes, namely Scheme-I R1 = (n1 −m1, rep(0, m1 −
1)), R2 = (n2 − m2, rep(0, m2 − 1)), R3 = (n3 − m3, rep(0, m3 − 1)) and Scheme-II R1 =
(2, rep(0, (m1− 3)/2), n1−m1− 3, rep(0, (m1− 3)/2), 1), R2 = (1, rep(0, (m2− 2)/2), n2−
m2 − 2, rep(0, (m2 − 4)/2), 1), R3 = (1, rep(0, (m3 − 3)/2), n3 −m3 − 2, rep(0, (m3 − 1)/2),
1), where rep points to replicate censored scheme. In each case, we compute and construct the
95% exact and the credible CIs for both loss functions. The methods are repeated 5000 times,
and the average estimators (AvE), mean squared errors (MSE), average length of CIs (L.CI) with
related coverage percentages (CP), and average length of HPD credible CIs (L.CCI) are reported.

For prior distribution, the hyperparameters are chosen using elective hyperparameters
based on mean and variance of gamma prior distribution.

To find out how to elicit hyperparameters of the independent joint prior, we can utilise
the likelihood method’s estimate and variance–covariance matrix. The mean and variance
of gamma priors can be used to represent the derived hyperparameters.

ηj =

[
1
N ∑N

i=1 ϑ̂i
j

]2

1
N−1 ∑N

i=1

[
ϑ̂i

j −
1
N ∑N

i=1 ϑ̂i
j

]2 ; j = 1, . . . , p,

ζ j =

1
N ∑N

i=1 ϑ̂i
j

1
N−1 ∑N

i=1

[
ϑ̂i

j −
1
N ∑N

i=1 ϑ̂i
j

]2 ; j = 1, . . . , p,

where N is the number of simulation iterations.
For MCMC techniques, we replicate the process 10,000 times of MH algorithms.

Figures 2 and 3 are explained by Table 1 that discusses different label of these figures as
MSE.i.1 is MLE, MSE.i.2 is SELF, MSE.i.3 is Linex c = −0.5, and MSE.i.4 is Linex c = 1.5,
where i = 1, . . . , 8. The X label indicates different parameters as param1 is α1, param2
is α2, param3 is α3, and param4 is λ. On the left side of Tables 2–5, the average of the
frequentist estimates and the average of the Bayesian MCMC estimates of α1, α2, α3, and
λ are determined. Additionally, on the right side of Tables 2–5, we report the L.CI and
L.CCI of α1, α2, α3, and λ that were obtained. Two highly regarded R software packages are
used to conduct extensive evaluations: the ‘CODA’ package for computing Bayes estimates
using MCMC techniques and the ‘maxLik’ tool for computing ML estimates using the
NR algorithm.

The heatmap plots of the MSE of simulation results for parameters and R of Cases I, II,
III, and IV are provided in Figures 2 and 3, respectively. Using one variable on each axis,
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heatmaps are used to display relationships between two variables (MSE and methods). You
can determine if there are any trends in the values for one or both variables by monitoring
how cell colors vary across each axis. MSE was represented by cell coloring, with the darker
color representing a higher MSE value than the lighter color. The results are presented in
Tables 2–5, and the following observations can be made:

• ML and Bayesian estimates of population parameters are quite good based on AvE
where they tend to actual values.

• As the sample size increases, the MSE decreases as expected for ML and Bayesian
estimations.

• For a given sample size, the MSE also declines with m.
• If n and m are held constant, the MSEs decrease as the acceptable bare minimum of

failures, k, rises.
• Based on AvE, MSE, and length of CI, we note scheme II is better than scheme I in

same times.
• Bayesian estimates outperform ML estimates in terms of AvE, MSE, and length of CI

because they incorporate prior knowledge based on a gamma informative prior.
• When the symmetric and asymmetric loss functions are compared, Bayes estimates

under the asymmetric loss function are found to be more accurate than others under
the symmetric loss function.

• The average length of HPD credible intervals for Bayesian estimation is better than
length of asymptotic confidence interval.
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Figure 2. Heatmaps of MSE for parameters and R based on different estimation methods: Case I
and II.
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Table 1. Labels of MSE results for heatmaps plots.

scheme 1

n1, n2, n3 20, 25, 15 30, 40, 30

m1, m2, m3 15, 18, 12 17, 22, 14 25, 30, 22 27, 35, 26

k1, k2, k3 12, 16, 10 15, 20, 12 20, 24, 20 23, 30, 23

label MSE1 MSE2 MSE3 MSE4

scheme 2

n1, n2, n3 20, 25, 15 30, 40, 30

m1, m2, m3 15, 18, 12 17, 22, 14 25, 30, 22 27, 35, 26

k1, k2, k3 12, 16, 10 15, 20, 12 20, 24, 20 23, 30, 23

label MSE5 MSE6 MSE7 MSE8

Table 2. AvE and MSE for estimation methods: Case I.

α1 = 0.5, α2 = 4, α3 = 20, λ = 0.5

T1 = 14, T2 = 6, T3 = 18 ML SELF Linex c = −0.5 Linex c = 1.5 ML SELF c = −0.5 c = 1.5

Scheme n1, n2, n3 m1, m2, m3 k1, k2, k3 AvE MSE AvE MSE AvE MSE AvE MSE L.CI CP L.CCI L.CCI L.CCI

1

20, 25, 15

15, 18, 12 12, 16, 10

α1 0.5378 0.0204 0.5073 0.0098 0.5054 0.0097 0.5016 0.0095 0.5401 95.80% 0.3781 0.3699 0.3701

α2 4.1354 0.8059 3.9970 0.0234 3.9942 0.0234 3.9887 0.0235 3.4822 94.40% 0.5716 0.5715 0.5701

α3 20.0513 0.5460 19.9954 0.0216 19.9926 0.0218 19.9872 0.0221 2.8925 95.80% 0.5676 0.5639 0.5553

λ 0.5058 0.0021 0.5075 0.0019 0.5069 0.0018 0.5057 0.0018 0.1776 94.40% 0.1584 0.1583 0.1581

R 0.7153 0.0009 0.7245 0.0004 0.7249 0.0003 0.7256 0.0003 0.1089 95.80% 0.0728 0.0728 0.0723

17, 22, 14 15, 20, 12

α1 0.5311 0.0176 0.5016 0.0072 0.5004 0.0071 0.4981 0.0071 0.5059 95.20% 0.3151 0.3154 0.3159

α2 4.0615 0.7533 4.0026 0.0125 4.0011 0.0125 3.9980 0.0125 3.3972 95.80% 0.4228 0.4221 0.4160

α3 20.0648 0.2245 19.9961 0.0128 19.9945 0.0128 19.9912 0.0129 1.8419 95.20% 0.4168 0.4173 0.4176

λ 0.5010 0.0017 0.5039 0.0014 0.5035 0.0014 0.5026 0.0014 0.1627 95.80% 0.1465 0.1465 0.1460

R 0.7174 0.0008 0.7255 0.0003 0.7258 0.0003 0.7262 0.0003 0.1038 95.20% 0.0613 0.0612 0.0612

30, 40, 30

25, 30, 22 20, 24, 20

α1 0.5151 0.0112 0.5053 0.0070 0.5037 0.0070 0.5005 0.0068 0.4113 95.40% 0.3228 0.3207 0.3156

α2 4.0874 0.4318 4.0056 0.0192 4.0030 0.0191 3.9977 0.0190 2.5557 95.60% 0.5481 0.5483 0.5488

α3 20.0091 0.0337 19.9921 0.0220 19.9894 0.0221 19.9841 0.0223 0.7193 95.40% 0.5763 0.5751 0.5755

λ 0.5019 0.0010 0.5033 0.0009 0.5030 0.0009 0.5023 0.0009 0.1244 95.60% 0.1134 0.1135 0.1138

R 0.7208 0.0004 0.7247 0.0003 0.7251 0.0003 0.7257 0.0002 0.0807 95.40% 0.0618 0.0609 0.0595

27, 35, 26 23, 30, 23

α1 0.5248 0.0103 0.5128 0.0067 0.5117 0.0067 0.5095 0.0065 0.3852 95.20% 0.3092 0.3057 0.3035

α2 4.0518 0.3875 3.9927 0.0130 3.9911 0.0130 3.9879 0.0131 2.4343 95.40% 0.4393 0.4430 0.4463

α3 20.0208 0.0305 19.9952 0.0150 19.9935 0.0150 19.9901 0.0152 0.6884 95.20% 0.4650 0.4643 0.4668

λ 0.4999 0.0008 0.5018 0.0008 0.5015 0.0008 0.5009 0.0008 0.1127 95.40% 0.1071 0.1070 0.1068

R 0.7194 0.0004 0.7235 0.0002 0.7237 0.0002 0.7241 0.0002 0.0761 95.20% 0.0604 0.0602 0.0593

2

20, 25, 15

15, 18, 12 12, 16, 10

α1 0.5235 0.0155 0.5064 0.0105 0.5047 0.0104 0.5012 0.0102 0.4792 94.40% 0.3828 0.3819 0.3814

α2 4.1142 0.7423 4.0001 0.0215 3.9975 0.0215 3.9923 0.0215 3.3510 95.20% 0.5642 0.5629 0.5569

α3 20.0442 0.5969 20.0032 0.0238 20.0004 0.0238 19.9948 0.0238 3.0265 94.40% 0.5783 0.5787 0.5797

λ 0.5018 0.0018 0.5029 0.0016 0.5024 0.0016 0.5013 0.0016 0.1648 95.20% 0.1544 0.1545 0.1547

R 0.7187 0.0007 0.7248 0.0004 0.7251 0.0004 0.7258 0.0004 0.0993 94.40% 0.0736 0.0736 0.0734

17, 22, 14 15, 20, 12

α1 0.5302 0.0148 0.5000 0.0084 0.4988 0.0083 0.4964 0.0082 0.4519 94.80% 0.3470 0.3459 0.3470

α2 4.1304 0.5943 4.0028 0.0142 4.0011 0.0142 3.9976 0.0142 2.9815 94.40% 0.4777 0.4773 0.4754

α3 20.0581 0.4443 20.0036 0.0126 20.0019 0.0126 19.9984 0.0126 2.6054 94.80% 0.4490 0.4477 0.4501

λ 0.5026 0.0015 0.5054 0.0015 0.5049 0.0015 0.5040 0.0015 0.1525 94.40% 0.1414 0.1411 0.1411

R 0.7174 0.0006 0.7259 0.0003 0.7262 0.0003 0.7266 0.0003 0.0910 94.80% 0.0661 0.0659 0.0664

30, 40, 30

25, 30, 22 20, 24, 20

α1 0.5235 0.0155 0.5064 0.0105 0.5047 0.0104 0.5012 0.0102 0.4792 94.40% 0.3828 0.3819 0.3814

α2 4.1142 0.7423 4.0001 0.0215 3.9975 0.0215 3.9923 0.0215 3.3510 95.20% 0.5642 0.5629 0.5569

α3 20.0442 0.5969 20.0032 0.0238 20.0004 0.0238 19.9948 0.0238 3.0265 94.40% 0.5783 0.5787 0.5797

λ 0.5018 0.0018 0.5029 0.0016 0.5024 0.0016 0.5013 0.0016 0.1648 95.20% 0.1544 0.1545 0.1547

R 0.7187 0.0007 0.7248 0.0004 0.7251 0.0004 0.7258 0.0004 0.0993 94.40% 0.0736 0.0736 0.0734

27, 35, 26 23, 30, 23

α1 0.5302 0.0148 0.5000 0.0084 0.4988 0.0083 0.4964 0.0082 0.4519 94.80% 0.3470 0.3459 0.3470

α2 4.1304 0.5943 4.0028 0.0142 4.0011 0.0142 3.9976 0.0142 2.9815 94.40% 0.4777 0.4773 0.4754

α3 20.0581 0.4443 20.0036 0.0126 20.0019 0.0126 19.9984 0.0126 2.6054 94.80% 0.4490 0.4477 0.4501

λ 0.5026 0.0015 0.5054 0.0015 0.5049 0.0015 0.5040 0.0015 0.1525 94.40% 0.1414 0.1411 0.1411

R 0.7174 0.0006 0.7259 0.0003 0.7262 0.0003 0.7266 0.0003 0.0910 94.80% 0.0661 0.0659 0.0664
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Table 3. AvE and MSE for estimation methods: Case II.

α1 = 0.8, α2 = 5, α3 = 12, λ = 1.5

T1 = 1.6, T2 = 2, T3 = 2.5 ML SELF Linex c = −0.5 Linex c = 1.5 ML SELF c = −0.5 c = 1.5

Scheme n1, n2, n3 m1, m2, m3 k1, k2, k3 AvE MSE AvE MSE AvE MSE AvE MSE L.CI CP L.CCI L.CCI L.CCI

1

20, 25, 15

15, 18, 12 12, 16, 10

α1 0.8559 0.0569 0.8005 0.0120 0.7984 0.0119 0.7943 0.0119 0.9098 95.60% 0.4097 0.4119 0.4129

α2 5.4973 2.8046 4.9991 0.0184 4.9964 0.0184 4.9911 0.0184 6.2750 95.20% 0.5209 0.5208 0.5209

α3 12.7108 8.2755 12.0099 0.0257 12.0069 0.0255 12.0009 0.0253 12.2652 95.60% 0.6073 0.6075 0.6097

λ 1.5320 0.0322 1.5022 0.0088 1.5004 0.0087 1.4969 0.0087 0.6931 95.20% 0.3507 0.3479 0.3437

R 0.5697 0.0032 0.5815 0.0002 0.5818 0.0002 0.5823 0.0002 0.2174 95.60% 0.0555 0.0555 0.0561

17, 22, 14 15, 20, 12

α1 0.8511 0.0482 0.7976 0.0098 0.7963 0.0098 0.7936 0.0098 0.8379 95.20% 0.3794 0.3799 0.3837

α2 5.5710 1.8904 4.9993 0.0141 4.9976 0.0141 4.9941 0.0142 6.2835 96.00% 0.4370 0.4389 0.4459

α3 12.9478 5.2061 12.0025 0.0144 12.0008 0.0144 11.9974 0.0144 10.3100 95.20% 0.4541 0.4543 0.4611

λ 1.5417 0.0316 1.4997 0.0076 1.4985 0.0076 1.4961 0.0076 0.6729 96.00% 0.3286 0.3295 0.3314

R 0.5738 0.0024 0.5818 0.0002 0.5820 0.0002 0.5823 0.0002 0.1914 95.20% 0.0520 0.0521 0.0523

30, 40, 30

25, 30, 22 20, 24, 20

α1 0.8229 0.0308 0.8107 0.0126 0.8087 0.0125 0.8047 0.0122 0.6824 95.00% 0.4215 0.4232 0.4261

α2 5.2341 1.2492 4.9958 0.0200 4.9932 0.0200 4.9880 0.0202 4.2884 95.00% 0.5420 0.5400 0.5509

α3 12.2260 3.7063 11.9974 0.0212 11.9946 0.0213 11.9891 0.0214 7.5020 95.00% 0.5633 0.5657 0.5616

λ 1.5096 0.0175 1.5054 0.0069 1.5040 0.0069 1.5010 0.0068 0.5181 95.00% 0.3188 0.3182 0.3167

R 0.5746 0.0016 0.5800 0.0002 0.5803 0.0002 0.5808 0.0002 0.1527 95.00% 0.0560 0.0554 0.0552

27, 35, 26 23, 30, 23

α1 0.8350 0.0298 0.8013 0.0089 0.8000 0.0088 0.7975 0.0088 0.6634 95.40% 0.3535 0.3516 0.3475

α2 5.3222 0.9419 5.0056 0.0122 5.0039 0.0122 5.0006 0.0122 4.1500 95.40% 0.4298 0.4321 0.4286

α3 12.2497 1.7810 11.9989 0.0143 11.9973 0.0143 11.9940 0.0144 6.5668 95.40% 0.4754 0.4728 0.4689

λ 1.5176 0.0168 1.5040 0.0059 1.5029 0.0059 1.5007 0.0059 0.5025 95.40% 0.2907 0.2918 0.2929

R 0.5723 0.0013 0.5811 0.0002 0.5812 0.0002 0.5816 0.0002 0.1394 95.40% 0.0482 0.0478 0.0480

2

20, 25, 15

15, 18, 12 12, 16, 10

α1 0.8742 0.0514 0.8041 0.0133 0.8021 0.0132 0.7982 0.0131 0.8402 95.60% 0.4472 0.4478 0.4468

α2 5.4432 2.3905 4.9916 0.0199 4.9891 0.0199 4.9840 0.0201 5.8123 95.40% 0.5518 0.5563 0.5516

α3 12.9312 9.1114 12.0084 0.0244 12.0055 0.0243 11.9996 0.0243 11.2667 95.60% 0.6050 0.6027 0.6014

λ 1.5469 0.0323 1.4974 0.0096 1.4957 0.0096 1.4922 0.0096 0.6804 95.40% 0.3929 0.3924 0.3888

R 0.5730 0.0023 0.5812 0.0003 0.5814 0.0003 0.5820 0.0002 0.1862 95.60% 0.0639 0.0637 0.0636

17, 22, 14 15, 20, 12

α1 0.8560 0.0501 0.7986 0.0102 0.7972 0.0101 0.7945 0.0101 0.8350 94.80% 0.3881 0.3887 0.3886

α2 5.3897 2.1790 4.9994 0.0129 4.9978 0.0129 4.9947 0.0129 5.5868 94.20% 0.4366 0.4356 0.4377

α3 12.6666 5.1642 12.0019 0.0136 12.0003 0.0135 11.9970 0.0135 9.5871 94.80% 0.4329 0.4348 0.4344

λ 1.5270 0.0270 1.5003 0.0064 1.4991 0.0064 1.4968 0.0064 0.6357 94.20% 0.3010 0.3024 0.3051

R 0.5718 0.0022 0.5816 0.0002 0.5818 0.0002 0.5822 0.0002 0.1790 94.80% 0.0533 0.0528 0.0525

30, 40, 30

25, 30, 22 20, 24, 20

α1 0.8469 0.0309 0.8056 0.0111 0.8036 0.0110 0.7997 0.0109 0.6650 95.40% 0.3944 0.3935 0.3911

α2 5.2695 1.1245 4.9884 0.0200 4.9856 0.0201 4.9802 0.0204 4.0244 94.80% 0.5569 0.5573 0.5509

α3 12.2875 3.8795 11.9932 0.0213 11.9903 0.0214 11.9845 0.0215 7.6459 95.40% 0.5772 0.5785 0.5787

λ 1.5197 0.0150 1.5078 0.0069 1.5063 0.0068 1.5034 0.0068 0.4748 94.80% 0.3096 0.3092 0.3105

R 0.5722 0.0014 0.5807 0.0002 0.5810 0.0002 0.5815 0.0002 0.1413 95.40% 0.0535 0.0536 0.0540

27, 35, 26 23, 30, 23

α1 0.8382 0.0302 0.8075 0.0083 0.8062 0.0082 0.8037 0.0081 0.6581 94.60% 0.3504 0.3463 0.3435

α2 5.2528 1.1020 5.0078 0.0125 5.0061 0.0124 5.0027 0.0124 3.9272 95.60% 0.4439 0.4424 0.4393

α3 12.1636 1.1223 11.9998 0.0140 11.9981 0.0140 11.9946 0.0140 6.7565 94.60% 0.4503 0.4444 0.4456

λ 1.5169 0.0146 1.4989 0.0052 1.4979 0.0052 1.4958 0.0052 0.4693 95.60% 0.2851 0.2861 0.2842

R 0.5761 0.0013 0.5802 0.0002 0.5804 0.0001 0.5807 0.0001 0.1377 94.60% 0.0477 0.0474 0.0469
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Table 4. AvE and MSE for estimation methods: Case III.

α1 = 0.3, α2 = 2, α3 = 15, λ = 0.5

T1 = 3.5, T2 = 3, T3 = 6 ML SELF Linex c = −0.5 Linex c = 1.5 ML SELF c = −0.5 c = 1.5

Scheme n1, n2, n3 m1, m2, m3 k1, k2, k3 AvE MSE AvE MSE AvE MSE AvE MSE L.CI CP L.CCI L.CCI L.CCI

1

20, 25, 15

15, 18, 12 12, 16, 10

α1 0.3166 0.0071 0.3148 0.0068 0.3134 0.0067 0.3106 0.0064 0.3232 95.40% 0.2974 0.2950 0.2912

α2 2.1113 0.2775 1.9928 0.0193 1.9902 0.0194 1.9851 0.0197 2.0204 96.20% 0.5380 0.5395 0.5349

α3 15.1804 0.9295 15.0086 0.0237 15.0057 0.0235 14.9999 0.0233 3.7162 95.40% 0.5848 0.5859 0.5892

λ 0.5089 0.0035 0.5081 0.0028 0.5072 0.0027 0.5055 0.0027 0.2298 96.20% 0.1908 0.1904 0.1895

R 0.7461 0.0010 0.7491 0.0009 0.7495 0.0009 0.7504 0.0009 0.1202 95.40% 0.1097 0.1096 0.1087

17, 22, 14 15, 20, 12

α1 0.3119 0.0056 0.3061 0.0044 0.3051 0.0043 0.3032 0.0043 0.2887 96.20% 0.2471 0.2460 0.2461

α2 2.1496 0.2802 2.0004 0.0125 1.9989 0.0125 1.9958 0.0125 1.9925 95.20% 0.4500 0.4494 0.4458

α3 15.0655 0.6932 14.9944 0.0133 14.9927 0.0133 14.9893 0.0135 3.2570 96.20% 0.4373 0.4400 0.4415

λ 0.5055 0.0029 0.5021 0.0025 0.5015 0.0025 0.5002 0.0025 0.2087 95.20% 0.1977 0.1976 0.1959

R 0.7467 0.0008 0.7522 0.0006 0.7525 0.0006 0.7531 0.0006 0.1067 96.20% 0.0907 0.0901 0.0897

30, 40, 30

25, 30, 22 20, 24, 20

α1 0.3118 0.0040 0.3139 0.0043 0.3128 0.0042 0.3108 0.0041 0.2435 95.20% 0.2401 0.2388 0.2377

α2 2.0837 0.1850 2.0001 0.0205 1.9975 0.0205 1.9923 0.0205 1.6556 95.40% 0.5507 0.5522 0.5557

α3 15.1172 1.1520 15.0028 0.0217 14.9999 0.0217 14.9941 0.0218 4.1865 95.20% 0.5453 0.5459 0.5549

λ 0.5020 0.0018 0.5022 0.0014 0.5016 0.0014 0.5006 0.0014 0.1686 95.40% 0.1489 0.1484 0.1467

R 0.7481 0.0006 0.7491 0.0006 0.7494 0.0006 0.7501 0.0005 0.0924 95.20% 0.0886 0.0884 0.0886

27, 35, 26 23, 30, 23

α1 0.3081 0.0039 0.3039 0.0036 0.3032 0.0035 0.3016 0.0035 0.2432 94.40% 0.2244 0.2237 0.2223

α2 2.0500 0.1520 2.0008 0.0122 1.9992 0.0122 1.9959 0.0123 1.5171 95.20% 0.4266 0.4288 0.4296

α3 15.0618 0.9047 15.0049 0.0128 15.0033 0.0127 15.0001 0.0127 3.7243 94.40% 0.4193 0.4192 0.4187

λ 0.4987 0.0015 0.5014 0.0014 0.5010 0.0014 0.5002 0.0014 0.1518 95.20% 0.1503 0.1505 0.1510

R 0.7493 0.0006 0.7529 0.0005 0.7531 0.0005 0.7537 0.0005 0.0931 94.40% 0.0824 0.0825 0.0821

2

20, 25, 15

15, 18, 12 12, 16, 10

α1 0.3189 0.0071 0.3121 0.0047 0.3108 0.0046 0.3084 0.0045 0.2983 95.80% 0.2414 0.2399 0.2371

α2 2.0828 0.2477 1.9838 0.0222 1.9809 0.0224 1.9752 0.0227 1.9258 95.40% 0.5688 0.5659 0.5681

α3 15.1029 0.5541 14.9962 0.0203 14.9935 0.0203 14.9880 0.0204 2.2510 95.80% 0.5643 0.5609 0.5610

λ 0.5042 0.0029 0.5056 0.0024 0.5048 0.0023 0.5033 0.0023 0.2101 95.40% 0.1847 0.1842 0.1828

R 0.7441 0.0009 0.7496 0.0006 0.7500 0.0006 0.7508 0.0006 0.1105 95.80% 0.0924 0.0925 0.0925

17, 22, 14 15, 20, 12

α1 0.3180 0.0061 0.3018 0.0046 0.3009 0.0045 0.2990 0.0044 0.2322 94.60% 0.2471 0.2469 0.2440

α2 2.1092 0.2276 2.0018 0.0136 2.0001 0.0136 1.9968 0.0136 1.8222 94.60% 0.4706 0.4693 0.4651

α3 15.0212 0.3295 14.9973 0.0137 14.9956 0.0137 14.9923 0.0137 2.0893 94.60% 0.4469 0.4477 0.4434

λ 0.5030 0.0025 0.5036 0.0023 0.5029 0.0024 0.5016 0.0024 0.1974 94.60% 0.1927 0.1921 0.1904

R 0.7456 0.0009 0.7538 0.0006 0.7541 0.0006 0.7547 0.0006 0.1017 94.60% 0.0919 0.0921 0.0917

30, 40, 30

25, 30, 22 20, 24, 20

α1 0.3107 0.0037 0.3096 0.0035 0.3087 0.0034 0.3067 0.0034 0.2366 95.80% 0.2227 0.2219 0.2201

α2 2.0320 0.1328 1.9892 0.0221 1.9866 0.0222 1.9815 0.0226 1.4245 95.20% 0.5694 0.5654 0.5668

α3 15.1021 0.7021 14.9879 0.0204 14.9853 0.0205 14.9801 0.0207 3.2634 95.80% 0.5299 0.5313 0.5318

λ 0.5005 0.0014 0.5027 0.0012 0.5022 0.0012 0.5013 0.0012 0.1474 95.20% 0.1336 0.1333 0.1332

R 0.7489 0.0006 0.7502 0.0005 0.7505 0.0005 0.7512 0.0005 0.0901 95.80% 0.0820 0.0817 0.0806

27, 35, 26 23, 30, 23

α1 0.3117 0.0038 0.3086 0.0035 0.3078 0.0034 0.3062 0.0033 0.2368 95.60% 0.2151 0.2136 0.2131

α2 2.0803 0.1250 2.0017 0.0120 2.0002 0.0120 1.9972 0.0120 1.4086 96.00% 0.4076 0.4062 0.4030

α3 15.0494 0.4042 14.9978 0.0131 14.9961 0.0131 14.9928 0.0132 2.4872 95.60% 0.4394 0.4412 0.4450

λ 0.5065 0.0014 0.5055 0.0013 0.5051 0.0012 0.5043 0.0013 0.1437 96.00% 0.1406 0.1406 0.1401

R 0.7482 0.0005 0.7510 0.0005 0.7513 0.0005 0.7519 0.0005 0.0882 95.60% 0.0805 0.0792 0.0776
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Table 5. AvE and MSE for estimation methods: Case IV.

α1 = 0.7, α2 = 3, α3 = 8, λ = 2

T1 = 1, T2 = 1.5, T3 = 1.9 ML SELF Linex c = −0.5 Linex c = 1.5 ML SELF c = −0.5 c = 1.5

Scheme n1, n2, n3 m1, m2, m3 k1, k2, k3 AvE MSELF AvE MSE AvE MSE AvE MSE L.CI CP L.CCI L.CCI L.CCI

1

20, 25, 15

15, 18, 12 12, 16, 10

α1 0.7635 0.0417 0.7033 0.0123 0.7014 0.0123 0.6975 0.0122 0.7611 95.00% 0.4289 0.4289 0.4266

α2 3.3870 1.3437 3.0005 0.0210 2.9978 0.0210 2.9925 0.0211 4.2876 95.80% 0.5508 0.5480 0.5441

α3 9.3616 9.3014 7.9996 0.0227 7.9967 0.0227 7.9910 0.0228 10.2762 95.00% 0.5867 0.5911 0.5934

λ 2.0807 0.1086 2.0015 0.0137 1.9994 0.0136 1.9953 0.0135 1.2539 95.80% 0.4473 0.4472 0.4465

R 0.5523 0.0033 0.5542 0.0005 0.5546 0.0005 0.5553 0.0005 0.2251 95.00% 0.0855 0.0851 0.0846

17, 22, 14 15, 20, 12

α1 0.7647 0.0404 0.7022 0.0092 0.7008 0.0092 0.6980 0.0091 0.7185 96.00% 0.3731 0.3725 0.3693

α2 3.4365 1.0365 2.9949 0.0129 2.9933 0.0129 2.9901 0.0130 4.2520 94.80% 0.4327 0.4321 0.4262

α3 9.3034 7.5958 7.9983 0.0145 7.9966 0.0145 7.9933 0.0145 9.3445 96.00% 0.4664 0.4658 0.4637

λ 2.1014 0.1045 1.9955 0.0091 1.9942 0.0091 1.9917 0.0091 1.2043 94.80% 0.3827 0.3830 0.3834

R 0.5507 0.0031 0.5544 0.0004 0.5546 0.0004 0.5551 0.0004 0.2131 96.00% 0.0735 0.0733 0.0726

30, 40, 30

25, 30, 22 20, 24, 20

α1 0.7336 0.0233 0.7089 0.0124 0.7069 0.0123 0.7028 0.0120 0.5846 95.40% 0.4094 0.4129 0.4123

α2 3.2429 0.6714 2.9939 0.0213 2.9913 0.0214 2.9861 0.0215 3.0707 94.60% 0.5588 0.5627 0.5669

α3 8.8894 6.9282 7.9936 0.0239 7.9908 0.0239 7.9852 0.0240 9.7209 95.40% 0.6159 0.6138 0.6050

λ 2.0719 0.0705 2.0018 0.0107 1.9999 0.0107 1.9961 0.0106 1.0027 94.60% 0.4126 0.4123 0.4110

R 0.5550 0.0021 0.5531 0.0005 0.5534 0.0005 0.5542 0.0005 0.1794 95.40% 0.0821 0.0821 0.0823

27, 35, 26 23, 30, 23

α1 0.7285 0.0228 0.7030 0.0085 0.7017 0.0085 0.6991 0.0084 0.5824 95.80% 0.3447 0.3438 0.3420

α2 3.1671 0.4801 3.0004 0.0147 2.9987 0.0147 2.9953 0.0147 2.6385 95.40% 0.4820 0.4778 0.4715

α3 8.8246 6.8463 8.0027 0.0138 8.0009 0.0137 7.9975 0.0137 9.7439 95.80% 0.4601 0.4616 0.4614

λ 2.0596 0.0542 2.0090 0.0077 2.0077 0.0077 2.0051 0.0076 0.8830 95.40% 0.3385 0.3401 0.3398

R 0.5561 0.0020 0.5542 0.0003 0.5545 0.0003 0.5549 0.0003 0.1762 95.80% 0.0693 0.0694 0.0691

2

20, 25, 15

15, 18, 12 12, 16, 10

α1 0.7424 0.0440 0.6994 0.0140 0.6972 0.0139 0.6928 0.0138 0.8062 95.00% 0.4481 0.4468 0.4455

α2 3.3167 1.1318 2.9927 0.0231 2.9898 0.0232 2.9840 0.0234 3.9853 93.80% 0.5616 0.5655 0.5752

α3 9.0436 8.0346 8.0055 0.0240 8.0025 0.0240 7.9965 0.0239 12.3747 95.00% 0.5922 0.5976 0.6043

λ 2.0710 0.1091 2.0011 0.0115 1.9991 0.0114 1.9952 0.0114 1.2656 93.80% 0.4100 0.4117 0.4110

R 0.5497 0.0039 0.5554 0.0006 0.5558 0.0006 0.5566 0.0006 0.2457 95.00% 0.0902 0.0905 0.0910

17, 22, 14 15, 20, 12

α1 0.7570 0.0405 0.6884 0.0093 0.6870 0.0093 0.6842 0.0094 0.7854 97.00% 0.3788 0.3766 0.3752

α2 3.3983 1.1182 3.0062 0.0146 3.0044 0.0146 3.0007 0.0145 3.8439 95.00% 0.4559 0.4555 0.4568

α3 9.0610 5.5269 8.0105 0.0151 8.0088 0.0150 8.0054 0.0149 12.9750 97.00% 0.4761 0.4733 0.4721

λ 2.1042 0.0983 2.0007 0.0094 1.9993 0.0094 1.9966 0.0094 1.1605 95.00% 0.3820 0.3808 0.3814

R 0.5588 0.0039 0.5572 0.0004 0.5575 0.0004 0.5580 0.0004 0.2452 97.00% 0.0759 0.0757 0.0755

30, 40, 30

25, 30, 22 20, 24, 20

α1 0.7416 0.0243 0.7076 0.0110 0.7057 0.0109 0.7019 0.0107 0.5900 95.40% 0.4090 0.4082 0.4065

α2 3.2292 0.7106 2.9957 0.0202 2.9931 0.0202 2.9878 0.0203 3.1832 94.80% 0.5459 0.5466 0.5530

α3 8.7951 6.3867 8.0028 0.0251 7.9997 0.0251 7.9935 0.0251 10.1981 95.40% 0.5956 0.6037 0.6049

λ 2.0479 0.0693 1.9991 0.0109 1.9972 0.0109 1.9936 0.0109 1.0160 94.80% 0.4072 0.4057 0.4051

R 0.5510 0.0024 0.5534 0.0004 0.5537 0.0004 0.5544 0.0004 0.1919 95.40% 0.0787 0.0792 0.0793

27, 35, 26 23, 30, 23

α1 0.7443 0.0228 0.6970 0.0087 0.6956 0.0087 0.6928 0.0087 0.5634 94.80% 0.3635 0.3610 0.3605

α2 3.2176 0.6404 2.9913 0.0140 2.9895 0.0141 2.9860 0.0143 3.0219 96.20% 0.4573 0.4604 0.4599

α3 7.9332 4.1515 7.9981 0.0144 7.9964 0.0144 7.9931 0.0144 10.5878 94.80% 0.4555 0.4552 0.4541

λ 2.0655 0.0674 2.0035 0.0079 2.0023 0.0079 1.9998 0.0079 0.9862 96.20% 0.3512 0.3504 0.3508

R 0.5533 0.0023 0.5554 0.0003 0.5557 0.0003 0.5562 0.0004 0.1895 94.80% 0.0706 0.0705 0.0707
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Figure 3. Heatmaps of MSE for parameters and R based on different estimation methods: Case III
and IV.

6. Application of Transformer Insulation Data

This section examines an actual dataset in order to demonstrate the methodologies
proposed in the previous sections. This dataset is also used to display the EED based on
the GPHC method. The findings of a stress–strength life test of transformer insulation
were published in chapter three of Nelson’s book [45]. The test included three levels of
voltage, which were 35:4 kv, 42:4 kv, and 46:7 kv, respectively, with a normal voltage of
14:4 kv. When 42:4 kv, the data are 0.6, 13.4, 15.2, 19.9, 25.0, 30.2, 32.8, 44.4, and 56.2. When
46:7 kv, the data are 3.1, 8.3, 8.9, 9.0, 13.6, 14.9, 16.1, 16.9, 21.3, and 48.1. When 35:4 kv,
the data are 40.1, 59.4, 71.2, 166.5, 204.7, 229.7, 308.3, and 537.9. We want to calculate the
reliability of the stress–strength model P(X < Y < Z). Firstly, Table 6 provides the values
of the estimate with different measures as the Kolmogorov–Smirnov (KS) statistic along
with its p-value, Akaike information criterion (AIC), Bayesian information criterion (BIC),
corrected AIC (CAIC), and Hannan–Quinn information criterion (HQIC) for the EED based
on each sample of the dataset. The EED fits each dataset according to the KS test and the
accompanying p-value. We have also included two plots based on the estimated model. On
the left, the estimated and the empirical CDF of the EED are displayed, and on the right,
the P-P plot estimated of the EED is displayed, see Figures 4–6 for each dataset, respectively.
Figures 4–6 prove the fitting of each sample to show how each sample fits into the EED. The
ML and Bayesian estimators via the complete sample are listed in Table 7. We notice that
the standard error (SE) of the Bayesian estimates is lower than others for the ML estimates.
Thus, the Bayesian estimation is the optimum estimation of the parameters for the EED
based on the GPHC. The reliability of P(X < Y < Z) of the Bayesian estimation method is
higher than that of the ML process, proving the stated conclusion.

Table 6. ML and Bayesian estimates for reliability in stress–strength model based on complete sample.

Estimates SE KS p-Value AIC CAIC BIC HQIC

X
α1 1.3044 0.5729

0.2396 0.5994 80.5804 82.5804 80.9749 79.7292
λ 0.0443 0.0173

Y
α2 4.7666 2.7156

0.1927 0.8322 60.9491 62.9491 61.3435 60.0979
λ 0.1769 0.0537

Z
α3 1.8149 0.9348

0.1901 0.8864 103.7330 106.1330 103.8919 102.6614
λ 0.0070 0.0028
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Figure 4. Empirical CDF and P-P plots for the EED for dataset 1.
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Figure 5. Empirical CDF and P-P plots for the EED for dataset 2.
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Figure 6. Empirical CDF and P-P plots for the EED for dataset 3.

It is first assumed that X ∼ EED(λ, α1), Y ∼ EED(λ, α2), and Z ∼ EED(λ, α3).
Following that, these are the ML estimates for the unknown parameters: α1 = 0.6089,
α2 = 0.4964, α3 = 3.5237, and λ = 0.0131; and L0 = −129.9995 for the corresponding
log-likelihood value. Second, assume that X ∼ EED(λ1, α1), Y ∼ EED(λ2, α2), and
Z ∼ EED(λ3, α3). The following are the ML estimates for the unknown parameters:
α1 = 1.3049, α2 = 4.7632, α3 = 1.8156, λ1 = 0.0443, λ2 = 0.1768, and λ3 = 0.0071; and
L1 = −116.6313 for the corresponding log-likelihood value. The following tests of the
hypotheses are conducted by us:

H0 : λ1 = λ2 = λ3; H1 : λ1 6= λ2 6= λ3

Then, the likelihood ratio tests value is −2(L0 − L1) = −26.73644 in this instance,
with degrees of freedom as 2 (difference in the number of parameters for the two models).
Moreover, the p-value of the Chi-squared test is one; therefore, the null hypothesis cannot
be rejected. As a result, H0 is a valid assumption in this situation.
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Table 7. ML and Bayesian estimates for stress–strength model based on complete sample.

ML Bayesian

Estimates SELF Lower Upper Estimates SELF Lower Upper

α1 0.6170 0.2216 0.1827 1.0513 0.6506 0.1647 0.2896 1.0329

α2 0.5031 0.1781 0.1540 0.8523 0.5416 0.1716 0.2189 0.8249

α3 3.6845 1.7466 0.2612 7.1077 4.0167 1.6591 1.0943 7.0266

λ 0.0136 0.0035 0.0067 0.0204 0.0145 0.0033 0.0082 0.0202

R 0.3445 0.3503

Figure 7 depicts the trace and normal curve of the posterior distribution for the MCMC
estimate of the stress–strength model for the EED based on the GPHC. The MCMC samples
are shown as a pairs plot in Figure 8, which displays the pairwise relationship between
the parameters in the top plot, the correlation coefficients in the bottom plot, and the
marginal frequency distribution for each parameter on the diagonal. Moreover, as shown
in Figure 9, for the reliability stress–strength estimate for the EED based on the complete
sample, convergence begins at 2000 iterations or fewer. The MCMC samples are displayed
as a pairs plot in Figure 8, which depicts the pairwise relationship between the parameters
as independent, with the scatter plots matrix in the top plot, the correlation coefficients
in the bottom plot, and the marginal frequency distribution for each parameter on the
diagonal. The parameters P3 and P4 are shown to be medially connected in this diagram,
where p1 is an α1, p2 is an α2, p3 is an α3, and p4 is a λ.

For each component of this model, we suggested using the following GPHC sample:
X = (0.6, 13.4, 15.2, 19.9, 25.0, 30.2, 32.8, 44.4), Y = (3.1, 8.3, 8.9, 9.0, 13.6, 14.9, 16.1),
Z = (40.1, 59.4, 71.2, 166.5, 204.7, 229.7, 308.3), R1 = (0, 0, 0, 0, 0, 0, 0, 1, 0), R2 = (0, 0, 0, 0, 0,
0, 0, 0, 1), and R3 = (0, 0, 0, 0, 0, 0, 0, 2).

The ML and Bayesian estimations of the EED parameters based on the GPHC sample
of the stress–strength model are discussed in Table 8. The trace and normal curve of the
posterior distribution for the MCMC estimate of the stress–strength for the EED based
on the GPHC are shown in Figure 10. The MCMC samples are given as a pairs plot in
Figure 11, which illustrates the pairwise relationship between the parameters in the top
plot, the correlation coefficients in the bottom plot, and the marginal frequency distribution
for each parameter on the diagonal. Moreover, as shown in Figure 12, for the reliability
stress–strength estimate of the stress–strength model for the EED based on the censored
sample, convergence begins at 2000 iterations or less.
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Figure 7. Trace and normal curve of posterior distribution for MCMC estimation of stress–strength
for EED based on complete sample.
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Figure 8. Pairs plots of the MCMC samples for parameter estimates of stress–strength for EED based
on complete sample.
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Figure 9. Trace and normal curve of posterior distribution for MCMC estimation of reliability
stress–strength for EED based on complete sample.

Table 8. ML and Bayesian estimates for reliability of stress–strength model.

ML Bayesian

T1, T2, T3 Estimates SELF Lower Upper Estimates SELF Lower Upper

25,60,550

α1 0.5577 0.2012 0.1633 0.9520 0.5817 0.1833 0.2593 0.9484

α2 0.5039 0.1797 0.1517 0.8562 0.5618 0.1739 0.2327 0.8495

α3 2.7259 1.3152 0.1481 5.3037 3.4225 1.5595 0.9334 5.6519

λ 0.0105 0.0031 0.0044 0.0166 0.0118 0.0030 0.0062 0.0168

R 0.3416 0.3683

20,50,500

α1 0.5726 0.2067 0.1674 0.9778 0.6069 0.2007 0.2482 0.9376

α2 0.5116 0.1826 0.1537 0.8695 0.5740 0.1720 0.2101 0.8999

α3 2.9021 1.4057 0.1468 5.6573 3.6067 1.3633 1.0457 5.1271

λ 0.0111 0.0032 0.0047 0.0174 0.0124 0.0023 0.0067 0.0169

R 0.3435 0.3662
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Figure 10. Convergence plots of MCMC for parameter estimates of the EED for censored sample.

Figure 11. Pairs plot of the MCMC samples for parameter estimates of stress–strength for EED based
on complete sample.
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stress–strength for EED based on censored sample.
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7. Summary and Conclusions

In this study, the statistical inference of R = P(X < Y < Z) for a component which
has a strength that is independent on opposite lower and upper bound stresses, when the
stresses and strength follow EED is discussed. We assume that both stresses and strength
random variables are independent, having EED with a common scale parameter. Using the
generalized progressive hybrid censoring design, various point and interval estimators for
the reliability model R are obtained in view of the ML and Bayesian approaches. Bayesian
estimators are achieved by the MCMC method, as well as the MH algorithm, based on
SELF and Linex loss functions, which are all conducted in light of informative priors. The
CIs are derived using asymptotic distribution theory as well as Bayes credible intervals
being constructed. The Monte Carlo simulation is conducted for the comparison of the
effectiveness of the proposed estimates through some measures, such as average values,
MSE, and CIs lengths. The outcomes of the study showed that the Bayes estimates produce
a lower MSE for four parameters and stress–strength reliability based on a generalized
progressive hybrid censoring scheme. Finally, a progressively censored real dataset is
presented for illustration purposes. More in-depth studies, such as the application of
the Bayesian estimation for the exponentiated exponential distribution based on various
schemes, should be discussed in the future.
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