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Abstract: We determine in this paper new results about the radius of uniform convexity of two
kinds of normalization of the Bessel function J, in the case v € (=2, —1), and provide an alternative
proof regarding the radius of convexity of order alpha. We then compare results regarding the
convexity and uniform convexity of the considered functions and determine interesting connections
between them.
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1. Introduction

Let U(r) = {z € C: |z| < r} be the disk, centered at zero, of radius r, where r > 0.
We denote by U(r) = U(0, ).
We say that a function f of the form

f(z) =z+az*+... 1)

is convex on U(r) if and only if f(U(r)) is a convex domain in the set C and the function f
is univalent.
We know that the function f is convex on U(r) if and only if

Re (1 + Z;/;iz))) >0, ze U(r).

We say that f is a convex function of order a on U(r) if

Re (1 + ZJJ:,H(S)) >a, zeU(r).

The radius of convexity of order « for f is defined by the equality

2f"(2)
rs(a) = sup {r € (0,00) : Re (l + ) ) >a, z€ U(r)}. )

We say that f is uniformly convex in the disk U(r) if the function f has the form in (1),
it is a convex function, and it has the property that the arc f(-y) is convex for every circular
arc y contained in the disk U(r) with center {, also in U(r). The function f is uniformly
convex in the disk U(r) if and only if

(14 ) > ey

, ze U(r).
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We know that the radius of uniform convexity is defined by

N () — . 2f"(2)\ o |12f"(2)
rf*(a) = sup {r € (0,00) : Re (1 + 2) ) > ) I z € U(r)}. 3)
The Bessel function of the first kind is defined by
. d (_1)11 2n+v
Julz) = En!F(n—l—v—i—l) (2/2)77
Consider the following normalized forms:
1
gu(z) =2T(A+v)2" ", (z) =z — mz” +..., (4)
and
hy(z) =2"T(1+ 1/)217”/2]]/(2%) =z— 4(1/11)22 +..., ()

where v is a real number and —2 < v < —1, and g, and h, are entire functions.

This article can be considered a continuation of previous papers [1,2] which dealt with
geometric properties of Bessel functions.

For more details about the geometric properties of Bessel functions, interested readers
are referred to the following papers: [1,3-13].

The aim of this work is to determine the radius of convexity of order «, r;(uc) for
f = gvand f = h, and the radius of uniform convexity T («) for the case v € (—2,—1)
and to derive an interesting connection between the convexity and uniform convexity.

In the next section, we provide several results which are necessary later in this work.

2. Preliminaries

Lemma 1 ([14], p. 483, Hurwitz). Ifv € (—2,—1), then ], (z) has exactly two purely imaginary
conjugate complex zeros, and all the other zeros are real.

The zeros z7V],(z) are taken to be =j,,, where n € N* = {1,2,3,...}. We may
suppose, without restricting the generality, that j, 1 = ig, a > 0,and 0 <a < j,p <jy3 <
"’<jv,n<"'

Lemma 2 ([14], p. 502). The following equality holds

© 1 1
S (6)
Lo = D)

Lemma 3 ([8]). In the notations of Lemma 2, we have

zg,(2) S
=L =1-2 -—, (7)
e Lo o
and h’( ) .
zh),(z z
=1 _— 8
T E R S ®

The series are uniformly convergent on every compact subset of C \ {%j,,, : n € N*}.
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Lemma4 ([9]). Ifv € C, § € R, and 6 > p > |v|, then

v
0—0

P
<
- and ‘

(0—0)2| = (0—p)*
Proof. The following implications hold

1 < 1 :‘ 1 ’< 1
6—o] —d—p " 1(0—0)21 7 (6-p)*

0—0v|>d6—p=

If the last two inequalities are multiplied by the inequality |v| < p, we obtain the
desired results. [

Lemmab5. Ifv € C, 6,y € R, v >35> p > |v|, then
2 2
e ©

[y
= (0—p)(r+p)

’(5+v)(7—v)

Proof. We can prove the second inequality of the following equivalence:

1 1

< S G —p)(v+p) < |(6+0)(y—0)| (10)
e e R e R AR CRDIC
where y > 6 > p > |v].
We prove the inequality (10) in two steps.
Let v = x + iy; then, it is obvious that
[(6+0)(y—0)| = \/[(5+x)2+y2][(+y2+7—x)2} >[(y—x)(6+x), (11
where y > 6 > p > /x2 +y2.
On the other hand, a simple calculation results in
(@+x)(y—x) = (6—p)(r+p) x€[—-ppl (12)

It is easily seen that (11) and (12) imply the second inequality of (10). Finally, multi-
plying the inequality p? > |0|2 by the first inequality of (10), we obtain (9) and the proof is
complete. [

Lemmaé6. Ifv € C, 6,y € R andy > 6 > p > |v|, then

2r2[26 — (v — 5)p]
< 3 5
(v +0)?(6—p)
Proof. The inequality obviously holds provided that 7 = ¢ (see (10)), thus, we have to

prove it in the case that y > J.
We can then prove the following inequality:

202296 + (7 — 6)7]

(7 =P+ 07 =

296 — (v = 0)p
~(6=p)(r+p)

We define z = x + iy and define the mapping

;Y 28>p 2ol (14)

‘27(5+ (y—=9)v
(@ +0)(r—0)

_ B (w4 x)% 4 y? 294
e (R N (O EEy R K aer
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Then, we have

[(6+x)* + [y =) + ¥ = [0+ x)* + (v = x)* + 202 [(w + x)* + ]

=2 @+ 07+ 2Pl =02 + 2T

As¢'(y) <0,y € (0,p)and ¢'(y) >0, y € (—p,0), it follows that

(w +x)?
o+ x)?[(y —x

We can determine the maximum of the function

¢(y) < 4)(0) = [( )7_]/ ye [_PIP] (15)

w+x
=p0l 2R, o) = —F——.
¢ [=p.p] P = G =)
We have
x% 4 2wx — v

/
X)) =
7=
The derivative ¢’ (x) = 0 has one positive root, x; = y/w? + 76 — w, and one negative
root, X = —y/w? + 6 — w. As x; < —rand x1 € (—p,p), it follows the inequality

w+x

Grn o = oW smaxe-p) e} =el-p) = = (9

S—p)(r+p)

for every x € [—p, p]. From (15) and (16), we have (14). Finally, multiplying the inequalities
(14), |0?| < p? and the first inequality of (10), we infer (13). [

Lemma 7. If the functions g, and hy are defined by (4) and (5), respectively, then

Zg{//(z) _ ZZIV+2(Z) — 3]1/+1 (Z) .

= 17

g (z) Ju(z) = z]y41(2) W

zh})(z) _ z]v+2(z%) —42%Iv+1 (Z%). (18)
() ag(2h) - 223 (22)

Proof. We differentiate the equality (4), and at the second time we differentiate it logarith-
mically. After multiplying by z, we obtain the following equality:

2g0(z) _ 20 +22(1-)[}(z) +v(v — D]u(2)
16 SO ENE) '

The function J, is a solution of the Bessel differential equation; thus, we can replace
the function z2J!/ using the equality z2]!/ (z) = (v? — z2)],(z) — zJ/,(z), and it follows that

28y(2) _ 2(1=20)Jy(2) + (2> —v —2%)],(2)
gz 2 (z) + (1 =v)]u(2) '

In the second step, we use the following well-known equality: zJ/(z) = v],(z) —
zJ,4+1(z), and infer

2g0(2) _ 22v— Dy (2) — 22Ju(2)
g{/(z) ]v(z) _Z]v-i-l(z) .
Finally, we replace z],(z) in the numerator by zJ,(z) = 2(v+1)J,+1(2) — zJy4+2(2),
and obtain (17).
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We differentiate equality (5) twice, similarly to the case of the function g,, and obtain

1

2hy(z) _ vv=2)Ju(z2) + (3 )22 fi(e2) + 2 (z2)
1, (z) 2(2—v)]y(22) + 227, (z2)

) — Z%I{/ (z2), and obtain

NI—

We use the equality zJ(z2) = (12 — 2)], (z

1,(z2)
)

Now, using the equality 21 I, (z%) =vJy (z%) - Z%L,_H (z% ), we infer

hll(z) (202 —2v—2)],(22) + (2 —2v)z
1, (2) 2(2 —v)],(22) 4222 ]/ (22

2hy(z) _ (v =2)23],41(22) — 2], (22)
Iy (2) 4],(22) — 22 [0 (22)

and combining this with the equality z%]V(z%) =2 +1)Jy41 (z%) - z%]wrz(z%), (18)
follows. O

3. Main Results

Theorem 1. If & € [0,1) and v € (—2,—1), then the radius of convexity of order w for the
mapping gy is r5 () = r1, where ry is the unique root of the equation

I,/+2(I’) + 3Iv+l (I’) —a (19)

147
Iv+1 (1’) + TL, (1’)

in the interval (0, a).

Proof. According to the proof of Theorem 1 [2], the equalities

z8,(2) > 1 1
=1-2 ’ = N
S L e Lt
imply
zg,(z) 1 a? 2 5 ac + jyn z4
(z)  2004v)ar+z22 T 5 7, (@242, 22

The logarithmic differentation of this equality leads to

2g!(2)
e
2 2 4
ey ﬁ S T e I @0
R
18 22 2y, " ﬂz-Jv,n 4

2(14v) a%+z22 Jvn (’12+22)(j5,n_22)

It is proven in Theorem 1 [2] that the radius of starlikeness, rg‘,v, for the function g, is
the smallest root of the equation

DL
2(14+v) a2 —72
_2 Z ﬂ +]1/71 7’4 — ‘ gll/(lr) — 0/

n=2 ]1/ n (aZ - rZ)(]%,n + r2) gV (11’)
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in the interval (0, a). Thus, we have

0<r;v<a<er2<jv,3<"'<jv,n<"'. 1)

Taking into account that v + 1 < 0, the equality (20) implies the following inequality:

Re(1+305) >

- a? ‘ 22 ‘_2ia2+j5,n
2(14v)la2+22 e S

74

(@*+22)(ji .0 — 2%) ’ -

ZZ [2a2]'2 +Z (]L n—4 )]
(2P Fo= 2P

E 4]t z4
n=2 jvn (’12+22)(]L n_zz)

(22)

_ a2
1+v

EIZZZ
(u2+zz 2

242
ac+jy
222072 '12/]:”

22 |
a2+z2

1T+ 2(1+v)

for every z € U(r}).
Using 6 = a2, o= 72 and v = 22 in Lemma 4, we obtain

2 2 2 2 a2

’ z ‘> a o ’ z
a2 +221 = 2(14v)a2 =12 " " 2(1+v)l(a? +22)?
2 2

a 2

2(1+v)

E (23)

a
(a2 —r2)22(1+v)

In a similar manner, Lemma 5 and Lemma 6 imply that

4 4

z r
<
@+ D n = )|~ @A)
PR+ 2y~ )| 2 — PRy )
@+ DRy = |~ (@ (R + 2P

(24)

Now, inequalities (22)—-(24) imply the following inequality:

Re (1 + Zgg,f((zz))) >

1_._11727_2% 2+]V” rt —
2(1 +V) - rZ n=2 ]vn {Il - 72)(]%,11 +r2)

(25)

u2 2 2 a +]L n 2r4[2a ]v,ni 2(]1/,7175’2)}
“r @y T2k P il G P

SR )
VVI T
r — 2L J'%,n (a2—=12)(j n+72) 8

22

1+ 2(1+1/) a2

provided thata > rg > |z|, where rg, verifies the inequalities (21).
The following equalities hold: ®(0) = 1 and lim, »; ®(r) = —oco. Consequently,

equation 1 + Irgv(f;;) = a has a real root in the interval (0,3, ). The smallest positive real

root of the equation 1 + lrg‘(fr)) = a is denoted by r¢ («), and this root is the radius of
convexity of order a of the function g,. The first equality of Lemma 7 and the equality
Ju(iz) = i"I,(z) imply that the equation 1 + ”g”((l;) = « is equivalent to (19).

O

We determine the radius of uniform convexity of the mapping g, in the next theorem.
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Theorem 2. Ifv € (—2, —1), then the radius of uniform convexity for the mapping g, is r(a) =
1o, where ry is the smallest positive root of the equation

1 Lo(r) +3La(r) _ (26)

.
2 La(r) +rL(r)

in the interval (0,7}).

Proof. Equality (20) implies the following inequality:

o g(z)

2 2 =) H 4

“airlaal 2L ; - @ el @
|ty |+ 2o e e
Ut sty | e | — 2B 2]7 )

We can again use inequalities (22) and (23), and in combination with (27), we have

z¢!(z) a? r2 a®+ 2, rd
< - +2 : +
e e T Y e
2 2 2 a +]2 274[2‘1 v,ni (]1/,117‘12)]
Tt <a2—r2>2 +200 A, P __irgy(ir)
2 +jon 4 '
1 + 2(1+V) a2 12 -2 Zn =2 : ]%,1 (ﬂz_rz)r(]%,n"'rz) gv<lr)
Inequalities (25) and (27) imply
R (1 4 28y (2 ) ’ng ‘ 2irg,vl(ir) z e U(rh) (28)
SV g C T

The smallest positive root of the equatlon 1+ ZW&(E;S) = 0 in the interval (0,7}) is
denoted by r{°. According to (28), the value 7}/ is the biggest with the property that

Re(1+ZgV ) ‘Zg” ‘>Oz€u(”c)

/

Lemma 7 and the equality J, (iz) = i"I,(z) imply that the equation 1 + ergv(( )) =0is
equivalent to (26), completing the proof. [J

Theorems 1 and 2 imply the following result.

Corollary 1. The mapping g, is uniformly convex in the disk U(r) if and only if it is convex of
order .

Theorem 3. If « € [0,1) and v € (—2,—1), then the radius of convexity of order w for the
mapping hy is ry, (a) = r3, where r3 is the smallest real root of the equation
:)

1+ = (29)

in the interval (0,7}, ).
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Proof. According to the proof of Theorem 2 [2], the equalities

zh),(z) 2z 21 1
=1- -, 5 =
) Tz My T A

NI Vo
hy(z) 4v+1) a®4+z = 2, (a2 +2)(j2,—2)’

where z € U(0, 7).
The logarithmic differentiation of the equality leads to

zh!)(z) a2 z © 524 ]12,,1 72

1 + =1 . _ . . - _
h,(z) 4(v+1) a?+z }1;2 72 (a>+2z)(j2, —z)
2 i’z i Eoo a2+j§,n ) 22 [2u2j12,,n+z(jan7a2)]
) (242 T =122, (Bn—2) (a2+2) (30)
1—L.L_Zw i 22 '
4?4z (v+1) n=2"7Z,  (Ba-z)(a+2)

It is proven in [2] that the radius of starlikeness, rZV, for function h,, is the smallest root
of the equation

—rhy (=) 2
—_— U 0 .
(=) 0,r¢€ (O,a ),ze (0,7)
However,
M =1 + L . L_
hy(—r) 4w +1) a?—r
> a2+j12/n r? 2
— R 5 > :O,rE(O,a )
= Jon (@ =) (. t7)

Taking into the account that v+ 1 < 0, we obtain from relation (30)

zh!(z) a?
re(1+55) > v

z 2

a2 4z

B i @+

i2
n=2 ]v,n

z
(@ +2) (jn —2)

2 2

i) -

a~z

i
(a2+2)*

2

o @
+ anz jv B

a [2112]%’” tz (jl%,n —a )] ‘
(@+2)° (a—2)"

(31)
72
({12+Z) (]%,n _Z)

zZ

oo ﬂZJF]%,n .
a’+z

n 2

Jvn

2
1+ 4(5+1) ’

andz € U(0,7),r € (0, 1’;;) . We obtain from Lemmas 4 and 5 the following inequality:

zh!! (z) a? r a2+, 72
> . _ Mo _
Re(“h@(z>>—”4<v+1> 2 LR, @en@en

iL . 51277 + 200 ”2+j3,n . ? [2”2]%,'777(]%,;77”2)]
4(v+1) (”2_7)2 n=2 jlz/,rz (ﬂz—r)z(jg,n+r)2
- 2 217 2 = (32)
1+ 4 N Y un r2
R R =

_ rhy(—r) _ *
_1—W—lp(r), a>r, > |z],
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similarly to the proof of Theorem 1. The mapping

W (—
g:(07,) 2R () =1+ ;:;(Vfr)r)'

is strictly decreasing, and a > 1}, > |[z|.
We then have I/im P(r) = —oo, (0) = 1, and the equation
r

(1) _
1+ (=) =«

has at least one real root in the interval (0, rZV).

The smallest positive real root of the equation 1 — r]]://v,((::)) = a is denoted by 7}, («),

and this root is the radius of convexity of order « of the function #,. The second equality

of Lemma 7 and the equality J, (iz) = i"I,(z) imply that the equation 1 — rh, (( r)) = is

equivalent to (29). O

Theorem 4. If « € [0,1) and v € (—2,—1), then the radius of uniform convexity of h, is
1y, (@) = r4, where ry is the smallest positive root of the equation

TIV+2(V%) +4r%11/+1<r%) _ 1 (33)
AL (r2) +2r2L, 1 (r2) 2
in the interval (0,7}, ).
Proof. Equality (30) implies the following inequality:
W (% a2 z oo 42 + i2 72
/1/( )| o LI S i 70 : N
h, (Z) 4(V +1) |a®+z n— Jun (a + Z) (]v,n - Z)
— a2 a +j%/n . Z2 [Zazjg,n-&-z(j%,n—az)]
n A1) (a2+z + Zn =2 7. (uz—&-z)z(j,%/n—z)z (34)
a +]1/;1 22
1+ (v+1) a2+z — L2 [ (a2+2) (% n—2)
We obtain the following from the relation (31), Lemma 4, and the relation (34):
zh)) (z a? r ® g2 42 r?
h/v( ) _ _— + Z > Jun s . +
v(z) 4(1/ + 1) as—r n=2 ]v,n (” - 7’) (]v,n + 1’)
u2 aZ Z ﬂ +]V n 72 [zaz]‘lz/,n*r(jlz/,n*az)]
iv+T) (2 n=2 "7 =" > 202 2 "
(a2—r) J, (@) (B utr) h, V(=) el <r<a
1— a2 r Z a Jr]1/11 . r2 hv( 1’)
4(a2-r) Vi1 "= R (@) (Batr)
Inequalities (32) and (34) imply
zh))(z) zh) (z) 2rh))(—r) .
- P e A :
Re(1+ 5 ) [Tt 21- sy e ue) )
The smallest positive root of the equation 1 — 22’55(/(:7; ) — 0in the interval (0, r;v) is

LlC

denoted by r}¢
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According to (35), the value r;® is the biggest with the property that

zh}) (z) zh!(z)
R 1 v _ v uc .
e( + 7 (2) ) e >0, zeU(r)
The equation 1 — ZZ],Z{(,(_;; L = 0is equivalent to (33), completing the proof. Lemma 7 and

the equality J, (iz) = i"I,(z) imply that the equation 1 — 2;’5{(/(:7; ) = 0is equivalent to (33). [

From Theorems 3 and 4, we obtain the following corollary.

Corollary 2. The function hy, is uniformly convex in the disk U(r) if and only if it is convex of
order %
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