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Abstract: In this paper, the effect of fuzzy time series on estimates of the spectral, bispectral and
normalized bispectral density functions are studied. This study is conducted for one of the integer
autoregressive of order one (INAR(1)) models. The model of interest here is the dependent counting
geometric INAR(1) which is symbolized by (DCGINAR(1)). A realization is generated for this model
of size n = 500 for estimation. Based on fuzzy time series, the forecasted observations of this model
are obtained. The estimators of spectral, bispectral and normalized bispectral density functions
are smoothed by different one- and two-dimensional lag windows. Finally, after the smoothing,
all estimators are studied in the case of generated and forecasted observations of the DCGINAR(1)
model. We investigate the contribution of the fuzzy time series to the smoothing of these estimates
through the results.

Keywords: fuzzy sets; fuzzy time series; forecasted observations; INAR(1); DCGINAR(1); moments;
cumulants; spectrum; bispectrum; Parzen lag window; Daniell lag window; Tukey–Hamming
lag window
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1. Introduction

The integer-valued time series has played an important role in statistical research
in the last few decades. This series is fairly common, such as the number of births at
a hospital in successive months, count of chromosome interchanges in cells, count of
accidents, number of transmitted messages, count of patients and so on. There have
been many attempts in modeling such series through history. Particularly attractive is
the integer-valued autoregressive (INAR) model introduced by [1]. The INAR model
is based on a binomial thinning operator generated by Bernoulli-distributed counting
series. It considers the present amount of data as the sum of those that remained from
the previous period, and those that entered in the observed period. This model was
further developed by several authors, for example [2–10]. Models based on negative
binomial thinning operator generated by geometric distributed counting series were also
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considered [11–14]. Integer-valued time series generated by mixtures of binomial and
negative binomial thinning operators are considered in [15,16]. The common feature
of all these models is the assumption of independence of the count variables. Some
generalizations concerning relaxing the assumption of independence can be found in [17].
Ref. [18] introduced a new stationary first-order INAR process with geometric marginals
based on the generalized binomial thinning operator, which contains dependent Bernoulli
counting series. He relaxed the assumption of independence underlying the basic INAR
model and made the model more readily available for applications in practice. Ref. [19]
studied some higher order moments, spectral and bispectral density functions for some
integer autoregressive of order one (INAR(1)) models. Among these models, the model
of interest in this article is the dependent counting geometric INAR(1) (DCGINAR(1)).
Ref. [20] studied some statistical measures, spectral and bispectral density functions for the
zero truncated Poisson integer-valued autoregressive process with estimations. Regarding
the fuzzy time series, there are a wide range of uses and applications, as shown in the
works [21–28]. As for the estimation, we find that [29] used the fuzzy time series for the
estimation of unknown parameters for non-stationary linear processes. Ref. [30] studied
the effect of fuzzy time series technique on estimates of spectral analysis. Our goal in this
paper is to see the effect of fuzzy time series on improving the smoothing of integer-valued
time series estimates. We use the proposed method in [31] to convert the ordinary time
series which is generated from the DCGINAR(1) model into fuzzy time series, and forecast
observations for the last series. For this model, the estimates of the spectral, bispectral,
and normalized bispectral density functions are smoothed using different lag windows
(such as Parzen, Tukey–Hamming and Daniell lag windows). This estimation is also
performed in two situations: generated observations from the DCGINAR(1) model and
forecasted observations using the fuzzy time series method. By comparing the two cases
through results and figures, we explore how fuzzy time series contribute to the smoothing
of these estimates.

2. Basic Definitions in Fuzzy Time Series Methods

In the following section, we will briefly review some of the fundamental concepts
fuzzy time series from [32,33]. The main difference between the fuzzy time series and
conventional time series is that the values of the former are fuzzy sets, while the values of
the latter are real numbers.

Definition 1 (The Universe of Discourse). All elements in a set are taken from a universe of
discourse or universe set that contains all the elements that can be taken into consideration when the
set is formed.

Definition 2 (Fuzzy Set). Fuzzy sets are the sets whose elements have a degree of membership.
Let U be the universe of discourse, U = u1, u2, . . . , un and let A be a fuzzy set in the universe of
discourse U defined as follows:

A = fA(u1)/(u1)+ fA(u2)/(u2) + . . . + fA(un)/(un)

where fA is the membership function of A, fA : U → [0, 1], fA(ui) indicates the grade of member-
ship of ui in the fuzzy set A, fA(ui) ∈ [0, 1], and 1 ≤ i ≤ n,.

Definition 3 (Fuzzy Time Series). Let Xt(t = . . . , 0, 1, 2, . . .), a subset of real numbers, be the
universe of discourse on which fuzzy sets fi(t)(i = 1, 2, . . .) are defined. If F(t) is a collection of
fi(t)(i = 1, 2, . . .), then F(t) is called a fuzzy time series on Xt(t = . . . , 0, 1, 2, . . .).

Proposed Method

In this section, we present a method for Chen (see [31]) to convert the ordinary time
series into fuzzy time series and forecasting observation for the last series. This method
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aimed to attain better forecasting accuracy by using fuzzy time series and summarized in
the following six steps:

1. Define the universe of discourse (set of observations which generated by the selected
model in this paper) and partition it into equally lengthy intervals.

2. Calculate the number of observations in each interval, and by doing so, there will
be a re-division for each interval based on the number of observations contained in
this interval.

3. Define linguistic values represented by fuzzy set Ai based on the redivided intervals.
4. Fuzzify the actual observations.
5. Identify and establish fuzzy logical relationships based on the fuzzified observations.
6. Use set of rules to determine whether the trend of the forecasting goes up or down,

which means we dismantle the fuzzy output into the forecasted output.

This method is too long and difficult to fully mention here; for more details about this
method, see [31].

Note: In step one of this method, Chen used seven intervals of equal lengths to divide
20 observations. Here, we used the number of intervals K = 1 + 3.322× log (n), where n is
the number of observations generated by the model mentioned in this paper, which gave
here better results.

3. The Dependent Counting Geometric INAR(1) Model

Ref. [18] introduced an INAR(1) model based on generalized binomial thinning
operator type-I with a geometric marginal (•θ). A stationary process Xt is said to be
dependent, counting geometric INAR(1) (abbreviated by, DCGINAR(1)), if the following
is satisfied:

Xt = α •θ Xt−1 + εt, t ∈ Z, α, θ ∈ (0, 1), (1)

where the operator •θ is defined as α •θ X = ∑X
i=1 Ui, i ∈ N, {Ui} is a sequence of depen-

dent Bernoulli(α) random variable defined as Ui = (1−Vi)Wi + ViZ, {Wi} is a sequence
of independent and identically distributed random variable with Bernoulli(α) distribu-
tion, {Vi} is a sequence of independent and identically distributed random variable with
Bernoulli(θ) distribution, Z is a random variable with Bernoulli(α) distribution, Wi, Vj and
Z are independent ∀i, j ∈ N and {Ui} are independent of Xl and εm for any i, l and m. Xt
has geometric

( µ
1+µ

)
distribution, µ > 0 and {εt} is a sequence independent and identically

distributed random variables distributed as a mixture of zero and two geometrically ran-
dom variables. This model satisfy these conditions,{εt} is a sequence independent and
identically distributed random variables such that Cov(εt, Xs) = 0, s < t., {Ui} are inde-
pendent of Xj and εk and {Ui} used for generating Xs and Xt, representing the counting
series of the process {Xt} are mutually independent for t 6= s.

The pgf of {Ui},{εt} and {Xt} are given, respectively, by (see [18])

φUi (s) = 1− α + αs,

φε(s) =
(1 + α(1− θ)µ− α(1− θ)µs)(1 + (α + θ − αθ)µ− (α + θ − αθ)µs)

(1 + µ− µs)(1 + (α + θ − 2αθ)µ− (α + θ − 2αθ)µs)
,

φX(s) =
1

1 + µ− µs
.

The mean and variance of {Xt} and {εt} are respectively given by µX = µ, σ2
X =

µ(1+µ), µε = (1− α)µ, σ2
ε = (1− α)µ(1+(1+ α− 2αθ2)µ). The second and third moments

of {εt} are respectively calculated as

E(ε2
t ) = (1− α)µ + 2(α− 1)(αθ2 − 1)µ2, (2)

E(ε3
t ) = (1− α)µ + 6(α− 1)(αθ2 − 1)µ2 − 6(α− 1)(−α2θ2 + 2α2θ3 − αθ3 − αθ2 + 1)µ3. (3)
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For more details about the properties of the operator •θ and the model, see [18].

3.1. Higher Order Joint Moments And Cumulants Up To Order Three

Theorem 1. Let {Xt} be a stationary process satisfying (1), then:
The second-order joint moment is

µ(s) = αs
[
µ(0) − µ2

]
+ µ2 = αsµ(1 + µ) + µ2, s ≥ 0 and µ(0) = µ(1 + 2µ).

Then, the second-order joint central moment (cumulant) is

C2(s) = αsC2(0) = αsµ(1 + µ), s ≥ 0.

The third-order joint moments are

µ(0,0) = µ(1 + 6µ + 6µ2),

µ(0,s) = αs[µ(0,0) − µµ(0)] + µµ(0) = µ2(1 + 2µ) + αsµ(1 + 5µ + 4µ2), s ≥ 0,

µ(s,s) =
[
α(α + (1− α)θ2)

]s
µ(0,0) +

[
α(1− α)(1− θ2) + 2αµε

]
(µ(0) − µ2)

[ αs − (α(α + (1− α)θ2))s

α(1− [α(α + (1− α)θ2)])

]
+

([
α(1− α)(1− θ2) + 2αµε

]
µ2 + µ

[
µ2

ε + σ2
ε

])[1− [α(α + (1− α)θ2)]s

1− [α(α + (1− α)θ2)]

]
,

µ(s,τ) = ατ−s(µ(s,s) − µ(s)µ) + µ(s)µ, τ > s.

Then, the third-order joint central moments (cumulants) are

C3(0, 0) = µ(1 + 3µ + 2µ2),

C3(0, s) = αsC3(0, 0) = αsµ(1 + 3µ + 2µ2), s ≥ 0,

C3(s, s) = [α(α + (1− α)θ2)]sC3(0, 0) + [α(1− α)(1− θ2) + 2µα(1− α)θ2]C2(0)
[

αs(1− (α(α + (1− α)θ2))s)

α(1− [α(α + (1− α)θ2)])

]
,

C3(s, τ) = ατ−sC3(s, s).

Proof. This proof is part of the proof of the Theorem (5) in [19].

3.2. Spectral And Bispectral Density Functions

Let fXX(ω) denote the spectral density function of a stationary process {Xt}, defined
as the Fourier transform of the autocovariance function C2(.) of the process,

fXX(ω) =
1

2π

∞

∑
t1=−∞

C2(t1)e−it1ω,−π ≤ ω ≤ π, (4)

also, let fXXX(ω1, ω2) denote the bispectral density function of a stationary process {Xt},
defined as the Fourier transform of the third-order cumulants of the process,

fXXX(ω1, ω2) =
1

(2π)2

∞

∑
t1=−∞

∞

∑
t2=−∞

C3(t1, t2)e−i(t1ω1+t2ω2),−π ≤ ω1, ω2 ≤ π, (5)

then the spectral and bispectral density functions of the DCGINAR(1) process are given in
Theorem 2.
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Theorem 2. Let {Xt} be a stationary process, satisfying (1), then the spectral fXX(ω) and bispec-
tral density functions fXXX(ω1, ω2) are calculated as

fXX(ω) =
µ(1 + µ)(1− α2)

2π(1 + α2 − 2α cos ω)
, −π ≤ ω ≤ π, (6)

fXXX(ω1, ω2) =
1

(2π)2

[
C3(0, 0){1 + F1(−ω1) + F1(−ω2) + F1(ω1 + ω2)}

+

(
C3(0, 0)− [(1−α)(1−θ2)+2µ(1−α)θ2]C2(0)

(1−α(α+(1−α)θ2))

)
{F2(ω1) + F2(ω2) + F2(−ω1 −ω2)}

+

(
[(1−α)(1−θ2)+2µ(1−α)θ2]C2(0)

d(1−α(α+(1−α)θ2))

)
{F1(ω1) + F1(ω2) + F1(−ω1 −ω2)}

×
(

C3(0, 0)− [(1−α)(1−θ2)+2µ(1−α)θ2]C2(0)
(1−α(α+(1−α)θ2))

)
+ {F2(−ω1 −ω2)F1(−ω2) + F2(−ω1 −ω2)F1(−ω1)

+ F2(ω2)F1(−ω2) + F2(ω2)F1(−ω1) + F2(ω1)F1(ω1 + ω2) + F2(ω2)F1(ω1 + ω2)}

+

(
[(1−α)(1−θ2)+2µ(1−α)θ2]C2(0)

(1−α(α+(1−α)θ2))

)
{F1(−ω1 −ω2)F1(−ω2) + F1(−ω1 −ω2)F1(−ω1)

+ F1(ω1)F1(−ω2) + F1(ω2)F1(−ω1) + F1(ω1)F1(ω1 + ω2) + F1(ω2)F1(ω1 + ω2)}
]

,

(7)

where F1(ωk) =
αeiωk

1−αeiωk
and F2(ωk) =

α(α+(1−α)θ2)eiωk

1−(α(α+(1−α)θ2))eiωk
, k = 1, 2 and −π ≤ ω1, ω2 ≤ π.

Proof.

fXX(ω) =
1

2π

∞

∑
t1=−∞

C2(t1)e−it1ω =
1

2π

[
C2(0) +

∞

∑
s=1

C2(s)e−isw +
−1

∑
s=−∞

C2(s)e−isw] = 1
2π

[
C2(0)+

∞

∑
s=1

αsC2(0)e−isw +
∞

∑
s=1

C2(0)eisw] = C2(0)
2π

[
1 +

αe−iw

1− αe−iw +
αeiw

1− αeiw

]
=

C2(0)
2π

[ (1− α2)

(1− αe−iw)(1− αeiw)

]
,

Substituting C2(0) from Theorem 1, the proof of (6) is completed. Now, to prove (7),
we can write fXXX(ω1, ω2) as (see [10])

fXXX(ω1, ω2) =
1

(2π)2

[ ∞

∑
t1=0

∞

∑
t2=t1

C3(t1, t2)e−i(t1ω1+t2ω2) +
∞

∑
t2=0

∞

∑
t1=t2+1

C3(t2, t1)e−i(t1ω1+t2ω2)

+
∞

∑
t1=0

−1

∑
t2=−∞

C3(−t2, t1 − t2)e−i(t1ω1+t2ω2) +
−1

∑
t1=−∞

t1−1

∑
t2=−∞

C3(t1 − t2,−t2)e−i(t1ω1+t2ω2)

+
−1

∑
t2=−∞

−t2

∑
t1=−∞

C3(t2 − t1,−t1)e−i(t1ω1+t2ω2) +
−1

∑
t1=−∞

∞

∑
t2=0

C3(−t1, t2 − t1)e−i(t1ω1+t2ω2)

]
using the symmetry properties of the third order cumulants (see [5]) in the equation above,
then
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fXXX(ω1, ω2) =
1

(2π)2

[
C3(0, 0) +

∞

∑
τ=1

C3(0, τ){e−iτω1 + e−iτω2 + eiτ(ω1+ω2)}

+
∞

∑
τ=1

C3(τ, τ){eiτω1 + eiτω2 + e−iτ(ω1+ω2)}+
∞

∑
s=1

∞

∑
τ=1

C3(s, s + τ)

× {e−isω1−i(s+τ)ω2 + e−isω2−i(s+τ)ω1 + eisω1−iτω2 + eisω2−iτω1 + eiτω1+i(s+τ)ω2 + eiτω2+i(s+τ)ω1}
]

using expressions of C3(0, τ), C3(τ, τ) and C3(s, s + τ) given by Theorem 1, we obtain

fXXX(ω1, ω2) =
1

(2π)2

[
C3(0, 0) +

∞

∑
τ=1

αC3(0, τ − 1){e−iτω1 + e−iτω2 + eiτ(ω1+ω2)}

+
∞

∑
τ=1

[α(α + (1− α)θ2)C3(τ − 1, τ − 1) + α(1− α)(1− θ2 + 2µθ2)C2(τ − 1)]

× {eiτω1 + eiτω2 + e−iτ(ω1+ω2)}+
∞

∑
s=1

∞

∑
τ=1

ατC3(s, s){e−isω1−i(s+τ)ω2

+ e−isω2−i(s+τ)ω1 + eisω1−iτω2 + eisω2−iτω1 + eiτω1+i(s+τ)ω2 + eiτω2+i(s+τ)ω1}
]

where C3(0, 0), C3(0, τ) and C3(s, s) are given by Theorem 1. Hence

fXXX(ω1, ω2) =
1

(2π)2

{
C3(0, 0) +

∞

∑
τ=1

ατC3(0, 0)
[
e−iτω1 + e−iτω2 + eiτ(ω1+ω2)

]
+

∞

∑
τ=1
{[α(α + (1− α)θ2)]τC3(0, 0) + [α(1− α)(1− θ2) + 2µα(1− α)θ2]

× C2(0)[
ατ − (α2(α + (1− α)θ2))τ

α(1− α(α + (1− α)θ2))
]}{eiτω1 + eiτω2 + eiτ(ω1+ω2)}

+
∞

∑
s=1

∞

∑
τ=1

ατ [[α(α + (1− α)θ2)]sC3(0, 0) + [α(1− α)(1− θ2) + 2µα(1− α)θ2]

× C2(0)[
αs − (α2(α + (1− α)θ2))s

α(1− α(α + (1− α)θ2))
]]{e−isω1−i(s+τ)ω2 + e−isω2−i(s+τ)ω1

+ eisω1−iτω2 + eisω2−iτω1 + eiτω1+i(s+τ)ω2 + eiτω2+i(s+τ)ω1}
}

.

All these summations can be evaluated as follows, for example,

∞

∑
τ=1

ατe−iτω1 =
∞

∑
τ=1

(αe−iω1)τ =
αe−iω1

1− αe−iω1
= F1(−ω1),

so, after some calculations and computations for all summations, we have
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fXXX(ω1, ω2) =
1

(2π)2 {C3(0, 0)[1 +
αe−iω1

1− αe−iω1
+

αe−iω2

1− αe−iω2
+

αei(ω1+ω2)

1− αei(ω1+ω2
]

+ [C3(0, 0)− [α(1− α)(1− θ2) + 2µα(1− α)θ2]

α(1− α(α + (1− α)θ2))
]

{ α(α + (1− α)θ2)eiω1

1− (α(α + (1− α)θ2))eiω1
+

α(α + (1− α)θ2)eiω2

1− (α(α + (1− α)θ2))eiω2
+

α(α + (1− α)θ2)e−i(ω1+ω2)

1− (α(α + (1− α)θ2))e−i(ω1+ω2)
}

+ [
[α(1− α)(1− θ2) + 2µα(1− α)θ2]C2(0)

α(1− α)(α + (1− α)θ2)
]{ αeiω1

1− αeiω1
+

αeiω2

1− αeiω2
+

αe−i(ω1+ω2)

1− αe−i(ω1+ω2)
}

+ [C3(0, 0)− [α(1− α)(1− θ2) + 2µα(1− α)θ2]C2(0)
α(1− α(α + (1− α)θ2))

]

{ α(α + (1− α)θ2)e−i(ω1+ω2)

1− (α(α + (1− α)θ2))e−i(ω1+ω2)

αe−iω2

1− αe−iω2
+

α(α + (1− α)θ2)e−i(ω1+ω2)

1− (α(α + (1− α)θ2))e−i(ω1+ω2)

αe−iω1

1− αe−iω1

+
α(α + (1− α)θ2)eiω1

1− (α(α + (1− α)θ2))eiω1

αe−iω2

1− αe−iω2
+

α(α + (1− α)θ2)eiω2

1− (α(α + (1− α)θ2))eiω2

αe−iω1

1− αe−iω1

+
α(α + (1− α)θ2)eiω1

1− (α(α + (1− α)θ2))eiω1

αei(ω1+ω2)

1− αei(ω1+ω2)
+

α(α + (1− α)θ2)eiω2

1− (α(α + (1− α)θ2))eiω2

αei(ω1+ω2)

1− αei(ω1+ω2)
}

+ [
[α(1− α)(1− θ2) + 2µα(1− α)θ2]C2(0)

α(1− α(α + (1− α)θ2))
]{ αe−i(ω1+ω2)

1− αe−i(ω1+ω2)

αe−iω2

1− αe−iω2

+
αe−i(ω1+ω2)

1− αe−i(ω1+ω2)

αe−iω1

1− αe−iω1
+

αeiω1

1− αeiω1

αe−iω2

1− αe−iω2

+
αeiω2

1− αeiω2

αe−iω1

1− αe−iω1
+

αeiω1

1− αeiω1

αei(ω1+ω2)

1− αei(ω1+ω2)
+

αeiω2

1− αeiω2

αei(ω1+ω2)

1− αei(ω1+ω2)
}},

by taking F1(ωk) = αeiωk

1−αeiωk
and F2(ωk) = α(α+(1−α)θ2)eiωk

1−(α(α+(1−α)θ2))eiωk
, k = 1, 2., the proof is com-

plete. The normalized bispectral density function gXXX(ω1, ω2) is calculated as

gXXX(ω1, ω2) =
fXXX(ω1, ω2)√

fXX(ω1) fXX(ω2) fXX(ω1 + ω2)
, (8)

where fXXX(ω1, ω2) and fXX(ω1) are defined in (7) and (6).

Figure 1 illustrates the simulated series of {Xt, t = 1, 2, . . . , 500} from the DCGINAR(1)
with α = 0.6, θ = 0.7 and µ = 1.8. Figure 2 represents the simulated series of the
forecasted DCGINAR(1) observations based on fuzzy time series. The theoretical spectrum
fXX(ω), theoretical bispectrum and normalized bispectrum moduli fXXX(ω1, ω2) and
gXXX(ω1, ω2) are, respectively, computed by setting α = 0.6, θ = 0.7 and µ = 1.8 in (6)–(8)
and are represented by Figures 3–5, respectively. Tables 1 and 2 show the numerical values
of theoretical bispectrum modulus and theoretical normalized bispectrum modulus of
DCGINAR(1) with α = 0.6, θ = 0.7 and µ = 1.8, respectively. From Tables 1 and 2, we
can conclude that the model is linear; the science values of the theoretical normalized
bispectrum that lies in (0.5, 2), are flatter (constant—very close to each other) than the
values of the non-normalized one that lies in (0, 12).
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Table 1. Numerical values of theoretical bispectrum modulus of DCGINAR(1) with α = 0.6, θ = 0.7 and µ = 1.8.

ω2 0.00π 0.05π 0.10π 0.15π 0.20π 0.25π 0.30π 0.35π 0.40π 0.45π 0.50π 0.55π 0.60π 0.65π 0.70π 0.75π 0.80π 0.85π 0.90π 0.95π π

ω1
0.00π 11.2352 9.9030 7.2167 4.8711 3.2912 2.3014 1.6801 1.2790 1.0108 0.8254 0.6933 0.5969 0.5252 0.4712 0.4302 0.3991 0.3759 0.3590 0.3476 0.3410 0.3388
0.05π 9.9030 7.9364 5.5644 3.7554 2.5791 1.8410 1.3712 1.0627 0.8530 0.7060 0.6001 0.5220 0.4636 0.4194 0.3859 0.3607 0.3421 0.3289 0.3205 0.3164 0.3164
0.10π 7.2167 5.5644 3.8987 2.6715 1.8703 1.3599 1.0296 0.8093 0.6577 0.5502 0.4721 0.4142 0.3708 0.3379 0.3130 0.2945 0.2811 0.2720 0.2667 0.2650 0.2667
0.15π 4.8711 3.7554 2.6715 1.8651 1.3289 0.9812 0.7527 0.5984 0.4911 0.4145 0.3585 0.3168 0.2855 0.2619 0.2442 0.2312 0.2220 0.2161 0.2133 0.2133 0.2161
0.20π 3.2912 2.5791 1.8703 1.3289 0.9612 0.7188 0.5574 0.4473 0.3701 0.3147 0.2741 0.2438 0.2211 0.2041 0.1914 0.1823 0.1761 0.1725 0.1714 0.1725 0.1761
0.25π 2.3014 1.8410 1.3599 0.9812 0.7188 0.5432 0.4251 0.3438 0.2866 0.2453 0.2150 0.1924 0.1755 0.1629 0.1537 0.1473 0.1432 0.1412 0.1412 0.1432 0.1473
0.30π 1.6801 1.3712 1.0296 0.7527 0.5574 0.4251 0.3352 0.2731 0.2291 0.1973 0.1739 0.1566 0.1437 0.1342 0.1274 0.1228 0.1201 0.1193 0.1201 0.1228 0.1274
0.35π 1.2790 1.0627 0.8093 0.5984 0.4473 0.3438 0.2731 0.2239 0.1890 0.1637 0.1452 0.1314 0.1213 0.1140 0.1088 0.1056 0.1040 0.1040 0.1056 0.1088 0.1140
0.40π 1.0108 0.8530 0.6577 0.4911 0.3701 0.2866 0.2291 0.1890 0.1604 0.1398 0.1247 0.1135 0.1054 0.0996 0.0958 0.0935 0.0928 0.0935 0.0958 0.0996 0.1054
0.45π 0.8254 0.7060 0.5502 0.4145 0.3147 0.2453 0.1973 0.1637 0.1398 0.1225 0.1099 0.1007 0.0940 0.0894 0.0866 0.0852 0.0852 0.0866 0.0894 0.0940 0.1007
0.50π 0.6933 0.6001 0.4721 0.3585 0.2741 0.2150 0.1739 0.1452 0.1247 0.1099 0.0991 0.0914 0.0859 0.0823 0.0802 0.0795 0.0802 0.0823 0.0859 0.0914 0.0991
0.55π 0.5969 0.5220 0.4142 0.3168 0.2438 0.1924 0.1566 0.1314 0.1135 0.1007 0.0914 0.0848 0.0802 0.0774 0.0760 0.0760 0.0774 0.0802 0.0848 0.0914 0.1007
0.60π 0.5252 0.4636 0.3708 0.2855 0.2211 0.1755 0.1437 0.1213 0.1054 0.0940 0.0859 0.0802 0.0765 0.0744 0.0737 0.0744 0.0765 0.0802 0.0859 0.0940 0.1054
0.65π 0.4712 0.4194 0.3379 0.2619 0.2041 0.1629 0.1342 0.1140 0.0996 0.0894 0.0823 0.0774 0.0744 0.0729 0.0729 0.0744 0.0774 0.0823 0.0894 0.0996 0.1140
0.70π 0.4302 0.3859 0.3130 0.2442 0.1914 0.1537 0.1274 0.1088 0.0958 0.0866 0.0802 0.0760 0.0737 0.0729 0.0737 0.0760 0.0802 0.0866 0.0958 0.1088 0.1274
0.75π 0.3991 0.3607 0.2945 0.2312 0.1823 0.1473 0.1228 0.1056 0.0935 0.0852 0.0795 0.0760 0.0744 0.0744 0.0760 0.0795 0.0852 0.0935 0.1056 0.1228 0.1473
0.80π 0.3759 0.3421 0.2811 0.2220 0.1761 0.1432 0.1201 0.1040 0.0928 0.0852 0.0802 0.0774 0.0765 0.0774 0.0802 0.0852 0.0928 0.1040 0.1201 0.1432 0.1761
0.85π 0.3590 0.3289 0.2720 0.2161 0.1725 0.1412 0.1193 0.1040 0.0935 0.0866 0.0823 0.0802 0.0802 0.0823 0.0866 0.0935 0.1040 0.1193 0.1412 0.1725 0.2161
0.90π 0.3476 0.3205 0.2667 0.2133 0.1714 0.1412 0.1201 0.1056 0.0958 0.0894 0.0859 0.0848 0.0859 0.0894 0.0958 0.1056 0.1201 0.1412 0.1714 0.2133 0.2667
0.95π 0.3410 0.3164 0.2650 0.2133 0.1725 0.1432 0.1228 0.1088 0.0996 0.0940 0.0914 0.0914 0.0940 0.0996 0.1088 0.1228 0.1432 0.1725 0.2133 0.2650 0.3164
π 0.3388 0.3164 0.2667 0.2161 0.1761 0.1473 0.1274 0.1140 0.1054 0.1007 0.0991 0.1007 0.1054 0.1140 0.1274 0.1473 0.1761 0.2161 0.2667 0.3164 0.3388
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Table 2. Numerical values of theoretical normalized bispectrum modulus of DCGINAR(1) with α = 0.6, θ = 0.7 and µ = 1.8.

ω2 0.00π 0.05π 0.10π 0.15π 0.20π 0.25π 0.30π 0.35π 0.40π 0.45π 0.50π 0.55π 0.60π 0.65π 0.70π 0.75π 0.80π 0.85π 0.90π 0.95π π

ω1
0.00π 1.9548 1.8822 1.7166 1.5404 1.3929 1.2800 1.1961 1.1338 1.0873 1.0522 1.0254 1.0046 0.9885 0.9759 0.9661 0.9585 0.9527 0.9485 0.9456 0.9439 0.9433
0.05π 1.8822 1.7636 1.5950 1.4359 1.3078 1.2108 1.1385 1.0846 1.0440 1.0132 0.9895 0.9711 0.9568 0.9456 0.9368 0.9301 0.9251 0.9215 0.9192 0.9181 0.9181
0.10π 1.7166 1.5950 1.4463 1.3100 1.2003 1.1165 1.0534 1.0059 0.9699 0.9423 0.9209 0.9043 0.8913 0.8811 0.8733 0.8673 0.8629 0.8599 0.8581 0.8576 0.8581
0.15π 1.5404 1.4359 1.3100 1.1930 1.0974 1.0232 0.9668 0.9238 0.8909 0.8655 0.8458 0.8305 0.8184 0.8091 0.8019 0.7965 0.7927 0.7902 0.7890 0.7890 0.7902
0.20π 1.3929 1.3078 1.2003 1.0974 1.0115 0.9440 0.8920 0.8521 0.8213 0.7975 0.7790 0.7645 0.7532 0.7444 0.7378 0.7329 0.7296 0.7276 0.7270 0.7276 0.7296
0.25π 1.2800 1.2108 1.1165 1.0232 0.9440 0.8809 0.8319 0.7941 0.7648 0.7421 0.7243 0.7105 0.6998 0.6915 0.6853 0.6809 0.6781 0.6767 0.6767 0.6781 0.6809
0.30π 1.1961 1.1385 1.0534 0.9668 0.8920 0.8319 0.7849 0.7485 0.7203 0.6983 0.6812 0.6679 0.6576 0.6499 0.6442 0.6403 0.6380 0.6373 0.6380 0.6403 0.6442
0.35π 1.1338 1.0846 1.0059 0.9238 0.8521 0.7941 0.7485 0.7131 0.6856 0.6643 0.6477 0.6348 0.6250 0.6177 0.6125 0.6092 0.6075 0.6075 0.6092 0.6125 0.6177
0.40π 1.0873 1.0440 0.9699 0.8909 0.8213 0.7648 0.7203 0.6856 0.6587 0.6379 0.6217 0.6093 0.6000 0.5931 0.5885 0.5858 0.5849 0.5858 0.5885 0.5931 0.6000
0.45π 1.0522 1.0132 0.9423 0.8655 0.7975 0.7421 0.6983 0.6643 0.6379 0.6174 0.6017 0.5898 0.5810 0.5747 0.5707 0.5687 0.5687 0.5707 0.5747 0.5810 0.5898
0.50π 1.0254 0.9895 0.9209 0.8458 0.7790 0.7243 0.6812 0.6477 0.6217 0.6017 0.5865 0.5751 0.5668 0.5611 0.5579 0.5568 0.5579 0.5611 0.5668 0.5751 0.5865
0.55π 1.0046 0.9711 0.9043 0.8305 0.7645 0.7105 0.6679 0.6348 0.6093 0.5898 0.5751 0.5642 0.5565 0.5516 0.5492 0.5492 0.5516 0.5565 0.5642 0.5751 0.5898
0.60π 0.9885 0.9568 0.8913 0.8184 0.7532 0.6998 0.6576 0.6250 0.6000 0.5810 0.5668 0.5565 0.5496 0.5456 0.5443 0.5456 0.5496 0.5565 0.5668 0.5810 0.6000
0.65π 0.9759 0.9456 0.8811 0.8091 0.7444 0.6915 0.6499 0.6177 0.5931 0.5747 0.5611 0.5516 0.5456 0.5427 0.5427 0.5456 0.5516 0.5611 0.5747 0.5931 0.6177
0.70π 0.9661 0.9368 0.8733 0.8019 0.7378 0.6853 0.6442 0.6125 0.5885 0.5707 0.5579 0.5492 0.5443 0.5427 0.5443 0.5492 0.5579 0.5707 0.5885 0.6125 0.6442
0.75π 0.9585 0.9301 0.8673 0.7965 0.7329 0.6809 0.6403 0.6092 0.5858 0.5687 0.5568 0.5492 0.5456 0.5456 0.5492 0.5568 0.5687 0.5858 0.6092 0.6403 0.6809
0.80π 0.9527 0.9251 0.8629 0.7927 0.7296 0.6781 0.6380 0.6075 0.5849 0.5687 0.5579 0.5516 0.5496 0.5516 0.5579 0.5687 0.5849 0.6075 0.6380 0.6781 0.7296
0.85π 0.9485 0.9215 0.8599 0.7902 0.7276 0.6767 0.6373 0.6075 0.5858 0.5707 0.5611 0.5565 0.5565 0.5611 0.5707 0.5858 0.6075 0.6373 0.6767 0.7276 0.7902
0.90π 0.9456 0.9192 0.8581 0.7890 0.7270 0.6767 0.6380 0.6092 0.5885 0.5747 0.5668 0.5642 0.5668 0.5747 0.5885 0.6092 0.6380 0.6767 0.7270 0.7890 0.8581
0.95π 0.9439 0.9181 0.8576 0.7890 0.7276 0.6781 0.6403 0.6125 0.5931 0.5810 0.5751 0.5751 0.5810 0.5931 0.6125 0.6403 0.6781 0.7276 0.7890 0.8576 0.9181
π 0.9433 0.9181 0.8581 0.7902 0.7296 0.6809 0.6442 0.6177 0.6000 0.5898 0.5865 0.5898 0.6000 0.6177 0.6442 0.6809 0.7296 0.7902 0.8581 0.9181 0.9433
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Figure 1. The simulated series of the DCGINAR(1) model at α = 0.6, θ = 0.7 and µ = 1.8.

Figure 2. The simulated series of the forecasted DCGINAR(1) observations based on fuzzy time series.
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Figure 3. The theoretical spectrum of the DCGINAR(1) model at α = 0.6, θ = 0.7 and µ = 1.8.

Figure 4. The theoretical bispectral modulus of the DCGINAR(1).
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Figure 5. The theoretical normalized bispectral modulus of the DCGINAR(1).

4. Estimation of Spectrum and Bispectrum

The estimates of the spectral and bispectral density functions are calculated using
the smoothed periodogram and smoothed biperiodogram by using the Daniell, Tukey–
Hamming and Parzen lag windows. This estimate is also conducted in two cases: generated
observations from the DCGINAR(1) process and the forecasted observations by fuzzy time
series method. Let X1, X2, . . . , XN be a realization of a real valued third order stationary pro-
cess {Xt} with mean µ, autocovariance C2(s) and third cumulant C3(s1, s2). The smoothed
spectral and bispectral density functions are respectively given by (see [19])

f̂ (ω) =
1

2π

N−1

∑
s=−(N−1)

λ(s)Ĉ2(s)e−isw

=
1

2π

N−1

∑
s=−(N−1)

λ(s)Ĉ2(s)cosωs, (9)

f̂ (ω1, ω2) =
1

4π2

N−1

∑
s1=−(N−1)

N−1

∑
s2=−(N−1)

λ(s1, s2)Ĉ3(s1, s2)e−is1ω1−is2ω2 , (10)

where Ĉ2(s) and Ĉ3(s1, s2) are the natural estimators of C2(s) and C3(s1, s2) respectively,

Ĉ2(s) =
1

N − s

N−|s|

∑
t=1

(Xt − X̄)(Xt+|s| − X̄), (11)

X̄ =
1
N

N

∑
t=1

Xt,

Ĉ3(s1, s2) =
1
N

N−γ

∑
t=1

(Xt − X̄)(Xt+s1 − X̄)(Xt+s2 − X̄) (12)

where s1, s2 ≥ 0, γ = max(0, s1, s2), s = 0,±1,±2, . . . ,±(N − 1),−π ≤ ω1, ω2 ≤ π, “λ(.)′′

is the one-dimensional lag window and “λ(s1, s2)
′′ is two-dimensional lag window.
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The normalized bispectrum ĝ(ω1, ω2) is estimated by

ĝ(ω1, ω2) =
f̂ (ω1, ω2)√

f̂ (ω1) f̂ (ω2) f̂ (ω1 + ω2)
(13)

where f̂ (ω1, ω2) and f̂ (ωi), i = 1, 2, are given by (10) and (9), respectively. To compare
the spectral estimates using different windows, we used the sample mean square errors
criterion for measuring the accuracy of f̂ (ω) as an estimate of f (ω). This sample mean
square error (M.S.E) is defined as

M.S.E =
1
k

k

∑
i
( f̂ (ωi)− fXX(ωi))

2 (14)

The summation is taken over all the frequencies (ωi), ωi=0.0(0.05π)π, k is the total
number of these frequencies ωi. As for the bispectral and normalized estimates, the M.S.E
is defined as

M.S.E =
1
K

k

∑
i=1

k

∑
j=1

(| f̂ (ωi, ωj)| − | f (ωi, ωj)|)2, (15)

M.S.E =
1
K

k

∑
i=1

k

∑
j=1

(|ĝ(ωi, ωj)| − |g(ωi, ωj)|)2, (16)

where | f̂ (ωi, ωj)| is the modulus of the bispectra1 density estimate, | f (ωi, ωj)| is the theo-
retical bispectral modulus, |ĝ(ωi, ωj)| is the modulus of the normalized bispectra1 density
estimate and |g(ωi, ωj)| is the theoretical normalized bispectral modulus. The summation
in (15) and (16) is taken over all the frequencies (ωi,ωj), ωi,ωj=0.0(0.05π)π, and K is the
total number of these frequencies (ωi, ωj).

Firstly for using the Daniell lag window, ref. [34] introduced the Daniell lag window as

λ(s) =
sin( sπ

M )
sπ
M

(17)

where M is the window parameter or number of frequencies used, smoothed. In this paper,
we chose M = 9 for all different lag windows. The two-dimensional lag window λ(s1, s2),
given in [35], is given by

λ(s1, s2) = λ(s1)λ(s2)λ(s1 − s2) (18)

Figure 6 represent the theoretical spectrum and estimated spectral density using the
Daniell window with M = 9 from (9) and (17) in two cases: (a) the generated observations
from DCGINAR(1), and (b) the forecasted observations for DCGINAR(1) based on fuzzy
time series. Figures 7 and 8 represent the estimates of the bispectrum and normalized
bispectrum modulus with M=9 by using the Daniell window as in (10), (13), (17) and (18)
in two cases: (a) the generated observations from DCGINAR(1), and (b) the forecasted
observations for DCGINAR(1) based on fuzzy time series.

• Depending on M.S.E, which appears on each image and which is calculated by (14)–(16),
we find that

– From Figure 6, we can conclude that the forecasted observations are better than the
generated observations for estimating the spectrum since the smoothed spectrum
using the forecasted observations is more closer to the theoretical spectrum than
the smoothed spectrum using the generated observations.

– If we compare the estimated bispectrum modulus in Figure 7 with the theoretical
bispectrum modulus in Figure 4, we can conclude that the forecasted observations
are better than the generated observations for estimating the bispectrum modulus.
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Additionally, if we compare the estimated normalized bispectrum modulus in
Figure 8 with the theoretical normalized bispectrum in Figure 5, we can conclude
that the forecasted observations are better than the generated observations for
estimating the normalized bispectrum modulus. Using the Daniell window with
the forecasted observations made the bispectrum and normalized bispectrum
close to the theoretical bispectrum and normalized bispectrum.

(a) (b)
Figure 6. The estimated spectrum using Daniell window and the theoretical spectrum. (a) Generated
observations. (b) Forecasted observations.

(a) (b)
Figure 7. The estimated bispectrum modulus using Daniell window. (a) Generated observations.
(b) Forecasted observations.

(a) (b)
Figure 8. The estimated normalized bispectrum modulus using Daniell window. (a) Generated
observations. (b) Forecasted observations.

Secondly using the Parzen lag window, Ref. [36] proposed the Parzen lag window

λ(s) =


1− 6s2 + 6|s|3 |s| ≤ 1

2
2(1− |s|)3 1

2 < |s| ≤ 1,
0 |s| > 1

(19)

and λ(s1, s2) is given by equation (18).
Figure 9 represents the theoretical spectrum and estimated spectral density using

Parzen window with M = 9 from (9) and (19) in two cases: (a) the generated observations
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from DCGINAR(1), and (b) the forecasted observations for DCGINAR(1) based on fuzzy
time series. Figures 10 and 11 represent the estimates of the bispectrum and normalized
bispectrum modulus with M=9 by using the Parzen window as in (10), (13), (18) and (19)
in two cases: (a) the generated observations from DCGINAR(1), and (b) the forecasted
observations for DCGINAR(1) based on fuzzy time series.

• Depending on M.S.E which appears on each image, we find the following:

– From Figure 9, we can conclude that the forecasted observations are better than
the generated observations for estimating the spectrum.

– If we compare the estimated bispectrum modulus in Figure 10 with the theoretical
bispectrum modulus in Figure 4, we can conclude that the forecasted observations
are better than the generated observations for estimating the bispectrum modulus.
Additionally, if we compare the estimated normalized bispectrum modulus in
Figure 11 with the theoretical normalized bispectrum in Figure 5, we can conclude
that the forecasted observations are better than the generated observations for
estimating the normalized bispectrum modulus.

(a) (b)
Figure 9. The estimated spectrum using the Parzen window and the theoretical spectrum. (a) Gener-
ated observations. (b) Forecasted observations.

(a) (b)
Figure 10. The estimated bispectrum modulus using the Parzen window. (a) Generated observations.
(b) Forecasted observations.

(a) (b)
Figure 11. The estimated normalized bispectrum modulus using Parzen window. (a) Generated
observations. (b) Forecasted observations.
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Thirdly and finally, using the Tukey–Hamming window, which is reduced from [37]
and given by

λ(s) =
{

0.54 + 0.46cos(πs
M ) |s| ≤ M

0 |s| > M
, (20)

and λ(s1, s2) is given by Equation (18). Figure 12 represents the theoretical spectrum
and estimated spectral density using the Tukey–Hamming window with M = 9 from (9)
and (20) in two cases: (a) the generated observations from DCGINAR(1), and (b) the
forecasted observations for DCGINAR(1) based on fuzzy time series. Figures 13 and 14
represent the estimates of the bispectrum and normalized bispectrum moduli with M = 9
by using the Tukey–Hamming window as in (10), (13), (18) and (20) in two cases: (a)
the generated observations from DCGINAR(1), and (b) the forecasted observations for
DCGINAR(1) based on fuzzy time series.

• Depending on M.S.E, which appears on each image, we find the following:

– From Figure 12, we can conclude that the forecasted observations are better than
the generated observations for estimating the spectrum

– If we compare the estimated bispectrum modulus in Figure 13 with the theoretical
bispectrum modulus in Figure 4, we can conclude that the forecasted observations
are better than the generated observations for estimating the bispectrum modulus.
Additionally, if we compare the estimated normalized bispectrum modulus in
Figure 14 with the theoretical normalized bispectrum in Figure 5, we can conclude
that the forecasted observations are better than the generated observations for
estimating the normalized bispectrum modulus.

(a) (b)
Figure 12. The estimated spectrum using Tukey–Hamming window and the theoretical spectrum.
(a) Generated observations. (b) Forecasted observations.

(a) (b)
Figure 13. The estimated bispectrum modulus using Tukey–Hamming window. (a) Generated
observations. (b) Forecasted observations.
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(a) (b)
Figure 14. The estimated normalized bispectrum modulus using Tukey–Hamming window. (a) Gen-
erated observations. (b) Forecasted observations.

Now, based on the earlier results and figures, we discovered an improvement in the
smoothed estimates (of the spectral, bispectral and normalized bispectral density functions)
by various windows in favor of forecasted observations by fuzzy time series, as opposed
to observations that were generated directly from the DCGINAR(1). It indicates that the
fuzzy time series helped to improve the smoothness of the estimation.

5. Conclusions

In light of the search for a better smoothing estimates of spectral, bispectral and
normalized bispectral density functions, we used a new trick, which is the fuzzy time
series technique. For this purpose, the spectral, bispectral, normalized bispectral density
function and their smoothed estimates for a known process are calculated. This estimation
is performed in two situations: generated observations from the indicated model and
forecasted observations using the fuzzy time series method. The results and figures in this
paper show that, already, the fuzzy time series contributes to improving the smoothing
of the estimate. Future research will aim to improve the mentioned method (fuzzy time
series method) in order to provide the best smoothing of the estimates in comparison to the
findings made here.
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