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Abstract: Using the historically general growth condition on scalar-valued analytic functions, which
have tempered distributions as boundary values, we show that vector-valued analytic functions in
tubes TC = Rn + iC obtain vector-valued tempered distributions as boundary values. In a certain
vector-valued case, we study the structure of this boundary value, which is shown to be the Fourier
transform of the distributional derivative of a vector-valued continuous function of polynomial
growth. A set of vector-valued functions used to show the structure of the boundary value is shown
to have a one–one and onto relationship with a set of vector-valued distributions, which generalize
the Schwartz space D′L2 (Rn); the tempered distribution Fourier transform defines the relationship
between these two sets. By combining the previously stated results, we obtain a Cauchy integral
representation of the vector-valued analytic functions in terms of the boundary value.
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1. Introduction

Tillmann [1] introduced the analysis of analytic functions, which obtain tempered
distributional boundary values in S ′(Rn). In [1], Tillmann worked with scalar-valued
analytic functions in tubes TCµ = Rn + iCµ, where the Cµ = {y ∈ Rn : (−1)µj yj > 0, j =
1, . . . , n} with µ = (µ1, µ2, . . . , µn) being any of the 2n n-tuples, whose components are
either 0 or 1 and characterize the growth conditions on the analytic functions, which obtain
the S ′(Rn) boundary values. This analysis by Tillmann was motivated by the work by
Köthe in [2,3].

Using a more restrictive growth on the analytic functions, we showed in [4] that vector-
valued analytic functions in tubes TC = Rn + iC, where C is an open convex cone, having
this more restrictive growth obtain vector-valued tempered distributions in S ′(Rn,X ),
with X being a specified topological vector space. In this paper, our first objective is to
generalize this result of [4] to the general growth form of Tillmann for the vector-valued
analytic functions. We obtain this boundary value generalization in Section 4 of this paper.

Moreover, in Section 4, we study the structure of this boundary value in S ′(Rn,X ). To
do this, we first restrict the topological vector space X by imposing certain conditions on it
to ensure that the boundary value is the Fourier transform of a distributional derivative of
a continuous vector-valued function g, which has polynomial growth in the norm of the
space X . By further restricting X to be a Hilbert space, we show that function g is in a set
that has a one–one and onto relationship with a set of vector-valued distributions, which
generalize the D′L2(Rn) distributions of Schwartz. The relationship between these two sets
is obtained using the tempered distribution Fourier transform; the proof of this relationship
is proved in Section 3 of this paper. Using the relationships of these noted two sets, we are
able to obtain an additional structure of the tempered distribution boundary value of the
analytic functions in Section 4.

A few papers have been written concerning the construction of a Cauchy integral
for tempered distributions. All of these papers concern scalar-valued analytic functions
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and scalar-valued tempered distributions. The first paper known to this author was by
J. Sebastião e Silva [5] (Section 5) and concerned scalar-valued analytic functions and
tempered distributions in one dimension. An associated analysis by Sebastião e Silva is
contained in [6]. Carmichael [7] defined a Cauchy integral for tempered distributions in the
Cn setting corresponding to analytic functions in each of the 2n quadrant tubes TCµ ⊂ Cn

and showed that the analytic functions with growth, such as that of Tillmann in (C−R)n

could be recovered as the defined Cauchy integral of the tempered distribution boundary
value; the results of [7] can be extended to the vector-valued analytic functions in TCµ and
the tempered distribution setting considered in this paper by the same techniques as those
of [7]. The Cauchy integrals introduced by Sebastião e Silva in [5] and by Carmichael in [7]
are in fact equivalence classes of analytic functions defined by an integral involving the
Cauchy kernel.

Vladimirov [8–10] defined a Cauchy integral for tempered distributions associated
with analytic functions in general tubes TC = Rn + iC ⊂ Cn corresponding to open con-
vex cones C with the functions satisfying a growth condition similar to that of Tillmann.
Vladimirov has shown that the analytic functions that he has considered can be recovered
by a Cauchy integral involving the tempered distribution boundary values of the analytic
functions. An associated analysis by Vladimirov is contained in [11,12]. The works men-
tioned in this paragraph and the previous paragraph all concern scalar-valued analytic
functions and scalar-valued tempered distributions.

In Section 5 of this paper, we build on our analysis of Sections 3 and 4 to obtain a
Cauchy integral representation of the vector-valued analytic functions, which are shown
to have tempered vector-valued distributions as the boundary values in Section 4. The
proof of our result here and the form of the Cauchy integral representation are substantially
different from any of the previous results concerning Cauchy integral representation of the
analytic functions having tempered distribution boundary values.

2. Definitions and Notation

Throughout, X will denote a topological vector space with the stated appropriate
properties corresponding to the results that we wish to prove. For X being a normed space,
we denote the norm by N . Θ will denote the zero element of X ; and if X is a Hilbert space,
we denote the space byH. For integration of the vector-valued functions and vector-valued
analytic functions, we refer to Dunford and Schwartz [13]. For foundational information
concerning vector-valued distributions, we refer to Schwartz [14,15].

The n-dimensional notation to be used in this paper will be the same as in [16,17].
Note 0 = (0, 0, . . . , 0) is the origin in Rn. The information concerning cones C ⊂ Rn needed
is explicitly stated in [16] (Section 2) and [17] (Chapter 1). We do not repeat the definitions
and notations concerning cones as stated in [16] (Section 2), and we ask the reader to refer
to this reference.

The Lp(Rn,X ) functions, 1 ≤ p ≤ ∞, with values in a Banach space X and their
norm |h|p [13] (p. 119) are noted in [13] (Chapter III). The Fourier transform on L1(Rn) or
L1(Rn,X ) is given in [17] (p. 3). All Fourier (inverse Fourier) transforms on scalar or vector-
valued functions will be denoted φ̂(x) = F [φ(t); x] (F−1[φ(t); x]). As stated in [18,19], the
Plancherel theory is not true for vector-valued functions, except when X = H, a Hilbert
space. The Plancherel theory is complete in the L2(Rn,H) setting in that the inverse Fourier
transform is the inverse mapping of the Fourier transform with F−1F = I = FF−1 with I
being the identity mapping.

We denote S(Rn) as the tempered functions with associated distributions being S ′(Rn)
or associated vector-valued distributions being S ′(Rn,X ). The Fourier (inverse Fourier)
transform on S ′(Rn) and S ′(Rn,X ) is the usual definition and is given in [14] (p. 73).
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3. Fourier and Inverse Fourier Transform on a Function Subset of S ′(Rn,H)

Let X be a Banach space. We defined the space S ′p(Rn,X ), 1 ≤ p < ∞, in [16]. We
repeat the definition here because of the importance of these functions for our results in
this paper.

Definition 1. For a Banach space X , S ′p(Rn,X ), 1 ≤ p < ∞, is the set of all measurable
functions g(t), t ∈ Rn, with values in X such that there exists a real number m ≥ 0 for which
(1 + |t|p)−mg(t) ∈ Lp(Rn,X ).

Note that m can be taken as a nonnegative integer in Definition 1. As noted in [16],
S ′p(Rn,X ) ⊂ S ′(Rn,X ), 1 ≤ p < ∞. The spaces S ′p(Rn,X ) will be important in this paper.

Throughout this paper, the differential operator Dt, t ∈ Rn will take the form

Dt =
−1
2πi

(
∂

∂t1
, ∂

∂t2
, ..., ∂

∂tn

)
.

Thus, for α being any n-tuple of nonnegative integers,

Dα
t =

(
−1
2πi

)|α|(
∂α1

∂t
α1
1

, ∂α2

∂tα2
2

, ..., ∂αn

∂tαn
n

)
.

The goal of this section is to show a one–one and onto relationship between the set
of functions S ′2(Rn,H) and another subset of S ′(Rn,H), whereH is a Hilbert space. This
relationship is obtained by both the Fourier and inverse Fourier transforms in S ′(Rn,H).
We define the space that has this stated relationship to S ′2(Rn,H), as follows.

Definition 2. Let m be any nonnegative integer. The set of Hilbert space H-valued generalized
functions in S ′(Rn,H) of the form

Vt = ∑
|α|≤m

Dα
t gα(t)

where gα ∈ L2(Rn,H), |α| ≤ m, will be denoted as L2(Rn,H).

We emphasize that L2(Rn,H) ⊂ S ′(Rn,H). When H = C1, note that L2(Rn,C1) =
D′L2(Rn), the Schwartz space of distributions contained in S ′(Rn) of the form of finite sums
of distributional derivatives of L2(Rn) functions. For φ ∈ DL2(Rn), the Schwartz space
that is the set of test functions for D′L2(Rn), the application 〈V, φ〉, V ∈ D′L2(Rn), yields
a complex number. In exactly the same way, for V ∈ L2(Rn,H) and φ ∈ DL2(Rn), the
application 〈V, φ〉 yields an element ofH; and the algebraic and differentiation calculations
on the form 〈V, φ〉 hold for V ∈ L2(Rn,H), as usual, just as these calculations hold on the
form 〈V, φ〉 for V ∈ S ′(Rn,H) and φ ∈ S(Rn). This is an important note in relation to our
construction of the Cauchy integral (later in this paper).

We now obtain the relationship between S ′2(Rn,H) and L2(Rn,H) for any Hilbert
spaceH.

Lemma 1. The S ′(Rn,H) Fourier transform maps S ′2(Rn,H) one-one and onto L2(Rn,H). The
S ′(Rn,H) inverse Fourier transform maps L2(Rn,H) one-one and onto S ′2(Rn,H).

Proof. Let the function g ∈ S ′2(Rn,H). From Definition 1, there is a real number m ≥ 0
for which (1 + |t|2)−mg(t) ∈ L2(Rn,H), and m can be taken as a nonnegative integer.
Since g ∈ S ′2(Rn,H) ⊂ S ′(Rn,H), the Fourier transform of g in S ′(Rn,H) is an element of
S ′(Rn,H); we put Vx = F [g]x. Let φ ∈ S(Rn), and let ∆ denote the Laplace operator in
the variable x ∈ Rn. Using integration by parts, we have
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〈Vx, φ(x)〉 = 〈g(t),F [φ(x); t]〉

= 〈 g(t)
(1 + |t|2)m ,

∫
Rn

φ(x)(1 + |t|2)me2πi〈x,t〉dx〉 (1)

= 〈 g(t)
(1 + |t|2)m ,F [(1− (4π2)−1∆)mφ(x); t]〉

= 〈F [ g(t)
(1 + |t|2)m ; x], (1− (4π2)−1∆)mφ(x)〉.

Since (1 + |t|2)−mg(t) ∈ L2(Rn,H), then h(x) = F [(1 + |t|2)−mg(t); x] ∈ L2(Rn,H). From
(1), we have

〈Vx, φ(x)〉 = 〈(1− (4π2)−1∆)mh(x), φ(x)〉,

and Vx = F [g]x = (1 − (4π2)−1∆)mh(x) ∈ L2(Rn,H). Thus, the S ′(Rn,H) Fourier
transform maps S ′2(Rn,H) to L2(Rn,H).

We now desire to prove that any element of L2(Rn,H) is the S ′(Rn,H) Fourier trans-
form of an element in S ′2(Rn,H). Let V ∈ L2(Rn,H) and φ ∈ S(Rn). By Definition 2, there
is a nonnegative integer m, such that

Vt = ∑
|α|≤m

Dα
t gα(t)

with gα(t) ∈ L2(Rn,H), |α| ≤ m. Since L2(Rn,H) ⊂ S ′(Rn,H), F−1[V]x exists in
S ′(Rn,H), and we have for the nonnegative integer m

〈F−1[V]x, φ(x)〉 = ∑
|α|≤m

〈Dα
t gα(t),F−1[φ(x); t]〉

= ∑
|α|≤m

(−1)|α|〈gα(t), Dα
t

∫
Rn

φ(x)e−2πi〈x,t〉dx〉

= ∑
|α|≤m

(−1)|α|〈gα(t), (−1/2πi)|α|
∫
Rn

φ(x)(−2πi)|α|xαe−2πi〈x,t〉dx〉

= ∑
|α|≤m

〈(−1)|α|gα(t),
∫
Rn

xαφ(x)e−2πi〈x,t〉dx〉

= ∑
|α|≤m

〈(−1)|α|gα(t),F−1[xαφ(x); t]〉

= ∑
|α|≤m

〈F−1[(−1)|α|gα(t); x], xαφ(x)〉.

For each α, |α| ≤ m, put hα(x) = F−1[(−1)|α|gα(t); x]. We have hα(x) ∈ L2(Rn,H), |α| ≤
m, since each gα(t) ∈ L2(Rn,H); moreover, ∑|α|≤m hα(x) ∈ L2(Rn,H). Thus, we have

〈F−1[V]x, φ(x)〉 = ∑
|α|≤m

〈hα(x), xαφ(x)〉

= 〈 ∑
|α|≤m

xαhα(x), φ(x)〉, (2)

and F−1[V]x = ∑|α|≤m xαhα(x) in S ′(Rn,H). For the L2(Rn,H) norm | · |2 and the order
m of the summation defining V, we consider

|(1 + |x|2)−m−2 ∑
|α|≤m

xαhα(x)|2. (3)



Axioms 2022, 11, 392 5 of 14

For |α| ≤ m, note that |xα| ≤ |x||α| ≤ (1 + |x|)|α| ≤ (1 + |x|)m. Since (1 + |x|)m ≤ 2m if
|x| ≤ 1 and (1 + |x|)m ≤ (1 + |x|2)m if |x| ≥ 1, then

|xα(1 + |x|2)−m−2| ≤ (1 + |x|)m(1 + |x|2)−m−2

≤ max
x∈Rn
{2m, (1 + |x|2)m}(1 + |x|2)−m−2

≤ max{2m, 1} = 2m

for |α| ≤ m since m ≥ 0 is a nonnegative integer. Thus, for the L2(Rn,H) norm in (3),
we have

|(1 + |x|2)−m−2 ∑
|α|≤m

xαhα(x)|2 ≤ 2m

∣∣∣∣∣∣ ∑
|α|≤m

hα(x)

∣∣∣∣∣∣
2

< ∞ (4)

since ∑|α|≤m hα(x) ∈ L2(Rn,H). Recalling (2), we have by (4) thatF−1[V]x = ∑|α|≤m xαhα(x) ∈
S ′2(Rn,H) for any V ∈ L2(Rn,H); and Vt = F [∑|α|≤m xαhα(x)]t in S ′(Rn,H). Thus, the
S ′(Rn,H) Fourier transform maps S ′2(Rn,H) onto L2(Rn,H); the fact that this mapping is
one–one follows directly from the fact that the Fourier transform is a one–one mapping
on S ′(Rn,H). The same statements and proofs as in this proof of Lemma 1 for the Fourier
transform hold in exactly the same way for the inverse Fourier transform on S ′(Rn,H);
and we have that the S ′(Rn,H) inverse Fourier transform maps L2(Rn,H) one–one and
onto S ′2(Rn,H). The proof of Lemma 1 is complete.

Let C be a regular cone in Rn; that is, C is an open convex cone in Rn, which does not
contain any entire straight line. C∗ = {t ∈ Rn : 〈t, y〉 ≥ 0 for all y ∈ C} is the dual cone of
C. We consider now the Cauchy kernel

K(z− t) =
∫

C∗
e2πi〈z−t,u〉du, z ∈ TC = Rn + iC, t ∈ Rn.

The ultradistributional test function spaces D(∗, Lp) ⊂ DLp(Rn), 1 < p ≤ ∞, where ∗ is
Beurling (Mp) or Roumieu {Mp}, defined in [17] (Section 2.3, p. 21). For C being a regular
cone, we proved in [17] (Section 4.1, Theorem 4.1.1) that K(z− ·) ∈ D(∗, Lp) ⊂ DLp(Rn)
for z ∈ TC, 1 < p ≤ ∞ , under specified conditions on the sequence Mp of positive
numbers, which we assume here. (See [17] (pp. 13–14, Theorem 4.1.1) for assumptions on
the sequence Mp.) The Schwartz space D′L2(Rn) consists of finite sums of distributional
derivatives of L2(Rn) functions; thus, the space L2(Rn,H|) is the extension of D′L2(Rn) to
vector-valued distributions with values inH. Thus, for p = 2, we emphasize that the form
〈Vt, K(z− t)〉, z ∈ TC, is well defined for V ∈ L2(Rn,H), and yields an element ofH; the
algebraic and differentiation calculations on the form 〈V, φ〉 hold for V ∈ L2(Rn,H) and
φ ∈ DL2(Rn), as usual, just as these calculations hold for the form 〈V, φ〉 for V ∈ S ′(Rn,H)
and φ ∈ S(Rn). We use this information in Section 5 of this paper.

4. Boundary Values in S ′(Rn,X )

Let C be an open convex cone in Rn. In [4] (Theorem 8), we proved that an analytic
function f(z), z ∈ TC, with values in a specified topological vector space X and satisfying
a certain norm growth obtained a vector-value-tempered distributional boundary value,
as y → 0, y ∈ C′ ⊂⊂ C, for any compact subcone C′ of C. The norm growth used
in [4] (Theorem 8) was not as general as the growth of Tillmann [1] in which the original
tempered distributional boundary value results in the scalar-valued case were obtained.
In this section, we extend the result [4] (Theorem 8) by assuming a norm growth on the
analytic function equivalent to that of Tillmann [1]; our result here also contains new
information concerning the boundary value. As a corollary of our result, we obtain a
precise representation of the boundary value when the conditions on the topological vector
space X are restricted.

Following Vladimirov [11] (p. 230), we shall use the term “spectral function” but
will extend the definition of this term to the vector-valued case. For an analytic function
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f(z), z ∈ TC = Rn + iC ⊂ Cn, with values in a topological vector space X , the spectral
function of f(z) is that vector-valued distribution V ∈ D′(Rn,X ), such that e−2π〈y,t〉Vt ∈
S ′(Rn,X ), y ∈ C; and f(x + iy) = F [e−2π〈y,t〉Vt]x in S ′(Rn,X ) for z = x + iy ∈ TC.

We begin by assuming that the topological vector space X is locally convex, separable,
and quasi-complete where quasi-complete is in the sense of Schwartz [15] (p. 198). We
further assume that X is a normed space with norm N . These stated assumptions on X
were the assumptions under which we obtained [4] (Theorem 8) and are the assumptions
on the topological vector space X under which we obtain Theorem 1 below.

Throughout the paper, by y→ 0, y ∈ C, we mean that y→ 0, y ∈ C′ ⊂⊂ C for every
compact subcone C′ ⊂⊂ C.

The following theorem generalizes and extends [4] (Theorem 8) for X , satisfying the
properties noted above.

Theorem 1. Let C be an open convex cone. Let f(z) be analytic in TC and have values in X . Let

N (f(x + iy)) ≤ M(1 + |z|)q|y|−r, z = x + iy ∈ TC, (5)

where M > 0 is a real constant, q is a nonnegative integer, r > 1 is an integer, and M, q, and r are
independent of z = x + iy ∈ TC. There exists an element U ∈ S ′(Rn,X ), such that

lim
y→0,y∈C

f(x + iy) = U (6)

in the weak and strong topologies of S ′(Rn,X ). Further, U = F [V] with V ∈ S ′(Rn,X ) being
the spectral function of f(z), z ∈ TC, , such that supp(V) ⊆ C∗.

Proof. We apply the proofs of [4] (Theorems 3 and 8). Note that in the second sentence of
the proof of [4] (Theorem 8) that the value of η ≥ 1 is arbitrary but fixed; in the present
proof, we simply take η = 1, where it is appropriate to use η = 1. Let λ > 0; put
ρ = σ + iλ, σ ∈ R1; and define f′(ρ; x, y) = f(x + ρy), y ∈ pr(C), where pr(C) denotes the
projection of C, which is the intersection of C with the unit sphere in Rn. (Thus, |y| = 1
if y ∈ pr(C).) f′(ρ; x, y) is an analytic function of ρ in the half plane λ = Im(ρ) > 0 and
has values in X . We have f′(ρ; x, y) = f(x + ρy) = f((x + σy) + iλy), λ > 0, for z = x + iy
with y ∈ pr(C); and note that λy ∈ C for λ > 0 and y ∈ pr(C). Now for y = Im(z) ∈ pr(C)
and 0 < λ ≤ η = 1 we have

N (f′(ρ; x, y)) ≤ M(1 + |(x + σy) + iλy|)q|λy|−r

= M(1 + (λ2 + |x + σy|2)1/2)qλ−r

≤ M(1 + (1 + (|x|+ |σ|)2)1/2)qλ−r (7)

≤ M(1 + ((1 + |x|+ |σ|)2)1/2)qλ−r

= M(2 + |x|+ |σ|)qλ−r

which is of the form, with norm N replacing the absolute value, of [4] (15), which is used
in exactly the same way in the proof of [4] (Theorem 8) as in the proof of [4] (Theorem 3).
Thus, for y = Im(z) ∈ pr(C) and 0 < λ ≤ η = 1 the bound on N (f′(ρ; x, y)) is in the
proper form to proceed with the proof of this present Theorem 1 exactly as in the form
of the proofs of [4] (Theorems 3 and 8). We obtain the structured function of the form
Λ(−r−1)f′(ρ; x, y), y ∈ pr(C), which satisfies the growth (similar to [4] (37))

N (Λ(−r−1)f′(ρ; x, y)) ≤ M(r+1)(2 + |x|+ |σ|)q(2 + |σ|)r+1

for 0 < λ ≤ η = 1 where M(r+1) is a positive constant, and obtains the representation
(similar to [4] (38))

f(x + ρy) = f′(ρ; x, y) =
∂r+1(Λ(−r−1)f′(ρ; x, y))

∂σr+1 , σ = Re(ρ).
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Now, we proceed in our proof of Theorem 1 in exactly the same way as in [4] (Theorem 8)
(p. 328) to obtain the desired boundedness properties leading to the existence of an element
V ∈ D′(Rn,X ), such that e−2π〈y,t〉Vt ∈ S ′(Rn,X ), y ∈ C, and f(z) = F [e−2π〈y,t〉Vt]x, z =
x + iy ∈ TC , in S ′(Rn,X ) from the results of Schwartz [14] (Prop. 22, p. 76). (These results
of Schwartz [14] (Prop. 22, p. 76) were obtained in their original scalar-valued case in [20];
the related results were then obtained by Lions [21]). Thus, V ∈ D′(Rn,X ) is the spectral
function of f(z), z ∈ TC . The remainder of the proof of [4] (Theorem 8, pp. 329–330) and
the succeeding discussion after the conclusion of the proof of [4] (Theorem 8) can be applied
to the present proof of Theorem 1 in the same way to yield that, in fact, V ∈ S ′(Rn,X )
and that

lim
y→0,y∈C

f(x + iy) = lim
y→0,y∈C

F [e−2π〈y,t〉Vt] = F [V] = U (8)

in the weak topology of S ′(Rn,X ). However, S(Rn) is a Montel space; thus, the con-
vergence in (8) is in the strong topology of S ′(Rn,X ) as well. We emphasize that V ∈
S ′(Rn,X ) and that U = F [V] ∈ S ′(Rn,X ) is the desired boundary value in (6) as obtained
in (8).

We now prove that supp(V) ⊆ C∗. Let to ∈ C∗ = Rn \ C∗; C∗ is an open set
in Rn since C∗ is a closed set. From the definition of C∗, for to ∈ C∗, there is a point
yo ∈ C, such that 〈yo, to〉 < 0. Using the fact that C∗ is open and the continuity of
〈t, yo〉 at to ∈ C∗ as a function of t, there is a fixed τ > 0 and a fixed neighborhood
N(to; γ) = {t ∈ Rn : |t − to| < γ, γ > 0} ⊂ C∗, such that 〈t, yo〉 < −τ < 0 for all
t ∈ N(to; γ). Let φ ∈ D(Rn), such that supp(φ) ⊂ N(to, γ). Recall that V ∈ S ′(Rn,X ),
such that e−2π〈y,t〉Vt ∈ S ′(Rn,X ), y ∈ C, and f(x + iy) = F [e−2π〈y,t〉Vt]x, z = x + iy ∈ TC,
in S ′(Rn,X ). Thus e−2π〈y,t〉Vt = F−1[f(x + iy)]t, x + iy ∈ TC, in S ′(Rn,X ); or Vt =
e2π〈y,t〉F−1[(x + iy)]t, x + iy ∈ TC, in S ′(Rn,X ). Let y = βyo, yo ∈ C, β > 0, now. We
have y = βyo ∈ C and

〈V, φ〉 = 〈e2π〈βyo ,t〉F−1[f(x + iβyo]t, φ(t)〉
= 〈F−1[f(x + iβyo]t, e2π〈βyo ,t〉φ(t)〉 (9)

= 〈f(x + iβyo),F−1[e2π〈βyo ,t〉φ(t); x]〉

=
∫
Rn

f(x + iβyo)
∫

supp(φ)
e2π〈βyo ,t〉φ(t)e−2πi〈x,t〉dtdx

for the function φ ∈ D(Rn) chosen above. Using integration by parts and letting ∆ denote
the Laplacian in the t ∈ Rn variable, we have for any positive integer m

N
(∫

Rn
f(x + iβyo)

∫
supp(φ)

e2π〈βyo ,t〉φ(t)e−2πi〈x,t〉dtdx
)

(10)

= N
(∫

Rn

f(x + iβyo)

(1 + |x|2)m

∫
supp(φ)

e2π〈βyo ,t〉φ(t)(1 + |x|2)me−2πi〈x,t〉dtdx
)

= N
(∫

Rn

f(x + iβyo)

(1 + |x|2)m

∫
supp(φ)

(1− ∆
4π2 )

m(e2π〈βyo ,t〉φ(t))e−2πi〈x,t〉dtdx
)

.

(For the present, the positive integer m is arbitrary; later, we explicitly choose m to obtain the
desired convergence of all integrals through Equation (15) below). For the interior integral
over supp(φ) in (10), we note that by applying (1− (∆/4π2))m to the product e2π〈βyo ,t〉φ(t)
and then bounding the terms in the resulting sum, including the terms involving 2π or it
powers, we obtain a finite sum of terms involving powers of β(yo)j, j = 1, . . . , n, multiplied
by e2π〈βyo ,t〉, where (yo)j is the jth component of yo, j = 1, . . . , n, and multiplied by bounds
on φ(t) or one of its partial derivatives with e2π〈βyo ,t〉 in each term of the sum. Of course,
the boundedness of φ(t) and any of its partial derivatives are valid because of the compact
support of φ(t). Moreover, note that |β(yo)j| ≤ β|yo|, j = 1, . . . , n. Thus, since the interior
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integral in (10) is over supp(φ) ⊂ N(to; γ), we obtain the following bound on this interior
integral: ∣∣∣∣∫supp(φ)

(1− ∆
4π2 )

m(e2π〈βyo ,t〉φ(t))e−2πi〈x,t〉dt
∣∣∣∣

≤
∫

supp(φ)
|(1− ∆

4π2 )
m(e2π〈βyo ,t〉φ(t))|dt (11)

≤ Tsupp(φ)(1 + β|yo|)4(m+1) sup
t∈supp(φ)

e2π〈βyo ,t〉

where Tsupp(φ) is a positive constant depending only on supp(φ). Using (11) in (10), we have

N
(∫

Rn

f(x + iβyo)

(1 + |x|2)m

∫
supp(φ)

(1− ∆
4π2 )

m(e2π〈βyo ,t〉φ(t))e−2πi〈x,t〉dtdx
)

≤ Tsupp(φ)(1 + β|yo|)4(m+1) sup
t∈supp(φ)

e2π〈βyo ,t〉
∫
Rn

N (f(x + iβyo))

(1 + |x|2)m dx (12)

where yo ∈ C, β > 0 is arbitrary, and supp(φ) ⊂ N(to; γ) ⊂ C∗, to ∈ C∗, γ > 0 and fixed.
As noted before, since 〈yo, to〉 < 0 and C∗ is open, by the continuity of 〈t, yo〉 at to ∈ C∗ as a
function of t ∈ Rn, the fixed τ > 0 is chosen and the fixed N(to; γ) ⊂ C∗ is chosen, such
that 〈t, yo〉 < −τ < 0 for all t ∈ N(to; γ) ⊂ C∗. Since supp(φ) ⊂ N(to; γ), we have

sup
t∈supp(φ)

e2π〈βyo ,t〉 ≤ e−2πτβ,

which yields from (12)

N
(∫

Rn

f(x + iβyo)

(1 + |x|2)m

∫
supp(φ)

(1− ∆
4π2 )

m(e2π〈βyo ,t〉φ(t))e−2πi〈x,t〉dtdx
)

≤ Tsupp(φ)e
−2πτβ(1 + β|yo|)4(m+1)

∫
Rn

N (f(x + iβyo))

(1 + |x|2)m dx (13)

where yo ∈ C, τ > 0, and γ > 0 are fixed and are independent of the arbitrary β > 0. We
now bound the integral on the right of the inequality in (13) using the assumed growth (5)
on f(z), z ∈ TC; (13) holds for all β > 0. To obtain the supp(V) containment result, we are
going to let β→ ∞ in (13); thus, we may assume that β > 1 in the remainder of this proof.
By simple calculations and for β > 1 , we have

1 + |x + iβyo| = β(
1
β
+ ((
|x|
β
)2 + |yo|2)1/2) ≤ β(1 + (|x|2 + |yo|2)1/2)

and
(1 + |x + iβyo|)q ≤ βq(1 + (|x|2 + |yo|2)1/2)q ≤ βq(1 + |yo|+ |x|)q.

Hence, from (5),
N (f(x + iβyo)) ≤ Mβq(1 + |yo|+ |x|)q|βyo|−r

and ∫
Rn

N (f(x + iβyo))

(1 + |x|2)m dx ≤ Mβq−r|yo|−r
∫
Rn

(1 + |yo|+ |x|)q

(1 + |x|2)m dx. (14)

Combining (10), (12), (13), and (14) yields
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N
(∫

Rn
f(x + iβyo)

∫
supp(φ)

e2π〈βyo ,t〉φ(t)e−2πi〈x,t〉dtdx
)

(15)

≤ MTsupp(φ)(1 + β|yo|)4(m+1)βq−r|yo|−re−2πτβ
∫
Rn

(1 + |yo|+ |x|)q

(1 + |x|2)m dx.

The positive integer m in (15) was introduced in (10), and at that point in the proof, m
was arbitrary. We now choose m, such that m > 2(q + n + 1). With this choice of m, the
integral in (15) converges where yo ∈ C is a fixed point in C; further, with this choice of
m, all calculations from (10) leading to (15) are valid and the integrals converge. Because
of the exponential term e−2πτβ, where τ > 0 is fixed and now β > 1 is arbitrary, the
right side of (15) has limit 0 as β → ∞. Thus, from (9) 〈V, φ〉 = Θ for φ ∈ D(Rn),
such that supp(φ) ⊂ N(to, γ) ⊂ C∗ for to being an arbitrary but fixed point in the open
set C∗ = Rn \ C∗. That is, for each fixed point, to ∈ C∗ = Rn \ C∗, with C∗ being an
open set, there is a neighborhood N(to; γ) ⊂ C∗ of to, such that for all φ ∈ D(Rn) with
supp(φ) ⊂ N(to; γ), we have 〈V, φ〉 = Θ. Thus, V vanishes on a neighborhood of each
point of C∗; this proves that V vanishes on the open set C∗ = Rn \C∗. Thus, supp(V) ⊆ C∗,
which is a closed set in Rn. The proof of Theorem 1 is complete.

Yoshinaga [22] (Proposition 3) provides a representation of the tempered vector-
valued distributions in the case of the topological vector space X being a complete space
of type (DF). Yoshinaga’s result is as follows for X , being a complete space of type (DF):
V ∈ S ′(Rn,X ), if and only if there exists a continuous function g on Rn with values in
X , an integer k ≥ 0, and a n-tuple α of nonnegative integers, such that V = Dαg and
{g(t)/(1 + |t|2)kn; t ∈ Rn} is a bounded subset of X . (In fact, in Yoshinaga’s symbolism,
α = (k, k, ..., k).)

The functions S ′2(Rn,X ) of Definition 1 are an integral part of the following corollary
to Theorem 1; recall that these functions are defined by the necessity for X being a Banach
space. We know that a Banach space satisfies all of the conditions on X stated prior to
Theorem 1 and also is a complete norm space of type (DF); since a Hilbert space is a Banach
space, a Hilbert space also satisfies all of these stated conditions on X . Thus, the above-
stated result of Yoshinaga and Theorem 1 of this paper both hold for X being a Banach or
Hilbert space.

We obtain a corollary of Theorem 1 now in which more precise information is obtained
concerning the spectral function V and the boundary value U of Theorem 1.

Corollary 1. Let C be an open convex cone and X be a Banach space. Let f(z) be analytic in
TC = Rn + iC, have values in X , and satisfy (5). There is a continuous function g ∈ S ′2(Rn,X )
with supp(g) ⊆ C∗ a.e. and an n-tuple α of nonnegative integers, such that the spectral function
V ∈ S ′(Rn,X ) of Theorem 1 has the form Vt = Dα

t g(t), and there is U = F [V] ∈ S ′(Rn,X )
such that

lim
y→0,y∈C

f(x + iy) = U

in the weak and strong topologies of S ′(Rn,X ). Further, for X = H being a Hilbert space, we
have F [g] ∈ L2(Rn,H); and the boundary value U ∈ S ′(Rn,H) has the form

Ux = xαF [g]x = xα(1− ∆
4π2 )

mh(x) (16)

in S ′(Rn,H) where h ∈ L2(Rn,X ), α is an n-tuple of nonnegative integers, and m ≥ 0 is a real
number that can be taken to be a nonnegative integer.

Proof. We apply the results of Theorem 1 and consider the spectral function V ∈ S ′(Rn,X )
obtained in Theorem 1 where X is a Banach space in this corollary. As per the result
of Yoshinaga [22] (Proposition 3) stated above, there is a continuous function g on Rn
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with values in X , an n-tuple α of nonnegative integers, and an integer k ≥ 0, such that
Vt = Dα

t g(t) and { g(t)
(1+|t|2)kn ; t ∈ Rn} is a bounded subset of X . (In Yoshinaga’s symbolism,

α is the n-tuple with all components being k.) Thus, there is a real constant R > 0, such that

N
(

g(t)
(1 + |t|2)kn

)
=
N (g(t))

(1 + |t|2)kn ≤ R, t ∈ Rn.

For the integer k ≥ 0, we have∫
Rn
(N
(

g(t)
(1 + |t|2)(k+2)n

)
)2dt

=
∫
Rn

(
1

(1 + |t|2)2n

)2
(N
(

g(t)
(1 + |t|2)kn

)
)2dt

≤ R2
∫
Rn

1
(1 + |t|2)4n dt < ∞

which proves that g ∈ S ′2(Rn,X ). Further, supp(g) ⊆ C∗ a.e. since supp(V) ⊆ C∗. From
Theorem 1, the boundary value U ∈ S ′(Rn,X ) in (6) is U = F [V], the Fourier transform
of the spectral function V ∈ S ′(Rn,X ) in S ′(Rn,X ). Moreover, from Theorem 1, the
boundary value U is obtained in both the weak and strong topologies of S ′(Rn,X ).

Now, let X = H, a Hilbert space, in this Corollary 1. Since g ∈ S ′2(Rn,H), then
F [g] ∈ L2(Rn,H) in S ′(Rn,H) by Lemma 1. We know from the above that the boundary
value U ∈ S ′(Rn,H) is U = F [V], and V ∈ S ′(Rn,H) has the form Vt = Dα

t g(t) in
S ′(Rn,H). Let φ ∈ S(Rn). We have

〈U, φ〉 = 〈F [V], φ〉 = 〈V, φ̂〉 = 〈Dα
t g(t), φ̂(t)〉

= (−1)|α|
∫
Rn

g(t)Dα
t

∫
Rn

φ(x)e2πi〈x,t〉dxdt

= (−1)|α|
∫
Rn

g(t)
∫
Rn

φ(x)(−1/2πi)|α|(2πi)|α|xαe2πi〈x,t〉dxdt

= 〈g(t),F [xαφ(x); t]〉 = 〈F [g]x, xαφ(x)〉 = 〈xαF [g]x, φ(x)〉.

Thus, Ux = xαF [g]x in S ′(Rn,H) with g ∈ S ′2(Rn,H). Since g ∈ S ′2(Rn,H), by definition
there is a real number m ≥ 0, such that g(t)/(1 + |t|2)m ∈ L2(Rn,H), and m can be
taken to be a nonnegative integer. We have—by the proof of Lemma 1—that F [g]x =
(1− (4π2)−1∆)mh(x) ∈ L2(Rn,H) in S ′(Rn,H), where h ∈ L2(Rn,H) and ∆ is the Laplace
operator in the x ∈ Rn variable. Combining equalities, we have

Ux = xαF [g]x = xα(1− ∆
4π2 )

mh(x)

in S ′(Rn,H) with h ∈ L2(Rn,H), which is (16). The proof is complete.

5. Cauchy Integral

A Cauchy integral of tempered distributions S ′(Rn) has been defined in one and many
dimensions. Of course, the main problem in making such a definition is that the Cauchy
kernel is not a tempered function in S(Rn); an arbitrary element of S ′(Rn) applied to the
Cauchy kernel is not well defined.

Let C be a regular cone in Rn; that is, C is an open convex cone that does not contain
an entirely straight line. With C∗ being the dual cone of C, the Cauchy kernel function is

K(z− t) =
∫

C∗
e2πi〈z−t,u〉du, z ∈ TC, t ∈ Rn,

as defined in Section 3. For the tube TC being the upper or lower half-planes in C1 or the
tube defined by one of the 2n quadrant cones Cµ = {y ∈ Rn : (−1)µj yj > 0, j = 1, . . . , n}
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where µ is any of the 2n n-tuples whose components are either 0 or 1, the Cauchy kernel
takes the usual form. In order to generate an element of S(Rn) from the Cauchy kernel
in the half plane setting in C1 and the tube defined by a quadrant cone, one divides the
Cauchy kernel by a certain specifically chosen polynomial.

Sebastião e Silva [5] introduced a Cauchy integral for tempered distributions in the
half-plane setting. Carmichael [7] defined a Cauchy integral for tempered distributions in
the Cn setting corresponding to analytic functions in the quadrant cone setting TCµ in Cn

and showed that the analytic functions in (C−R)n, which have distributional boundary
values in S ′(Rn), can be recovered as the Cauchy integral of the boundary value; the
results of [7] can be extended to the vector-valued tempered distributions considered in
this paper by the same techniques as those in [7]. The Cauchy integrals introduced by both
Sebastião e Silva and Carmichael are in fact equivalence classes of analytic functions defined
by an integral involving the Cauchy kernel. Vladimirov [8–10] has defined a Cauchy
integral for tempered distributions associated with analytic functions in general tubes
TC = Rn + iC ⊂ Cn corresponding to regular cones C similar to the analytic functions we
considered in this paper. Vladimirov showed that the analytic functions that he considered
can be recovered by a Cauchy integral involving the tempered distributional boundary
values of the analytic functions. The papers mentioned in this paragraph all concern
scalar-valued analytic functions and distributions.

In this section, we build on our analyses of Sections 3 and 4 to obtain a Cauchy integral
representation of the vector-valued analytic functions, which we considered in Theorem
1 and in Corollary 1. The proof of our results here—and the forms of our results—are
different from any of the previous results concerning the Cauchy integral of the tempered
distribution representation of the analytic functions. By our technique here, we do not
need to divide the Cauchy kernel or the boundary value in (16) by a specified form of the
polynomial and do not need to apply other special features of proof previously used by the
authors in order to obtain that our Cauchy integral is well defined and that the analytic
function considered is represented by a Cauchy integral involving the boundary value.

The Cauchy integral representation of the analytic functions that we considered in this
paper follows. Note that cone C in the following result is assumed to be a regular cone. In
Theorem 1 and Corollary 1, we assumed that cone C was an open convex cone. However,
an open convex cone could contain an entirely straight line; in this case, the dual cone has
measure 0 and K(z− t) = 0, z ∈ TC, t ∈ Rn. To avoid this triviality, we assume that cone
C in the following Cauchy integral representation is a regular cone.

Theorem 2. Let C be a regular cone in Rn and H be a Hilbert space. Let f(z) be analytic in
TC = Rn + iC, have values inH, and satisfy (5). There is a continuous function g ∈ S ′2(Rn,H)
with supp(g) ⊆ C∗ a.e. and an n-tuple α of nonnegative integers, such that

f(z) = zα〈F [g]ν, K(z− ν)〉, z ∈ TC, (17)

in S ′(Rn,H). Further,

〈F [g]ν, K(z− ν)〉 = Θ, z ∈ T−C, (18)

in S ′(Rn,H).

Proof. From Theorem 1, there is an element V ∈ S ′(Rn,H), the spectral function of
f(z), z ∈ TC, such that e−2π〈y,t〉Vt ∈ S ′(Rn,H), y ∈ C; supp(V) ⊆ C∗; and f(z) =
F [e−2π〈y,t〉Vt]x, y ∈ C, in S ′(Rn,H). Further, by Corollary 1, there is a continuous
function g ∈ S ′2(Rn,H) with supp(g) ⊆ C∗ a.e. and an n-tuple α of nonnegative integers,
such that Vt = Dα

t g(t), t ∈ Rn. Now, let φ ∈ S(Rn) and z = x + iy ∈ TC. Recall that we
have defined the differential operator D to be Dt = (−1/2πi)( ∂

∂t1
, . . . , ∂

∂tn
). We have
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〈f(x + iy), φ(x)〉 = 〈F [e−2π〈y,t〉Vt]x, φ(x)〉

= 〈e−2π〈y,t〉Vt, φ̂(t)〉 = 〈Vt,
∫
R

φ(x)e2πi〈z,t〉dx〉

= 〈Dα
t g(t),

∫
Rn

φ(x)e2πi〈z,t〉dx〉 (19)

= (−1)|α|
∫

C∗
g(t)

∫
Rn

φ(x)(−1/2πi)|α|(2πi)|α|zαe2πi〈z,t〉dxdt

=
∫

C∗
g(t)

∫
Rn

φ(x)zαe−2π〈y,t〉e2πi〈x,t〉dxdt

=
∫

C∗
e−2π〈y,t〉g(t)F [zαφ(x); t]dt

= 〈zαF [IC∗(t)e−2π〈y,t〉g(t)]x, φ(x)〉

where IC∗(t) is the characteristic function of C∗. We have proven in [17] (Lemma 4.2.1,
p. 62) that IC∗(t)e−2π〈y,t〉 ∈ Lp, y ∈ C, for all p, 1 ≤ p ≤ ∞. Since g ∈ S ′2(Rn,H), then
F [g]x ∈ L2(Rn,H) in S ′(Rn,H) by Lemma 1. Recall also from Section 3 that the Cauchy
kernel K(z− ·) ∈ D(∗, Lp) ⊂ DLp(Rn), 1 < p ≤ ∞, for z ∈ TC with C being a regular cone
and that an element of L2(Rn,H) applied to K(z− ·), z ∈ TC, is a well-defined function of
z ∈ TC. Continuing (19) and using convolution, we now have

〈f(x + iy), φ(x)〉 = 〈zα(F [g] ∗ F [IC∗(t)e−2π〈y,t〉])x, φ(x)〉
= 〈zα〈F [g]ν,F [IC∗(t)e−2π〈y,t〉](x−ν)〉, φ(x)〉

= 〈zα〈F [g]ν,
∫

C∗
e2πi〈z−ν,t〉dt〉, φ(x)〉 (20)

= 〈zα〈F [g]ν, K(z− ν)〉, φ(x)〉

where IC∗(t) is the characteristic function of C∗. Since g ∈ S ′2(Rn,H), then F [g] ∈
L2(Rn,H) by Lemma 1; and as previously noted, F [g] applied to the Cauchy kernel
is a well-defined function of z ∈ TC and is an analytic function of z ∈ TC with values inH.
Thus, from (20) we have obtained

f(z) = zα〈F [g]ν, K(z− ν)〉, z ∈ TC,

in S ′(Rn,H), and (17) is obtained.
To prove (18), first note that for a regular cone, C, −C is also a regular cone; and (−C)∗

= −C∗. Thus, for z ∈ T−C and φ ∈ S(Rn),

〈〈F [g]ν, K(z− ν)〉, φ(x)〉 = 〈〈F [g]ν,
∫
−C∗

e−2π〈y,t〉e2πi〈x−ν,t〉dt〉, φ(x)〉

= 〈〈F [g]ν,F [I−C∗(t)e−2π〈y,t〉](x−ν〉, φ(x)〉 (21)

= 〈〈(F [g] ∗ F [I−C∗(t)e−2π〈y,t〉])x〉, φ(x)〉
= 〈F [I−C∗(t)e−2π〈y,t〉g(t)]x, φ(x)〉.

Now I−C∗(t) = 0 if t /∈ −C∗ and, hence, if t ∈ C∗. This fact coupled with the fact
that supp(g) ⊆ C∗ a.e. yields I−C∗(t)e−2π〈y,t〉g(t) = Θ a.e. for t ∈ Rn and y ∈ −C.
Hence F [I−C∗(t)e−2π〈y,t〉g(t)]x = Θ, x ∈ Rn, y ∈ −C, in (21). Thus, from (21), we have
〈F [g]ν, K(z− ν)〉 = Θ, z ∈ T−C, in S ′(Rn,H); and (18) is obtained.

6. Conclusions

Tillmann [1] obtained the original analysis concerning the scalar-valued tempered
distributions S ′(Rn) as boundary values of analytic functions. We proved a boundary value
result concerning vector-valued tempered distributions S ′(Rn,X ) as boundary values of
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vector-valued analytic functions in [4] (Theorem 8) but used a norm growth condition on
the analytic functions, which was a special case for the growth of Tillmann. We desired
to obtain a result, such as [4] (Theorem 8), but under the general norm growth on the
analytic function, which was equivalent to the growth of Tillmann. We achieved this
first goal of this paper in Theorem 1 for vector-valued analytic functions f(z) on tubes
TC = Rn + iC with C being an open convex cone. The values of the analytic functions
and the tempered distributions were in a very general type of topological vector space.
We achieved additional information in Theorem 1 concerning the spectral function of the
analytic function.

We asked if additional information concerning the spectral function and the boundary
value could be obtained if the topological vector space X was restricted somewhat. We
obtained the desired information in Corollary 1 by restricting X to be a Banach space and
then a Hilbert space; we showed the structure of the spectral function and the boundary
value in these cases for X . Integral to this analysis was the Lemma 1 result, which proved
the relation under the Fourier transform between two important subsets of S ′(Rn,H) for
our results in Corollary 1. It is important to note that the reason to restrict to Hilbert space
H (which we do in our results) is that the Plancherel theory for the Fourier transform of the
functions holds if and only if the functions have value in the Hilbert space.

The second principal goal of this paper was to obtain a Cauchy integral representation
of the analytic functions considered in Theorem 1 and Corollary 1. Sebastião e Silva,
Carmichael, and Vladimirov have obtained and studied the Cauchy integral of tempered
distributions S ′(Rn) in the scalar-valued case and in one and several dimensions; see the
papers of these authors in the references. Their analyses basically concerned dividing the
Cauchy kernel or the boundary value by a suitable polynomial whose order was large
enough to make the quotient when evaluated by the tempered distribution to be well
defined, or used other special features of proof that we do not use here.

In Section 5 of this paper, we constructed our Cauchy integral used in the representa-
tion of the assumed analytic function in a different manner by using the general known
structure of the spectral function and our proven structure of the tempered distributional
boundary value in S ′(Rn,H) forH being a Hilbert space. The analytic function obtaining
the boundary value in S ′(Rn,H) was shown to be equated to the product of a polynomial
and the constructed Cauchy integral.

This paper concerns theoretical mathematics, yet the topics considered find applica-
tions in mathematical physics and in mathematics that are applied to physical problems.
We survey historically some areas of application in the scalar-valued case. We recall the
work of Streater and Wightman [23] in studying quantum field theory. In a field theory, the
“vacuum expectation values” are tempered distributions, which are boundary values in
the tempered distribution topology of analytic functions with the analytic functions being
Fourier–Laplace transforms. In addition, a field theory can be recovered from its “vacuum
expectation values”; see [23] (Chapter 3). A similar field theory analysis using boundary
values of analytic functions is contained in the work by Simon [24]. We also reference
Raina [25] concerning “form factor bounds” in particle physics in which tempered distribu-
tional boundary values, which are of a special form, imply that the analytic functions that
obtain these boundary values are Hardy Hp functions; this fact is then used in the analysis
of the “form factor bounds”. See also the associated papers listed in the references of [25].

As noted in Vladimirov [8], scalar-valued analytic functions of the type that we con-
sidered in this paper can arise in applying the Fourier–Laplace transform to convolution
equations, which describe linear homogeneous processes with causality that find applica-
tion in the quantum field theory, theory of electrical circuits, scattering of electromagnetic
waves, and linear thermodynamic systems; refer to the list of references in [8]. We also
note paper [26] by Vladimirov, concerning the linear conjugacy of scalar-valued analytic
functions of several complex variables, which are again of the type that we considered in
this paper with respect to growth. The linear conjugacy analysis involves scalar-valued
tempered distributional boundary values of analytic functions represented as Fourier–
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Laplace integrals. Vladimirov [26] (p. 207) states that many problems arising in mathemati-
cal physics reduce to the problem of linear conjugacy involving tempered distributions;
Vladimirov [26] provides examples of such problems.

The survey of applications above (concerning the type of analysis used in this paper)
involve scalar-valued functions and distributions. Yet, a close consideration of the linear
conjugacy problem of [26], together with the vector-valued analysis of this paper, leads
one to believe that the linear conjugacy problem can be extended to the vector-valued
case. Further, in an analysis of the stated applications above, one must sometimes obtain a
distributional solution of a partial differential equation; such calculations can be extended
to the vector-valued case. We suggest that the considerable related analyses to the results
of this paper and the results of related references in this paper can be achieved in the
vector-valued case and will work toward this end in the future.
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