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Abstract: The ISI-energy εisi(G) of a graph G = (V, E) is the sum of the absolute values of the

eigenvalues of the ISI-matrix C(G) = [cij]n×n in which cij =
d(vi)d(vj)

d(vi)+d(vj)
if vivj ∈ E(G) and cij = 0

otherwise. d(vi) denotes the degree of vertex vi ∈ V. As a class of graph energy, ISI-energy can be
utilized to ascertain the general energy of conjugated carbon molecules. Two non-isomorphic graphs
of the same order are said to be ISI-equienergetic if their ISI-energies are equal. In this paper, we
construct pairs of connected, ISI-noncospectral, ISI-equienergetic graphs of order n for all n ≥ 9. In
addition, for n-vertex r(r ≥ 3)-regular graph G, and for each k ≥ 2, we obtain εisi(Lk(G)), depending
only on n and r. This result enables a systematic construction of pairs of ISI-noncospectral graphs of
the same order, having equal ISI-energies.

Keywords: ISI-matrix; energy; ISI-energy; ISI-equienergetic; ISI-noncospectral
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1. Introduction

A graph G = (V(G), E(G)) is a mathematical structure composed of two finite sets
V(G) and E(G). The elements of V(G) are called vertices (or nodes), and the elements of
E(G) are called edges. For vi ∈ V(G), N(vi) denotes the set of its neighbors in G, and
the degree of vi is d(vi) = |N(vi)|. An n-vertex graph denotes the graph of order n. A
graph with only r-vertices is called an r-regular graph. Throughout the article, only finite
simple undirected graphs are considered. We use Bondy and Murty [1] for terminology
and notations not defined here.

The ISI index is an interesting topological index which can distinctively forecast the
superficial area for isomers of octanes [2]. The ISI index of graph G is defined as

ISI(G) = ∑
vivj∈E(G)

d(vi)d(vj)

d(vi) + d(vj)
.

The ISI-matrix C = C(G) of the graph G is defined as the matrix with entries [3–5]:

cij :=

{ d(vi)d(vj)

d(vi)+d(vj)
, i f vivj ∈ E(G)

0, otherwise.

Note that C is a modification of the classical adjacency matrix.
The characteristic polynomial of C(G) is called the ISI-characteristic polynomial of n-

vertex graph G, defined as Φ(C(G), µ) = det(µIn − C(G)), where In is the unit matrix of
order n. The eigenvalues of the ISI-matrix C(G), denoted by µ1 ≥ µ2 ≥ . . . ≥ µn, are said
to be the ISI-eigenvalues of G. In [3], we proved that the sum of the ISI-eigenvalues of G
is zero.
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Let A denote the adjacency matrix of a graph G of order n. Because A and C are
real symmetric matrices, their eigenvalues are real numbers. Denote by λ1 ≥ λ2 ≥ . . . ≥
λn the ordered eigenvalues of A. The characteristic polynomial of the matrix A is the
characteristic polynomial of G, denoted by Φ(G, λ) = det(λI −A). If λ1, λ2, . . . , λk are the
distinct eigenvalues of G with respective multiplicities m1, m2, . . . , mk, then the spectrum of
G is denoted by

Spec(G) =

(
λ1 λ2 . . . λk

m1 m2 . . . mk

)
.

Topological molecular descriptors based on eigenvalues are widely used in chemical
research [6,7]. It is possible that the graph energy [8–10] is the most studied descriptor
of this kind, which is mainly used to describe the stability of conjugated molecules. The
energy [8] of an n-vertex graph G is defined as

ε = ε(G) =
n

∑
i=1
|λi| . (1)

Generalizing the energy concept to the ISI-matrix, the ISI-energy [4,11] is defined
as below

εisi = εisi(G) =
n

∑
i=1
|µi| . (2)

It is worth noting that ε(G) and εisi(G) of graphs are closely linked, and we can deter-
mine ε(G) by means of εisi(G). Consequently, the εisi(G) study is not only of theoretical
meaning but also of realistic value.

When two graphs G1 and G2 have different structures, it is taken for granted that
εisi(G1) 6= εisi(G2). Nevertheless, it is not always true by observation. That is, two struc-
turally different graphs can have equal ISI-energy. For example, take into account the cycles
C3 and C4. The ISI-eigenvalues of C3 and C4 are 1,− 1

2 , 1
2 and 1, 0, 0, 1, respectively. Hence,

εisi(C3) = εisi(C4). This observation results in the conception of ISI-equienergetic graphs.
Two non-isomorphic graphs are said to be ISI-cospectral if they have the same ISI-

eigenvalues. The graphs G1 and G2 are said to be ISI-equienergetic if εisi(G1) = εisi(G2).
Apparently, two ISI-cospectral graphs must be ISI-equienergetic, but the converse is not al-
ways true in common cases. Thus, we are interested in the construction of ISI-equienergetic
pairs of graphs which are ISI-noncospectral.

If we do not restrict two graphs to have the same number of vertices, it is extremely simple
to construct ISI-noncospectral, ISI-equienergetic graphs. Let G be any graph with ISI-spectrum
µ1, µ2, . . . , µn, and let G0 be the graph obtained by adding arbitrarily t(t ≥ 1) number of
isolated vertices to G, then the spectrum of G0 consists of the numbers µ1, µ2, . . . , µn, µn+1 =
0, µn+2 = 0, . . . , µn+t = 0. Thus, G and G0 are not ISI-cospectral but εisi(G) = εisi(G0).

If we also require this kind of graph to have the same order and equal number of edges
(which is of great value in chemical applications), the problem becomes not so easy. As
we know, up to now, there exists no systematic approach for constructing pairs (or larger
families) of ISI-equienergetic graphs. Therefore, it is interesting to obtain ISI-noncospectral
graphs on the same number of vertices having equal ISI-energy. Our results can quickly
obtain the ISI-energy of the ISI-noncospectral, ISI-equienergetic graphs, which can greatly
reduce the workload of calculating the ISI-energy of graphs.

This paper is organized as follows. We first obtain the characteristic polynomial of the
ISI-matrix of the join of two regular graphs and thereby construct pairs of ISI-noncospectral,
ISI-equienergetic graphs on n vertices for all n ≥ 9. Furthermore, for n-vertex r(r ≥ 3)-
regular graph G, and for each k ≥ 2, we obtain εisi(Lk(G)), depending only on n and r.
This result enables a systematic construction of pairs of ISI-noncospectral graphs of the
same order, having equal ISI-energies.
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2. ISI-Equienergetic Graphs

In this section, we pay our attention to constructions of ISI-noncospectral, ISI-
equienergetic graphs.

Let G and H be two graphs. The join G + H of G and H is the graph with vertex set
V(G + H) = V(G) ∪V(H), and the edge set E(G + H) is obtained by joining each of the
vertices of V(G) to all the vertices of V(H).

We denote by Jn1×n2 the n1 × n2 matrix having all its entries as 1. It can be noted that
if G is a k-regular graph, then C(G) = k

2 A(G).
In the following theorem, we give the ISI-characteristic polynomial of G + H when

both G and H are regular graphs.

Theorem 1. Let Gi be an ni-vertex ri-regular graph for i = 1, 2. Then, the ISI-characteristic
polynomial of G = G1 + G2 is

Φ(C(G), µ) =
(µ− X)(µ−Y)− n1n2a2

(µ− X)(µ−Y)
Φ(C′(G1), µ)Φ(C′(G2), µ), (3)

where X = (r1+n2)r1
2 , Y = (r2+n1)r2

2 , a = (n1+r2)(n2+r1)
n1+n2+r2+r1

, C′(G1) = r1+n2
r1

C(G1), C′(G2) =
r2+n1

r2
C(G2).

Proof. As Gi is an ni-vertex ri-regular graph for i = 1, 2, we have

C(G1 + G2) =

(
C′(G1) aJn1×n2

aJn2×n1 C′(G2)

)
, (4)

where a = (n1+r2)(n2+r1)
n1+n2+r2+r1

.
And we obtain

Φ(C(G), µ) = det(µIn − C(G)) =

∣∣∣∣µIn1 − C′(G1) −aJn1×n2

−aJn2×n1 µIn2 − C′(G2)

∣∣∣∣ . (5)

Let

cij :=

{ d(vi)d(vj)

d(vi)+d(vj)
, i f vivj ∈ E(G1)

0, otherwise.

and

c′ij :=

{ d(ui)d(uj)

d(ui)+d(uj)
, i f uiuj ∈ E(G2)

0, otherwise.

Determinant (5) can be written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −c12 . . . −c1n1 −a −a . . . −a
−c21 µ . . . −c1n1 −a −a . . . −a

...
...

...
...

...
...

...
...

−cn11 −cn12 . . . µ −a −a . . . −a
−a −a . . . −a µ −c′12 . . . −c′1n2
−a −a . . . −a −c′21 µ . . . −c′2n2

...
...

...
...

...
...

...
...

−a −a . . . −a −c′n21 −c′n22 . . . µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6)

It is obvious that
n1

∑
j=1

cij =
(r1 + n2)r1

2
= X (7)
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for i = 1, 2, . . . , n1, and
n2

∑
j=1

c′ij =
(r2 + n1)r2

2
= Y (8)

for i = 1, 2, . . . , n2.
By subtracting the row (n1 + 1) from the rows (n1 + 2), (n1 + 3),. . . , (n1 + n2) of

determinant (6), we obtain determinant (9).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −c12 . . . −c1n1 −a −a . . . −a
−c21 µ . . . −c1n1 −a −a . . . −a

...
...

...
...

...
...

...
...

−cn11 −cn12 . . . µ −a −a . . . −a
−a −a . . . −a µ −c′12 . . . −c′1n2
0 0 . . . 0 −µ− c′21 µ + c′12 . . . −c′2n2

+ c′1n2
...

...
...

...
...

...
...

...
0 0 . . . 0 −µ− c′n21 −c′n22 + c′12 . . . µ + c′1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9)

Add the columns (n1 + 2), (n1 + 3),. . . , (n1 + n2) to the column (n1 + 1) of determi-
nant (9), we obtain determinant (10).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −c12 . . . −c1n1 −an −a . . . −a
−c21 µ . . . −c1n1 −an −a . . . −a

...
...

...
...

...
...

...
...

−cn11 −cn12 . . . µ −an −a . . . −a
−a −a . . . −a µ−Y −c′12 . . . −c′1n2
0 0 . . . 0 0 µ + c′12 . . . −c′2n2

+ c′1n2
...

...
...

...
...

...
...

...
0 0 . . . 0 0 −c′n22 + c′12 . . . µ + c′1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(10)

For convenience, we let

|B| =

∣∣∣∣∣∣∣∣∣∣
µ + c′12 −c′23 + c′13 . . . −c′2n2

+ c′1n2
−c′32 + c′12 µ + c′13 . . . −c′3n2

+ c′1n2
...

...
...

...
−c′n22 + c′12 −c′n23 + c′13 . . . µ + c′1n2

∣∣∣∣∣∣∣∣∣∣
(11)

Subtract the first row from the rows 2, 3, . . . , n1 of determinant (10), and we obtain
determinant (12).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −c12 . . . −c1n1 −an −a . . . −a
−c21 − µ µ + c12 . . . 0 0 0 . . . 0

...
...

...
...

...
...

...
...

−cn11 − µ −cn12 + c12 . . . µ + c1n1 0 0 . . . 0
−a −a . . . −a µ−Y −c′12 . . . −c′1n2
0 0 . . . 0 0 µ + c′12 . . . −c′2n2

+ c′1n2
...

...
...

...
...

...
...

...
0 0 . . . 0 0 −c′n22 + c′12 . . . µ + c′1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(12)

Add the columns 2, 3, . . . , n1 to the first column of determinant (12), and we arrive at
determinant (13).
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∣∣∣∣∣∣∣∣∣∣∣

µ− X −c12 . . . −c1n1 −an2
0 µ + c12 . . . −c1n1 + c1n1 0
...

...
...

...
...

0 −cn12 + c12 . . . µ + c1n1 0
−an1 −a . . . −a µ−Y

∣∣∣∣∣∣∣∣∣∣∣
|B| (13)

Expand determinant (13) along the first column to obtain (14):

det(µIn − C(G)) = (µ− X)|D1| − (−1)n1 an1|D2|)|B| (14)

where

|D1| =

∣∣∣∣∣∣∣∣∣∣∣

µ + c12 −c23 + c13 . . . −c1n1 + c1n1 0
−c32 + c12 µ + c13 . . . −c3n1 + c1n1 0

...
...

...
...

...
−cn12 + c12 −cn13 + c13 . . . µ + c1n1 0
−a −a . . . −a µ−Y

∣∣∣∣∣∣∣∣∣∣∣

|D2| =

∣∣∣∣∣∣∣∣∣∣∣

−c12 −c13 . . . −c1n1 −an2
µ + c12 −c23 + c13 . . . −c2n1 + c1n1 0
−c32 + c12 µ + c13 . . . −c3n1 + c1n1 0

...
...

...
...

...
−cn12 + c12 −cn13 + c13 . . . µ + c1n1 0

∣∣∣∣∣∣∣∣∣∣∣
Let

|A| =

∣∣∣∣∣∣∣∣∣
µ + c12 −c23 + c13 . . . −c2n1 + c1n1
−c32 + c12 µ + c13 . . . −c3n1 + c1n1

...
...

...
−cn12 + c12 −cn13 + c13 . . . µ + c1n1

∣∣∣∣∣∣∣∣∣
Expression (14) can be written as

det(µIn − C(G)) =
(
(µ− X)(µ−Y)|A| − (−1)n1 an1(−1)n1+1(−n2a)|A|

)
|B|

=
(
(µ− X)(µ−Y)− n1n2a2)

)
|A||B| (15)

On the other hand, the determinant |A| can be written as

|A| = 1
µ− X

∣∣∣∣∣∣∣∣∣∣∣

µ− X −c12 −c13 . . . −c1n1
0 µ + c12 −c23 + c13 . . . −c2n1 + c1n1
0 −c32 + c12 µ + c13 . . . −c3n1 + c1n1
...

...
...

...
0 −cn12 + c12 −cn13 + c13 . . . µ + c1n1

∣∣∣∣∣∣∣∣∣∣∣
Let

|H| =

∣∣∣∣∣∣∣∣∣∣∣

µ− X −c12 −c13 . . . −c1n1
0 µ + c12 −c23 + c13 . . . −c2n1 + c1n1
0 −c32 + c12 µ + c13 . . . −c3n1 + c1n1
...

...
...

...
0 −cn12 + c12 −cn13 + c13 . . . µ + c1n1

∣∣∣∣∣∣∣∣∣∣∣
(16)

From equation (7), the sum of the i-th row in (16) is µ + ci1 for i = 2, 3, . . . , n1. By
subtracting columns 2, 3, . . . , n1 of determinant (16) from the first column, we obtain deter-
minant (17).
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|H| =

∣∣∣∣∣∣∣∣∣∣∣

µ −c12 −c13 . . . −c1n1
−µ− c21 µ + c12 −c23 + c13 . . . −c2n1 + c1n1
−µ− c31 −c32 + c12 µ + c13 . . . −c3n1 + c1n1

...
...

...
...

−µ− cn11 −cn12 + c12 −cn13 + c13 . . . µ + c1n1

∣∣∣∣∣∣∣∣∣∣∣
(17)

Add the first row of |H| to the rows 2, 3, . . . , n1, and we obtain determinant (18).

|H| =

∣∣∣∣∣∣∣∣∣∣∣

µ −c12 −c13 . . . −c1n1
−c21 µ −c23 . . . −c2n1

−c31 −c32 µ . . . −c3n1
...

...
...

...
−cn11 −cn12 −cn13 . . . µ

∣∣∣∣∣∣∣∣∣∣∣
(18)

Then, we have

|A| = 1
µ− X

|H| = 1
µ− X

Φ(C′(G1), µ) (19)

In a similar way, we can obtain

|B| = 1
µ−Y

|H| = 1
µ−Y

Φ(C′(G2), µ) (20)

Substituting (19) and (20) back into (15) gives the result.

Lemma 1 ([12]). Let λ be an eigenvalue of square matrix A, and x is its eigenvector. For any real
number k 6= 0, kλ be an eigenvalue of square matrix kA corresponding to the eigenvector x.

Theorem 2. Let Gi be an ri-regular graph of order ni for i = 1, 2. Then, the ISI-energy of
G = G1 + G2 is

εisi(G) =
r1 + n2

r1
εisi(G1) +

r2 + n1

r2
εisi(G2)−

(
(n2 + r1)r1

2
+

(n1 + r2)r2

2

)

+
1
2

√
((n2 + r1)r1 − (n1 + r2)r2)2 + 16n1n2

(
(n1 + r2)(n2 + r1)

n1 + n2 + r2 + r1

)2

Proof. By Theorem 1, we have

Φ(C(G), µ) =
(µ− X)(µ−Y)− n1n2a2

(µ− X)(µ−Y)
Φ(C ′(G1), µ)Φ(C ′(G2), µ)

i.e.,

(µ− X)(µ−Y)Φ(C(G), µ) = [(µ− X)(µ−Y)− n1n2a2]Φ(C ′(G1), µ)Φ(C ′(G2), µ)

Let
P1(µ) = (µ− X)(µ−Y)Φ(C(G), µ)

and
P2(µ) = [(µ− X)(µ−Y)− n1n2a2]Φ(C ′(G1), µ)Φ(C ′(G2), µ).

It is obvious that the roots of P1(µ) = 0 are X, Y and the ISI-eigenvalues of G1 + G2.
Hence, the sum of the absolute values of the roots of P1(µ) = 0 is X + Y + εisi(G1 + G2).

The roots of P2(µ) = 0 are ISI-eigenvalues of C ′(G1) and C ′(G2) and

X + Y
2
± 1

2

√
(X + Y)2 − 4XY + 4n1n2a2.
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It is easy to see that C ′(G1) = r1+n2
r1
C(G1), C ′(G2) = r2+n1

r2
C(G2). By Lemma 1, the

sum of the absolute values of ISI-eigenvalues of C ′(G1) and C ′(G2) are

r1 + n2

r1
εisi(G1)

and
r2 + n1

r2
εisi(G2),

respectively.
Hence, the sum of the absolute values of the roots of P2(µ) = 0 is

r1 + n2

r1
εisi(G1) +

r2 + n1

r2
εisi(G2)

+|X + Y
2
− 1

2

√
(X + Y)2 − 4XY + 4n1n2a2|

+|X + Y
2

+
1
2

√
(X + Y)2 − 4XY + 4n1n2a2|

Because P1(µ) = P2(µ), we obtain

εisi(G1 + G2) =
r1 + n2

r1
εisi(G1) +

r2 + n1

r2
εisi(G2)− (X + Y)

+

∣∣∣∣X + Y
2
− 1

2

√
(X + Y)2 − 4XY + 4n1n2a2

∣∣∣∣
+

∣∣∣∣X + Y
2

+
1
2

√
(X + Y)2 − 4XY + 4n1n2a2

∣∣∣∣
=

r1 + n2

r1
εisi(G1) +

r2 + n1

r2
εisi(G2)−

(r1 + n2)r1 + (r2 + n1)r2

2

+
1
2

√
((r1 + n2)r1 − (r2 + n1)r2)

2 + 16n1n2

(
(r1 + n2)(r2 + n1)

(r1 + n2) + (r2 + n1)

)2

which implies the required result.
This completes the proof.

Corollary 1. If G1, G2, . . . , Gk, k ≥ 3, are the ISI-equienergetic regular graphs of same order and
of same degree, then εisi(Ga + Gb) = εisi(Gc + Gd) for all 1 ≤ a, b, c, d ≤ k.

Corollary 2. Let G1 and G2 be two ISI-noncospectral, ISI-equienergetic regular graphs of same
order and of same degree. Then, for any regular graph H, εisi(G1 + H) = εisi(G2 + H).

The complement of a graph G is the graph G with vertex set V(G) = V(G) and two
vertices are adjacent in G if and only if they are not adjacent in G [1].

The line graph, denoted by L(G), of a graph G, is the graph with V(L(G)) = E(G) and
two vertices of L(G) are connected by an edge if edges incident on it are adjacent in G. For
k = 1, 2, . . ., the k-th iterated line graph of G is defined as Lk(G) = L(L(k−1)(G)), where
L0(G) = G and L1(G) = L(G) [13].

Lemma 2 ([12]). Let G be an n-vertex r-regular graph with the eigenvalues r, λ2, . . . , λn. Then,
the eigenvalues of G are n− r− 1,−λ2 − 1, . . . ,−λn − 1.
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Lemma 3 ([12]). Let G be an n-vertex r-regular graph with the eigenvalues r, λ2, . . . , λn. Then,
the eigenvalues of L(G) are as follows

2r− 2 and
λi + r− 2 i = 2, . . . , n and

−2, n(r−2)
2 times

 (21)

Take into account the graphs H1 and H2 as shown in Figure 1. Let G1 = L(H1) and
G2 = L(H2) (see Figure 2). The characteristic polynomials of H1 and H2 are Φ(H1, λ) =
(λ− 3)λ4(λ + 3) and Φ(H2, λ) = (λ− 3)(λ− 1)λ2(λ + 2)2, respectively.

On the basis of Lemma 3, we obtain the spectrums of G1 and G2 as

Spec(G1) =

(
4 1 − 2

1 4 4

)
(22)

and

Spec(G2) =

(
4 2 1 − 1 − 2

1 1 2 2 3

)
(23)

respectively. It is easy to see that ε(G1) = ε(G2) = 16.

Theorem 3. For all n ≥ 9, there exists a pair of connected ISI-noncospectral, ISI-equienergetic
graphs of order n.

Proof. Take into consideration the graphs G1 and G2 as shown in Figure 2. Graphs G1 and
G2 are both connected 9-vertex 4-regular graphs. From (22), (23) and Lemma 1, we have
εisi(G1) = εisi(G2) = 2ε(G1) = 32, and εisi(Kt) = (t− 1)2.

Then, by Theorem 2, we have

εisi(G1 + Kt) = εisi(G2 + Kt)

= 6(t + 4) + (t−1)(t+8)
2 + 1

2

√
(t2 + 3t− 24)2 + 36t

(
(t+8)(t+4)

t+6

)2
.

Hence, G1 + Kt and G2 + Kt are two ISI-noncospectral and ISI-equienergetic graphs
for all n ≥ 9.

This completes the proof.

Figure 1. Two 3-regular graphs H1 and H2.

Lemma 4 ([14]). Let G be an n-vertex r(r ≥ 3)-regular graph. Then, among the positive eigenval-
ues of L2(G), one is equal to the degree of L2(G), whereas all others are equal to 1.

Lemma 5 ([14]). If G is an n-vertex and r(r ≥ 3)-regular graph, then for k ≥ 2, among the
positive eigenvalues of Lk(G), one is equal to the degree of Lk(G), whereas all others are equal to 1.
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Figure 2. Two 4-regular ISI-equienergetic graphs G1 and G2.

Theorem 4. If G is an n-vertex and r(r ≥ 3)-regular graph, then

εisi(L2(G)) =
1
4
(nr2 − nr− 8r + 10)(2nr2 − 3nr− 8r + 10).

Proof. If λ, λ2, . . . , λn are the eigenvalues of an n-vertex r(r ≥ 3)-regular graph G, then by
Lemma 3, the eigenvalues of L(G) are

2r− 2 and
λi + r− 2 i = 2, . . . , n and
−2 n(r−2)

2 times

 (24)

In view of the fact that L(G) is a nr
2 -vertex, (2r − 2)-regular graph, from (24), the

eigenvalues of L2(G) can be easily calculated as:

λi + 3r− 6 i = 1, 2, . . . , n and
2r− 6 n(r−2)

2 times and
−2 nr(r−2)

2 times

 (25)

Therefore, from Lemma 2, (24) and (25), we obtain the eigenvalues of L2(G) as follows:

−λi − 3r + 5 i = 2, 3, . . . , n and
−2r + 5 n(r−2)

2 times and
1 nr(r−2)

2 times and
nr(r−1)

2 − 4r + 5

 (26)

Hence, from Lemmas 1 and 4, the ISI-energy of L2(G) is

εisi(L2(G)) =
1
2
(

nr(r− 1)
2

− 4r + 5)× 2[
nr(r− 1)

2
− 4r + 5 +

nr(r− 2)
2

× 1]

=
1
4
(nr2 − nr− 8r + 10)(2nr2 − 3nr− 8r + 10).

This completes the proof.

Theorem 5. Let G1 and G2 be two n-vertex r(r ≥ 3)-regular non-cospectral graphs. Then,
L2(G1) and L2(G2) are ISI-noncospectral, ISI-equienergetic, and εisi(L2(G1)) = εisi(L2(G2)) =
1
4 (nr2 − nr− 8r + 10)(2nr2 − 3nr− 8r + 10).

Proof. The results can be easily obtained from Theorem 4.

The line graph of an n0-vertex r0-regular graph G is a regular graph of order n1 =
1
2 r0n0 and of degree r1 = 2r0 − 2. Consequently, the order and degree of Lk(G) are
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nk =
1
2 rk−1nk−1 and rk = 2rk−1 − 2, where ni and ri denote the order and degree of Li(G)

(i = 0, 1, 2, . . . ) [13]. Therefore,

rk = 2kr0 − 2k+1 + 2 (27)

and

nk =
n0

2k

k−1

∏
i=0

ri =
n0

2k

k−1

∏
i=0

(2ir0 − 2i+1 + 2) (28)

Theorem 6. If G is an n0-vertex r0(r0 ≥ 3)-regular graph, then for k ≥ 2,

εisi(Lk(G)) = (nk − rk − 1)(
2nkrk
rk + 2

− rk − 1).

Proof. It is easily seen that Lk(G) is a regular graph of order nk and degree 1
2 rk−1nk−1 −

2rk−1 + 1. Lk(G) has 1
2 nk−1(rk−1 − 2) eigenvalues which are equal to 1. By Lemmas 1, 5

and the fact that the order and degree of Lk(G) are nk = 1
2 rk−1nk−1 and rk = 2rk−1 − 2,

we have

εisi(Lk(G)) = (
1
2

rk−1nk−1 − 2rk−1 + 1)(rk−1nk−1 − 2rk−1 − nk−1 + 1)

=
1
4
(rk−1nk−1 − 4rk−1 + 2)(2rk−1nk−1 − 4rk−1 − 2nk−1 + 2)

= (nk − rk − 1)(
2nkrk
rk + 2

− rk − 1).

This completes the proof.

Corollary 3. If G is an n0-vertex r0(r0 ≥ 3)-regular graph, then

εisi(Lk(G)) =

(
[
n0

2k

k−1

∏
i=0

(2ir0 − 2i+1 + 2)]− 2kr0 + 2k+1 − 3

)

×
(
[ n0

2k ∏k−1
i=0 (2

ir0 − 2i+1 + 2)](2kr0 − 2k+1 + 2)

2k−1r0 − 2k + 2
− 2kr0 + 2k+1 − 3

)

From Theorem 6 and Corollary 1, we see that for r0-regular graph G of order n0, the εisi

of Lk(G))(k ≥ 2) is fully determined by n0 and r0. Hence, we arrive at the following result.

Lemma 6. Let G1 and G2 be two regular graphs of the same order and of the same degree. Then,
for any k ≥ 1, the following holds:

(i) Lk(G1) and Lk(G2) are of the same order and of the same size.
(ii) Lk(G1) and Lk(G2) are ISI-cospectral if and only if G1 and G2 are ISI-cospectral.

Proof. Combining the fact that the number of edges of Lk(G) is equal to the number of
vertices of Lk+1(G) and Equations (27) and (28), statement (i) holds. Statement (ii) can be
obtained directly from Lemma 3.

This completes the proof.

Theorem 7. Let G1 and G2 be two non-cospectral regular graphs of the same order and of the same
degree r ≥ 3. Then, for any k ≥ 2, graphs Lk(G1) and Lk(G2) are a pair of ISI-noncospectral and
ISI-equienergetic graphs of equal order and of equal size.
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Corollary 3 provides a general method for constructing families of ISI-noncospectral,
ISI-equienergetic graphs with the same order. In particular, from Theorem 3 and Theorem 3,
it is easy to construct a pair of ISI-noncospectral, ISI-equienergetic n-vertex graphs for all
n ≥ 9.

Within Theorem 4, we obtained the expression in terms of n and r for the ISI-energy of
the complement of the second iterated line graph of an n-ordered r-regular graph. Similar
representations can be attained also for Lk(G), k ≥ 3, i.e., the ISI-energy of the complement
of the k-th iterated line graph, k ≥ 3, of an n-ordered r(r ≥ 3)-regular is also completely
determined by the parameters n and r. In addition, for any k > 2, we can simply find a
relevant collection of ISI-noncospectral and ISI-equienergetic regular graphs (of degree
greater than 3) by constructing the complement of their k-th iterative line graph.

3. Conclusions

Graph energy has a very wide range of applications in the field of chemistry, physics,
satellite communication, face recognition, crystallography, etc. It is worth noting that the
energy of numerous graphs can be ascertained by making use of their ISI-energy. A notable
discovery in graph energy theory is the existence of non-isomorphic and ISI-noncospectral
graphs with equal εisi-values.

As far as we know, up to the present, researchers have not yet found a systematic ap-
proach to construct pairs (or larger families) of ISI-equienergetic graphs. Consequently, ob-
taining ISI-noncospectral but ISI-equienergetic graphs with the same order is an interesting
and useful thing we should do. In this paper, by studying the ISI-characteristic polynomial
of a join graph of two regular graphs, we construct pairs of connected, ISI-noncospectral,
ISI-equienergetic graphs of order n for all n ≥ 9. For example, we consider graph G1, G2 in
Figure 2 and graph K2. It is easy to obtain that εisi(G1) = εisi(G2) = 32, and εisi(K2) = 1,
then the ISI-energy of G1 + K2 and G2 + K2 are both equal to 82+

√
4246

2 , i.e., G1 + K2 and
G2 + K2 are a pair of ISI-noncospectral, ISI-equienergetic 11-vertex graphs. In addition,
for n-vertex r(r ≥ 3)-regular graph G, and for each k ≥ 2, we find εisi(Lk(G)), depending
solely on n and r. This result makes it possible to construct pairs of ISI-noncospectra
same-order graphs having equal ISI-energies. For example, we consider graphs H1 and
H2 as shown in Figure 1, it is easy to check that the ISI-spectrum of H1 and H2 are9

2
0 − 9

2
1 4 1

 and

9
2

3
2

0 − 6
2

1 1 2 2

, respectively, i.e., H1 and H2 are ISI-noncospectral

graphs. From Lemma 6, we know that L2(H1) and L2(H2) are also ISI-noncospectral
graphs, and εisi(L2(H2)) = εisi(L2(H2)) = 220, i.e., L2(H1) and L2(H2), are a pair of ISI-
noncospectral, ISI-equienergetic graphs. Furthermore, for any k ≥ 3, by Lemma 6, we
know that Lk(H1) and Lk(H2) are a pair of ISI-noncospectral, ISI-equienergetic graphs. Our
results enable a systematic construction of pairs of ISI-noncospectral graphs of the same
order, having equal ISI-energies.

The graph ISI-energy has taken its rise from theoretical chemistry. Trees, chemical trees,
unicyclic and bicyclic graphs are common models of chemical structures. Thus, studying
the εisi of these graphs, especially constructing ISI-noncospectral and ISI-equienergetic
molecular graphs such as chemical trees, unicyclic, bicyclic and other useful graphs, is also
an interesting research direction in the future.
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