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1. Introduction

In this paper, we only consider simple and finite connected graphs. The topology and
chemical index of the graph play important roles in describing the chemical molecular dia-
gram and establishing the relationships between molecular structure and characteristics. It
is a topological index closely related to the physical and chemical properties of compounds,
so it is widely used to predict the physical and chemical properties and biological activity
of compounds.

The molecular diagram in a chemical diagram is the structural diagram of a compound
molecule. We let the vertices represent the atoms, and edges stand for the covalent bonds
between atoms. Then, the molecular structure can be represented by this diagram, which is
called the molecular diagram. For more detailed information, we can refer to [1-13] and
the references cited therein.

The molecular topological index is a kind of topological invariant, which is a numerical
parameter generated from a molecular structure, and the properties of molecules are
indirectly expressed by molecular structure—that is, the relationship between molecular
structure and performance can be established. The physical and chemical properties of
molecules can be reflected by some topological indexes, which can be divided into many
categories according to different parameters, such as point degree, adjacent point degree
and the distance between two points. Let G = (V(G), E(G)) be a graph with the vertex set
V(G) and the edge set E(G). The degree d(v) (or d(v) for short) of a vertex v in G is the
number of edges of G incident with v.

In 1993, the resistance distance was found to be a novel distance function on the graph
proposed by Klein and Randi¢ [14]. r(x, y) denotes the resistance distance between vertices
x and y in G. For x,y C V(G), the resistance distance between x and y in G, denoted
by rg(x,y), is defined as the effective resistance between nodes x and y of the electrical
network, for which nodes corresponding to vertices of G and each edge of G are replaced
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by resistors of unit resistance. The Kirchhoff index of G is defined in analogy to the Wiener

index as [15-21]
Kf(G)= )} r(xy). ©)
{xy}cve
In 2012, the additive degree-Kirchhoff index was introduced by Gutman, Feng and
Yu. We refer the papers [22,23], in which it was defined as

KfF(G) =}, (d(x)+d(y)r(xy). )

{xy}cve

A random polygonal chain G, with n polygons can be regarded as a polygonal chain
Gy—1 with n — 1 polygons to which a new terminal polygon H, has been adjoined by a cut
edge; see Figure 1. For n > 3, the terminal polygon H, can be attached in k ways, which
results in the local arrangements we describe as G, G2, G3, ..., Gk. See Figure 2. A random
polygonal chain G, (p1, p2, p3, - - -, Pk—1) With n polygons is a polygonal chain obtained by
stepwise addition of terminal polygons. At each step k(= 3,4,...,n), a random selection is
made from one of the k possible constructions:

*  Gy_1 — Gl with probability p;,

*  Gy_1 — G with probability py,

e Gy_1 — G, with probability ps,

e : :

e Gy1— Gé‘; ! with probability pi_1,

4 Gr_1 — Glz(k with probability py =1 —p1 —p2 —p3 — - — Pk—1,

where the probabilities p1, pa, p3, - .., px—1 are constants, unrelated to the step parameter k.

5 1y g xS
2k UL Tn Toj T

vl V2

n T

€ P P ]
a %2 T = 1'1_/}:-2 T3
Tn—2 T Ty, G2 T

T

Figure 2. k types of local arrangements in a polygonal chain.

Let G;, be a polygonal chain with n polygons Hy, Hy, ..., Hy. Set upwy as the cut edge
of G, connecting Hy and Hy 1 with uy € Vy,, wy € Vy,, fork =1,2,--- ,n — 1. Clearly,
both wy and w1 are the vertices in Hy 1 and d(wg, ug11) € {1,2,3,...,n}. In particular,
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Gy, is the meta-chain M,;; the ortho-chains are O}l, O%, eeey O’,‘fZ ; and the para-chain is Ln if
d(wk, Mk+1) =1 (i.e., pP1 = 1), d(wk, uk+l): 2 (i.e., p2 = 1), d(wk, uk+1) =3 (i.e., p3 = 1), ey
d(wy, ugyq1) =k (e, pp =1) forallk € {1,2,...,n — 2}, respectively. For convenience, let
©®j, be the set of all polygonal chains with # polygons.

Huang, Kuang and Deng [24,25] obtained the expected values of the Kirchhoff index
of random polyphenyl and spiro chains. Zhang and Li et al. [26], obtained the expected
values of the expected values for the Schultz index, Gutman index, multiplicative degree—
Kirchhoff index and additive degree—Kirchhoff index of a random polyphenylene chain.
For more information, we can refer to [27-34]. The molecular diagram in this paper contains
all the molecular diagrams of the previous study and is a general result. We calculate the
explicit analytical expressions for the expected values of the additive degree-Kirchhoff
index of a random polygonal chain. We also obtained the extremal values and average
values of the additive degree—Kirchhoff index with respect to the set of all polygonal chains
with n polygons. It can be applied in practice more conveniently. These results can help
biochemists with predicting and synthesizing new compounds and drugs.

2. The Additive Degree-Kirchhoff Index in a Random Polygonal Chain

In this section, we consider the expected value of additive degree—Kirchhoff index
of the random polygonal chain. For a random polygonal chain G, the additive degree—
Kirchhoff index is a random variable. In fact, G, 11 is G, linked to a new terminal polygonal
H, 1 by an edge, where H, 1 is spanned by vertices x1, x, x3, ..., X3, and the new edge
is u;x1; see Figure 1. On the one hand, for all v € V5 , one has

r(xllv) = r(uﬂ/ U) + 1/

k— k
V(xzfv)—r(un,v)+1+H((22k_11)> 7 (ttn, 0 )+1+2T
2k —2 4k —4
r(xz,v) = r(up,v) +1+ H((21<2)) r(up,v) +1+ T
k— k+1 K2 — 1
r(xkr U) = r(unl U) +1+ ((k )) ((k—: 1)) (Mn/ ) K
2 ®)
r(xs1,0) = r(un, ) + 1+ % =1(up,v) +1+ %,
k+1)-(k—1 K — 1
r(Xgy0,0) = r(up,v) + 1+ ((k jl))Jr((k 1)) 7(utn,v) T
r(xox—1,0) = r(n,0) + 1+ ((ZZkk_—ZZ))—é =r(up,v)+1+ 41{274’
2k—1)-1 2k —
r(XZk’v) _r(un’0)+1+((2k—1))+1 :r(un, )+1+7
Y, A6, (0) =[(2k—2)-2+2-3jn—1= (4k+2)n—1. @)

UEVGn

On the other hand,
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2k 2 3
4k* -1  8k% —2k
l_zld(xl) (xl/xi) - 3 - 6k 4
C4k>—-1  1-(2k—1)  8k®+4k+3
del Mo x) = —s—+ 5 =g
4k —1  2-(2k—2)  8k®+10k—12
Zd Xr(xs, X)) = =5 — 45— = ok’
4k —-1 (k—1)-(k+1) 8k’+3k*—2k—3
Zd r¥ xi) = —3—+ 2k - ok ’
) ®)
4k -1 k-k 8k2+3k—2
Zd"l x"“’xl)*T*E:T’
4> -1 (k+1)-(k—1) 8k*+3k*—2k—3
Zd xl xk+2l xl) - 3 + 2k - 6k ’
4k -1  (2k—2)-2  8kK> 410k — 12
Zd r(Xpk—1,%;) = 3 + ( Zk) = oK ,

{M,U}QVG,[

4k* -1  (2k—1)-1  8kK>+4k+3
Zd M) = —5—+ = — =~

Theorem 1. For n > 1, the expected value for the additive degree—Kirchhoff index of the random
polygonal chain Gy, is

E(Kf*(Gn)) ={(4k> + 10> + 4k) — ki[4k3 + 2k — (4k+2)(i - (2K - i))]pi}n;
i=1
Elak 2k23_ k-1, kf[4k3 + 2% — (4k +2)(i - (2k — 1))]pi }n?
i=1

+1{

(8R4 1)+ 2 Y 42— (8420 (2 )
i=1

Proof. Recall that the random polygonal chain G, is obtained by attaching to G, a new
terminal polygonal H,, 1 by an edge, where H,, | is spanned by vertices x1, x5, x3, ..., Xo,
and the new edge is u,x1; we may use the same notation as that used at the beginning of
last section. By (2), one has

Kf* (Gur) = ), (dw)+d@)r(wo)+ Y}, ) (d(v)+d(x))r(ox)

{uv}CVvg, 0EVG, Xi€VH, 4
+ 2 (d(x;) + d(x]-))r(xi, x]-).
{xix;}SVh,
Note that
Y. (d(u)+d(v)r(u,0) = Y du)+d@)r(w,o)+ Y, (dg,,, (n) +d(0))r(us,0)
{u0} VG, \{un} v€VG, \{un}
= Z (d(u) +d(v))r(u,v) + Z dg,((un) +1) +d(v))r(uy,v)
{urv}gVGn\{un} UeVGn\{uﬂ}

=Kf*(Gu)+ Y r(un0).

[4S VGn
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Kf+(Gn+1) =

Recall thatd(x;) =3 and d(x;) =2 fori € {2,3,4,...,2k}. From (3) and (4), we have

Y Y (d(o)+d(x))r(o,x)

ve VGn xieanH

=Y Y dorx)+ Y, Y dxi)r(vx)

‘UEVGH xiEVHnJrl ‘UEVGn xiean+1

T a0t 0) +1) + ) 41+ D)

US VGn

2. (2k—2) 3-(2k—3)

4o (r(un, )+1+%)+(( )+1+ﬂ)

2k
(k—1)- (k+1) 2. (2k - 2)
2k

2k )
1-(2k—1)
— )]

+ Z [3( (U, 0) +1) +2(r(up,0) + 1+
veVg,

+ (r(un,v) +1+

+ (r(un, ) +1+ )+ -+ (r(un,0) +1+

+ (r(un,v) +1+
1-(2k—1)
2k )

$)+2(T(un,v)+1+w)

+-'-+2(r(un,v)+1+%)+2(r(un, )+1+g)

2k

(k—1)- (k+1) 2. (2k—2)
2k T

1-(2k—1)

—

—2k Y d(0)r(n0) + 4"2“%[(4“2)”—1]

UGVGn

+2(r(un,v) +1+
+2(r(un,v) +1+ Y+ 4+ 2(r (g, v) + 1+

+2(r(up,v) +1+

4Kk% + 12k +2
+ (4k+1) Y r(up,0)+ i VY

UEVGn 3

Note that leil r(xg, x;) = 8k12k2k fork=1,2,3,---,2k. From (5), one has

1 2k 2k
Yo (d(xy) +d(xj)r(xi, xj) = 22 i) +d(xj))r(x, xj)
{xix}CVh, 4 2 1j=1
2k 2k
=L L)
i=1j=1
_80 - k[3+2x(2k—1)]
12k
16k +4k? — 4k — 1
- . _
Then,
16k3 + 52k% + 14k — 1 8k3 — 8k
+ (4k+2) Y r(un,v)+2k Y d(v)r(un,0) + * 3+ nt——— (0

US VGn Ve VGn
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For a random polygonal chain G, the number } ¢y, d (v)r(uy,v) is a random variable.
We may denote its expected value by

Ry :=E( ) d(o)r(uy,v)).

Z}EVGn

For a random polygonal chain G;, the number } ¢y, r(un,v) is a random variable. We
may denote its expected value by

Dy :=E( Y r(un0)).

veE VGn

By a expectation operator and by substituting R, and D, into (6), we can obtain a recur-
rence relation for the expected value for the additive degree-Kirchhoff index of a random
polygonal chain G, as follows:

16k3 + 52k% + 14k — 1 8k3 — 8k
3 n—+ 3 .

E(Kf*(Guy1)) = E(Kf(Gn)) + (4k +2) Dy 4 2kR;, +

Consider the following k possible cases.

Case 1. G, — G}l 41 In this case, u, coincides with the vertex xy or xy;. Consequently,
Yveve, (un,v) is given by Y ey 7(x2,0) or Lyey,, 7(xor, v) with probability p;.

Case 2. G, — G% 41-In this case, u, coincides with the vertex x3 or xp,_1. Consequently,
Yoevg, T(n,v) is given by Yoey, 7(x3,0) or Lyey,, 1(x2k—1,0) with probability ps.

Case 3. G, — Gz +1- In this case, u,, coincides with the vertex x4 or xp;_,. Consequently,

Yvevg, un,v) is given by ¥ ey 7(x4,0) OF Lyey, 7(xX2k—2,v) with probability ps.

Casek — 3. G, — Gﬁj In this case, u, coincides with the vertex xx_, or x;,4. Conse-
quently, Y oey,, 7(un,v) is given by ¥oocy, 7(Xk—2,0) of Loey, 7(Xk+a,v) with probability
Pk-3-

Casek — 2. G, — Gﬁﬁ In this case, u;, coincides with the vertex x;_; or xj 3. Conse-
quently, Yoey,, 7(un,v) is given by ¥ocy, 7(Xk-1,0) or Loey, 7(Xk+3,v) with probability
Pk—2-

Casek — 1. G, — Gsﬁ In this case, u, coincides with the vertex xj or xj,,. Conse-
quently, ¥y, 7(un,0) is given by Yoy, 7(xk, v) or Yoey, 7(Xki2,v) with probability
Pk-1-

Case k. G, — GF +1, then u, is the vertex xi.q. Consequently, } ey, r(up,v) is given
by Yoev, r(xk41,0) with probability 1 — p1 — po — p3 — ... — px—3 — Pk—2 — Pk-1-

According to the above k cases, we may obtain the expected value R as



Axioms 2022, 11, 373 7 of 14

R, =p1 Z d(v)r(x,v) + p2 Z d(v)r(xs,v) + p3 Z d(v)r(xg,0)

veVg, veVg, vV,
totpes Y A (2, 0) Fprea Y d(@)r(x1,0) + ey Y d(0)r(x,0)
veVg, veVg, veVe,
FAoppropa— = Bes =Bz = pet) B d@)r(aeea, o)
) — n 2 _ . _
—pi VZ d(v)r(un_l,v)Jr(1+%)((4k+2)n_1)+(4k3 1,1 (22kk o
. i — 2 _ . _
+P2[v€‘§i d(v)r(un,hv)-k(1+%)((4k+2)n_1)+(4k3 1 +2 (22kk 2))]
) — 2 _ . _
el L a0+ 0+ G2+ (g G
_3). - o
Y d(v)r(un_l,z;)+(1+w((4k+2)n71)+(4k3 1, 3)2k(k+3))]
_). - L
+ pr—2l VZ: d(v)l’(un,l,v)—k(14_%]{(]{4—2)((4]{_’_2)”_1)_’_(‘%3 1 n (k Z)Zk(k+2))]
). - L
tpeal T d(U)r(un_l,z;)+(1+%((4k+2)n_1)+(4k3 N 1)2k(k+1))]
. | B |
+(A=p1—p2— —pr)l VZ d(v)r(unfl,v)+(1+%)((4k+2)n—1)+(4k3 1+%)]_

n—1

By applying the expectation operator to the above equation, and noting that E(R,) = R,

we obtain
k-1 ; ;
2k +1i- (2k —
Ry =Ry—1+ {(2K* +5k +2) — Y [(2k* + 5k +2) — #(2“ Dlpi}n
i=1
k-1 ; ; 2
2k +i- (2k — 2k* + 15k + 10
+ Y [(2%+5k+2) — %(zwr 1]pi — %
i=1
Let .
— 2%k +i- (2k—i
V= Z:[(Zk2 +5k+2) — #(Zk—k 1)]pi.
i=1
Hence,
2
Ry =Ry 1+ [(2K2 45k +2) = Vin+V — %Jrlgﬂ.
The boundary condition is
_4k2 -1

Ry =E( Y d(o)r(m,0) = =

vE VGn
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According to the above recurrence relation and the boundary condition, we have

R, :{w %i zk2+5k+z)—Lk<2k_i)(zk+1)]pi}n2
i=1
+{;f_211[(2k2+5k+2)2k+i'k(2k_i) (2k+1)]p1-+—Zkz_lsk_m}nﬂ.
Thus,
R, — [(2k2+5k+2) e tvs 2k2—15k—14]n+1'

2 2 2 6

According to the above and the above k cases, we may obtain the expected value D;, as

Dy=p1 Y, r(xp,0)+p2 Y r(x3,0)+ps Y, r(x4,0)

UGVGn UGVGn UGVGn

+otpres Y, (2 0) Fpk—2 Y, (e, 0) Fprer Y, (% 0)

ve VGn UEVGn Z}EVGn

+(A=pi—p2—p3—- - —Ps—Po—pr-1) Y, r(xk41,0)
’UEVG”
1-(2k—1) 4k* —1
:Pl[ Z r(un,l,v) + (1 + T) X 2k(1’l — 1) + 6 ]

UEVCn71

2. (2k—2 4Kz —1
+p2l ), r(un,l,v)+(1+(T))x2k(n—l)+ 3 ]
veVg

n—1

+ps[ ) r(u”_l’v)+(1+W)><2k(n—1)+4k26_1]

UeVGn—l

+...

toesl Y, r(un1,0)+ (1 w> « 2k(n—1) + 4k26_ 1]

veVg

n—1

_9). '
+ pr—2l Z r(un,l,v)+(1+%)sz(n_1>+4k6 1]
UEVbnil

el Y r(1,0)+ (14 W) 2 —1) + 4k26f 3

UGVGn71

k-k 4k2 -1
+(1-—pr—p2—-- = pPr2—Pr1)l 2 r(uy_1,v) + (1—|—ﬁ)><2k(n—l)+ g ].

veVg

n—1

By applying the expected operator to the above equation, and noting that E(D,,) = Dy,

we obtain
5 =l 2k + 12k +1
Dy =Dy_q + {(K* +2k) — Y_[k* —i(2k — i)]pi}n + Z —i(2k —i)]p; — —
i=1 =1
Let
u= Z —i(2k —1)]p;.
Hence,

2k + 12k + 1

Dy =Dy g+ [(K*+2k) - Uln+ U — :
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The boundary condition is

2 _
Di=E( Y r(ul,v)):4k6 !

veE VGl

According to the above recurrence relation and the boundary condition, we have

K242k k2 —ik—i) L, K2 —i(2k —i) K2 —6k—1
i=1 i=1
Thus,
D _[k2+2k ey tu- K2 —6k—1,,
L) 2 2 6 '
Therefore,

16k3 + 52k2 + 14k — 1 N 8k3 — 8k

E(Kft(Gui1)) =E(KfT(Gy)) + (4k +2) Dy, + 2kR,, + 3 n 3
—E(KFHG) + (k42 (2 Ly Ju - B8
+2k{[(2k2 +25k+2) B %V]nz—k [%V+ 2k? — 165k— 14]n+1}
N 16k3+52k;+14k—1n+ 8k33—8k'

and the boundary condition is E(Kf " (Gy)) = &52]‘.
According to the above recurrence relation and the boundary condition, we have

E(KfT(Gy)) ={(4Kk> 4+ 10k* + 4k) — kf[z;k?’ +2k% — (4k +2)(i - (2k — i))]p,-}%s
i=1
43 —2k2 —10k—1 *!

L . + LR +2€ = (k20 2= 1)}

—{(8K> — 4k —1) +2k§[4k3 +2k% — (4k +2)(i - (2k — i))]pi}g.
i=1

Let
T= kf[4k3 +2k% — (4k +2)(i - (2k — 1))]p;.
i=1
F, = [4k> + 2Kk — (4k 4+ 2)(i - (2k —1))].
Hence,
E(KF* (Gn)) =[(4® + 10K2 + 4k) — T]’%3 L 2k23_ W01 2 (8 —ak—1) + 21)%.

as desired. O

If we set (p1,p2, 73 ---,Pk1) = (1,0,0,...,0), (0,1,0,...,0), (0,0,1,...,0), ---,
(,...,1,0,0),(,...,0,1,0),(0,...,0,0,1),(0,...,0,0,0), respectively, and by Theorem 1,
we can receive the additive degree-Kirchhoff indexes of the meta-chain M,;; the ortho-chain
O,11, O%, e, Oﬁ’z; and the para-chain L, as
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Kf* (M) = i +34k 2,5, 16K - ZOk; —10k+5 ,  8€ - 4k23_ 4k+3
KFHOL) = 24k —34k — 8,5 16K — 44k23+ 14k +23 , 8k — 20k23+ 12k +15
Kft(02) = 2= éOk —18 5 16K - 68k23 62k +55 5 8K - 36k23+ 4ak+35
Kf*(0k3) = 41(3 + 10k23— izk — 8n3 n 43 — 2k2 ;L 38k +23n2 8K+ 2§k+ 15n’
KfH(ok?) = H 1?)0"2 —2.5, 4 —2k23+ 2%k+5 , 8K +;k+3n’

Kf*(Ly) = 4k3 + 1;)k2 +4kn3 N 4k3 — 2k23— 10k — 1n2 - 8k2 —:k _ 1,1‘

: 348 -2k — 10k -1
Kf+(0h) = [(4k> + 10k + 4k) 7Fi+1]% | ;

+ Fia]n? — [(8K* — 4k — 1) + 2F; 4]

[SS NI

Through observation and direct calculation, we have
Kf* (M) + Kf* (L) = KfF(Op) + KfFF(O) + - + KFF(0572).

Corollary 1. For a random polygonal chain G, (n > 3), the para-chain L,, realizes the maximum
of E(Kf*(Gy)), and the meta-chain M,, realizes that of the minimum.

Proof. By Theorem 1, we have

=l n® n n3
E(KfT(Gy,)) = 2(—5? + FEn? — 2Fi§)pi + (4k3 + 10k +4k)?
i=1
4k —2k> —10k—1 , 8k*—4k—1
+ 3 nc — 3 n.

Note that n > 3, so by taking the partial derivative, one has

OE(KF(Gn)) _ w2
Ty = Fy Rt = SEn <0,
+ 3
5”5(1%‘;7(@;1)) — (4K — 6K +2)% + (4K — 6K + 2)n? — % (43 — 6k2 +2)n < 0,
1
—+ 3
OE(Kf™(Gn) _ —(4K% — 14K% + 8k + 8) = + (4k° — 14k2 + 8k + 8)n? — Z. (4k> — 14k* + 8k + 8)n < 0,
apz 3 3
+ 3
aE(Kaf]'fGn)) = —(4K® — 22K + 24k + 18)% + (4K — 22K + 24k + 18)n? — %(4k3 — 222 + 24k +18)n < 0,
3
+ 3
OE(RFT(Gn)) _ _ (4 420" 4 (ak+2)2 = 2. (4k+2)n < 0.
IPk-1 3 3

When p; = p2 = ... = pr—1 = 0 (i.e., px = 1), the para-chain L, realizes the maximum of
E(Kft(Gy)); thatis, G, & Ly. f pr+po+p3+...+pe1 =1L letpr 1 =1—p1 —p2 —
e — Pku (0 S p] S 1/ 0 S pZ S 1/---/0 S pk72 S 1) Then,wehave
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k=2 3 3

n n n n
E(Kf*(Gn)) = Z(_Fi? + Fn? — ZFi*)Pi + (—Fk—1§ + F_qn® — 2Fk-1§)(1 —p1—pP2— "~ Pk-2)
i=1
3 —2k? — 10k — 1 2 4k —1
AR08 g A2 10k, 8k
3 3 3

Therefore,

OE(Kf*(Gn)) _ n’

2
o, _(Fi_kal)?‘l‘(Fi_kal)nz_ g(Fi—qu)” <0.
1

+ 3
W — (4K 6k — 4k)% + (4R — 6Kk — ak)n? — % (4K — 6K — 4k)n < 0,
1

+ 3
(Kgp(cm — (4K —14k2+4k+6)%+ (4K — 14K2 + 4k + 6)n? — % (4K — 14K2 + 4k + 6)n < 0,
2

aE(I‘<f+(Gn)) _ 7 n3

2
12k +6) — + (12k + 6)n* — = - (12k + 6)n < 0.
T (12k +6) = + (12k +6)n” — = - (12k +6)n <
Thus, py = p2 = ... = pr_2 = 0 (i.e,, pr_1 = 1), and E(Kf(Gy)) cannot attain the
minimum value. With the same calculations as the same above, if p1 +p2 +p3+ ...+ p; =
Lletpi=1-p1—po—...—pi1 (0<p1 <1,0<pp<1,...,0<p 1 <1),@H=>3).
Then, we have
. k-3 " 3 , "
E(Kf*(Gn)) =) (—F—+ +F" ZFig)Pi+(*Fk—2§+Fk—2” *ZFk—zg)U*Pl —p2— = Pr-3)
i=1
34k -2k —10k—1 k? — 4k — 1
+(4k3+10k2+4k)n—+ o2 —10k—1 , 8K —-4k-1
3 3 3
Therefore,
E(Kf* 3 2
W = (R~ F) s+ (B~ B — 3 (F— Fa)n <0,(k—3>3).
1

Only when p; + p» = 1, may we get to the minimum value. Then, let p; =1 —p, (0 <
p2 <1)

3
E(KFH(Go) =(~Fi s + B ~2R2)(1 = pa) + (—B'% + Far ~ 25 2)p,

3 3 _2k* —10k — 1 — 4 -1
bR+ 108 44 AT S0k, B 4k -1,
3 3 3
Thus,
JdE(KfH (G n’ 2
(g]ﬂz(n)) = (Fl — Fz)g — (Fl — Fz)l’lz + g(Fl — Fz)n > 0.
Thus, E(Kf*(Gy,)) achieves the minimum value when p, = 0 (i.e.,, p; = 1); that is,
G, =M, O

3. The Average Value for the Additive Degree-Kirchhoff Index

Recall that ®, is the set of all polygonal chains with n polygons. In this section, we
give the average value for the additive degree—Kirchhoff index with respect to ®;,.

K@) = 57 L KFHG)

Geoy,
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In order to achieve the average value Kf,},(0,), ittakes py = pp = -+ = py = % in
the expected value for the additive degree-Kirchhoff index of the random polygonal chain
E(Kf*(Gy)). According to Theorem 1, we have:

Theorem 2. Forn > 1, the average value for the the additive degree—Kirchhoff indexes with respect

to ®,, are
+ 3 2 1Rl w3 4k -2k —10k—1 1K
E(Kf*(Gn)) =[(4k> + 10k* + 4k) — Ezp]g_” . EZ
i=1 =
2 k=1 n
[(8k® — 4k — 1) + k W]3'

After verification, the equations are established:
+ Lot T N Ty Lo etok-2y o Lot
Kfior(©n) = EKf (M) + %Kf (On) + EKf (On) +---+ EK./[ (On %)+ EK./[ (Ln)-

4. Concluding Remarks

Most of the published papers are about the study of polyphenylene and cyclooctate-
traene chains; the results are not generic. In this paper, we obtained the explicit analytical
expression for the expected values of the additive degree—Kirchhoff index as a random
polygonal chain. We also obtained the extremal values and average values of the index. All
the research can better predict the physicochemical properties of more novel compounds,
which can be applied to the research of drugs, macromolecular polymers and new materials.

In chemical graph theory, the matter of a polygonal chain is being widely studied
by researchers. The molecular structures of polygonal chemicals are various, and its
physicochemical properties also become more and more important, and refer to [35-37].
The graph invariant not only presents vast potential for structure—activity and structure—
property relationships, but also offers precious leads for the advancement of safe and potent
curative of multiple nature as well. By this paper is possible to establish exact formulas for
the expected values of some indices of a random polygon chain with n regular polygons.

In reverse engineering of pharmaceuticals and nanomaterials—refer to [38—41]—
scientists hope to create certain drugs or test the performance of a nanometer material.
They can use the method of this study by extending it to a certain topological index (corre-
sponding to certain features of drugs or material) with expected values, extremal values
and average values, getting the structures of the target compounds from the point of view
of mathematics and then synthesizing the targeted chemicals.
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