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Abstract: The usual full- and half-harmonic oscillators are turned into field theories, and that behavior
is examined using canonical and affine quantization. The result leads to a valid affine quantization of
the half harmonic oscillator field theory, which points toward further valid quantizations of more
realistic field theory models.
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1. Introduction

The conventual classical harmonic oscillator, with −∞ < p & q < ∞, and a classical
Hamiltonian, H = (p2 + q2)/2, has been well quantized using canonical quantization (CQ),
and it has eigenvalues, En = h̄(n + 1/2), where n = 0, 1, 2, 3, . . ., leading to equal spacing
of the eigenvalues. It is noteworthy that the ground state eigenvalue can be removed by
using (p2 + q2)/2 = (p + iq)(p− iq)/2→ (P + iQ)(P− iQ)/2 = (P2 + Q2 + i[Q, P])/2 =
(P2 + Q2 − h̄)/2. This kind of rearranged variables eliminates the ground state eigenvalue
but the spacing between all the eigenvalues remains unchanged. We will exploit a similar
formulation in Section 3 to deal with quantum field infinities.

Affine quantization (see Section 1.1) cannot correctly solve the full-harmonic oscillator,
nor is it supposed to solve it.

The half-harmonic oscillator, which has the same classical Hamiltonian, H = (p2 +
q2)/2, and −∞ < p < ∞, but now 0 < q < ∞. This model fails a CQ quantization which
requires that, for −∞ < q < 0, a virtual infinite wall that crushes all wave functions to
have zero values for all q < 0. However, the half-harmonic oscillator receives a valid affine
quantization (AQ), while no virtual infinite wall is required, and the eigenvalues for the
half-harmonic oscillator are E′n = 2h̄(n + 1), for the same n = 0, 1, 2, 3, . . . , again with
equal spacing, now a doubled amount, and also, now a quadrupling of the ground state
value. These positive features lead to accepting this result as a valid quantization of the
half-harmonic oscillator by AQ [1].

Briefly stated, CQ works perfectly for the full harmonic oscillator, while AQ works
perfectly for the half-harmonic oscillator.

1.1. A Brief Account of Affine Quantization

Canonical quantization requires classical variables that run the whole real line so that
p→ P = P† and q→ Q = Q†, and that means they both are self-adjoint, which is required
for a proper quantum Hamiltonian, e.g., in our case,H = (P2 + Q2)/2.

Now, we choose that Q > 0, which implies that P† 6= P, and that opens the door
to many, different, quantum Hamiltonians, beginning with H1 = (P†P + Q2)/2 and
H2 = (PP† + Q2)/2. To fix that, we introduce d = pq→ D = (P†Q + Q P)/2 = D†. Dirac
has noted [2] that for CQ it takes special coordinates (i.e., a Cartesian, flat curvature) so
that H(p, q) = H(p, q) will achieve valid quantum results. Now, it has been shown [3]
that, for a different set of special coordinates (i.e., a constant negative curvature), then
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H′(pq, q) = H(pq, q) can also achieve valid quantum results using AQ. In particular, a
promotion of the half-harmonic oscillator classical Hamiltonian, then becomes

H = (d2/q2 + q2)/2→ H = (D(Q−2)D + Q2)/2

= (P2 + (3/4)h̄2/Q2 + Q2)/2 , (1)

in which, although P† 6= P, it follows that P† and (P†)2 act like P and P2 thanks to the
additional h̄-term. This special h̄-term provides a ‘real quantum wall’ that forces all wave
functions to have a continuous zero value, at x = 0, and which also has continuous first
and second derivatives.

The equation for eigenfunctions is given by

[−h̄2(d2/dx2) + (3/4)h̄2/x2 + x2]/2 ζl(x) = El ζl(x) , (2)

with two solutions, ζ0(x) = x3/2 e−x2/2h̄ and ζ1(x) = x3/2 (1− x/2) e−x2/2h̄.

1.2. Multiple Independent Harmonic Oscillators

We introduce a large number of independent, identical, harmonic oscillators with the
classical Hamiltonian

HN =
N

∑
k=1

(p2
k + q2

k)/2 a , (3)

provided that, say, Na = 100, or some other positive number, which applies to both the full
and half set of coordinates, such as |qk| < ∞ for the full oscillator and 0 < qk < ∞
for the half oscillator. Ignoring normalization, two eigenfunctions for this quantum
Hamiltonian are a ground state ψ f = ΣN

n=1 fne−x2
n/2h̄, and the next state is given by

ψg = ΣN
n=1 gnxne−x2

n/2h̄, assuming that ΣN
n=1[| f 2

n |+ |g2
n|] < ∞.

These two cases are fully independent, and the sum, HN→∞ = Hc, still with Na = 100,
must lead to a finite result. Evidently, the result is represented by the integral

Hc =
∫ 100

0 [π(x)2 + ϕ(x)2]/2 dx , (4)

which must remain finite. Of course, there are situations where
∫ 100

0 |x− 1|−2/3 dx < ∞.
Mathematics may accept that, but perhaps, physics should instead require that |π(x)|+
|ϕ(x)| < ∞.

A Common Example Where Infinities Really Appear

For a moment, we examine a different model,

Hp =
∫ 100

0 {[π(x)2 + ϕ(x)2]/2 + g |ϕ(x)|p} dx , (5)

where p > 2. The domain of functions that admit finite integrals for arbitrary fields when
g = 0 is reduced if g > 0, even when p = 2.0001, etc. However, when g→ 0, the reduced
domain would not recover what was lost from the larger original domain. We need some
process to ensure that |π(x)|+ |ϕ(x)| < ∞ so that the original domain, when g = 0, would
retain its initial domain when g > 0, and to do so, then every p, with 2 < p < ∞, maintains
the initial domain as well.

1.3. A Plan to Ensure That |π(x)|+ |ϕ(x)| < ∞

Let us first accept that a toy example, such as AB = C, makes good mathematics
provided two of the terms are known, and that should provide the third term. However,
if B = 0, then C = 0, and A is unknown. If B = ∞ then C = ∞, and again A is unknown.
Unless a zero is permitted by physics, it is reasonable to accept that rigorous mathematics
requires that 0 < |A|, |B|, |C| < ∞.
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Guided by the last paragraph, we introduce the dilation field, κ(x) = π(x) ϕ(x). In
this case, we assume that ϕ(x) 6= 0, because it could represent a substance of nature, (We
used ‘nature’ to emphasize that something like a heavy rain and a snow storm, for example,
are different until both of them vanish, which signals that they can even be ignored.) while
π(x) takes the role of time derivative of ϕ(x), and κ(x) plays the role of ‘momentum’. We
now replace π(x) by κ(x)/ϕ(x).

The classical Hamiltonian is now given in these affine variables by

Ha =
∫ 100

0 [κ(x)2/ϕ(x)2 + ϕ(x)2]/2 dx , (6)

an equation in which 0 < |ϕ(x)| < ∞ and |κ(x)| < ∞ to properly represent π(x). Even
if the term 0 < g |ϕ(x)|p < ∞ were added, there would be no infinities, and the initial
domain would remain valid because the Hamiltonian density, i.e., H(x) < ∞, for all x.

2. Quantization of the Full-Harmonic Oscillator Field Theory

This example is common and well known. We choose CQ, and promote classical
variables to quantum operators, π̂(x) and ϕ̂(x), with the commutator [ϕ̂(x), π̂(y)] =
ih̄δ(x− y)11. Our quantum Hamiltonian then is

H =
∫ 100

0 [π̂(x)2 + ϕ̂(x)2]/2 dx . (7)

Accepting Schrödinger’s representation, the quantum Hamiltonian becomes

H =
∫ 100

0 [−h̄2δ2/δϕ(x)2 + ϕ(x)2]/2 dx . (8)

An unnormalized ground state is Ψ f (ϕ) =
∫ 100

0 f (y) e−ϕ(y)2/2h̄ dy, providing∫ 100
0 f (y)2 dy < ∞, which leads its first derivative to be

−ih̄δ Ψ(ϕ)/δϕ(x) = iϕ(x)Ψ(ϕ) . (9)

However, the second derivative leads to

−h̄2δ2 Ψ(ϕ)/δϕ(x)2 + ϕ(x)2 Ψ(ϕ) = h̄ δ(0) Ψ(ϕ) , (10)

for which Dirac’s delta function, δ(0) = ∞. This situation points toward changing the
quantum Hamiltonian so as to become

H =
∫ 100

0 [π̂(x)2 + ϕ̂(x)2 − h̄ δ(0)]/2 dx (11)

in order to preserve a proper ground state.
How can we get rid of this divergence? Instead of promoting π(x)2 + ϕ(x)2 →

π̂(x)2 + ϕ̂(x)2, let us promote

(π(x)2 + ϕ(x)2) = (π(x) + iϕ(x))(π(x)− iϕ(x))

→ (π̂(x) + iϕ̂(x))(π̂(x)− iϕ̂(x)) (YES!) (12)

= (π̂(x)2 + ϕ̂(x)2 + i[ϕ̂(x), π̂(x)])

= [π̂(x)2 + ϕ̂(x)2 − h̄δ(0)] ,

and the (YES!) line is the way to correctly quantize, and avoid infinities for this example
using CQ.

Ignoring normalization, two solutions are Ψ f (ϕ) =
∫ 100

0 f (y) e−ϕ(y)2/2h̄ dy and

Ψg(ϕ) =
∫ 100

0 g(y) ϕ(y) e−ϕ(y)2/2h̄ dy for the full-harmonic oscillator field theory, provided

that
∫ 100

0 [ f (y)2 + g(y)2] dy < ∞.
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3. Quantization of the Half-Harmonic Oscillator Field Theory

The topic in this section uses AQ and focusses on examples for which ϕ(x) >
0 → ϕ̂(x) > 0. Now we are faced with π̂(x)† 6= π̂(x). We accept that, and introduce
κ̂(x) = [π̂(x)† ϕ̂(x)+ ϕ̂(x)π̂(x)]/2 (= κ̂(x)†). While the CQ operators obey [ϕ̂(x), π̂(y)] =
ih̄δ(x− y)11, it follows that the AQ operators obey [ϕ̂(x), κ̂(y)] = ih̄δ(x− y) ϕ̂(x). While
κ(x)2/ϕ(x)2 = π(x)2, it follows that κ̂(x)(ϕ̂(x)−2)κ̂(x) = π̂(x)2 + (3/4)h̄2δ(0)2/ϕ̂(x)2,
where here π̂(x)† acts like π̂(x) thanks to the h̄-term. Again we are faced with δ(0)-type
divergences, and let us find a way to eliminate them.

For a moment, let us accept that δ(0)→ A2 which is GIGANTIC, but not yet infinity.
That allows us to smoothly rescale the present quantum Hamiltonian. For scaling, we
introduce π̂(x)→ A π̂(x), ϕ̂(x)→ A ϕ̂(x), and κ̂(x)→ A2κ̂(x). Now we have

HA =
∫ 100

0 {A2 κ̂(x)(ϕ̂(x)−2)κ̂(x) + A2 ϕ̂(x)2}/2 dx

=
∫ 100

0 {A2 π̂(x)2 + (3/4)h̄2 A4/A2 ϕ̂(x)2 + A2 ϕ̂(x)2}/2 dx , (13)

which leads us to

Halmost ≡ lim
A→∞

A−2HA =
∫ 100

0 { π̂(x)2 + (3/4)h̄2/ϕ̂(x)2 + ϕ̂(x)2}/2 dx , (14)

and finally we choose

HDONE =
∫ 100

0 {(π̂(x) + iϕ̂(x))(π̂(x)− iϕ̂(x)) + (3/4)h̄2/ϕ̂(x)2}/2 dx , (15)

in which each and every spacial point should obey the quantization of the single particle
point of the half-harmonic oscillator that has been correctly quantized by affine proce-
dures [1], just as how Equation (5) points to how the full-harmonic oscillator field theory
has already been solved.

Again, ignoring normalization, two eigenfunctions, using ϕ(x) > 0, for the half-
harmonic oscillator field theory, are Ψ f (ϕ) =

∫ 100
0 f (y) ϕ(y)3/2e−ϕ(y)2/2h̄ dy and Ψg(ϕ) =∫ 100

0 g(y) ϕ(y)3/2(1− ϕ(y)/2) e−ϕ(y)2/2h̄ dy, provided
∫ 100

0 [ f (y)2 + g(y)2] dy < ∞.

4. The Relevance of This Work for Covariant Scalar Fields

Conventual quantization of scalar field theories, using both CQ or AQ for the formula-
tions, have used several Monte Carlo calculations to seek results. This work has carefully
studied standard field models, such as ϕ4

4 and ϕ12
3 . Here, ϕ

p
n uses p as the power of the

interaction term, and n = s + 1 in which s is the number of spatial coordinates, and 1 stands
for the time. The results for using CQ have led to “free results”, as if the interaction term
was absent when in fact it was present. On the other hand, the results using AQ for the
same models, have shown strong presence of the interaction term when it is present, as can
be seen in [4–10] Thus, CQ has clearly found only invalid results, while AQ, quite possibly,
has found valid results.

The simple plan to choose a scalar field that has ϕ(x) 6= 0, where now x = (x1, x2, . . . , xs)
still leads to π̂(x)† 6= π̂(x), which again points toward κ̂(x) = [π̂(x)† ϕ(x) + ϕ(x) π̂(x)]/2,
just as in the earlier sections. Instead of insisting that ϕ(x) > 0, we keep both sides, i.e.,
ϕ(x) < 0 and ϕ(x) > 0, which maintains continuity thanks to the gradient term. Moreover,
with s > 1, there are paths that can avoid the removed coordinate points, which leads to
continuity almost everywhere.

The principal reason to study the half-harmonic oscillator field has been to find a valid
quantization of the field theory version, which then may shed light on the validity of affine
quantizations of covariant classical field theories.

As a possible proposal, we suggest a quantization of the standard classical Hamiltonian
given by
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H =
∫
{ 1

2 [π(x)2 + (
−→∇ ϕ(x))2 + m2 ϕ(x)2 ] + g ϕ(x)p } dsx . (16)

Adopting an affine quantization of this example, where ϕ(x) 6= 0→ ϕ̂(x) 6= 0, we are
led to

H =
∫
{ 1

2 [ (π̂(x) + i m ϕ̂(x))(π̂(x)− i m ϕ̂(x)) + Xh̄2/ϕ̂(x)2

+(
−→∇ ϕ̂(x))2 ] + g ϕ̂(x)p } dsx , (17)

where the numerical constant X here is somewhat under investigation for its value, a topic
that is touched on in the next section. This suggestion is not so different from models that
are already under examination.

5. Conclusions

A string of valid quantizations, from particles to fields, including half fields, like
ϕ(x) > 0, and effectively full fields, like ϕ(x) 6= 0, may profit from a somewhat different
h̄-term. For the half oscillator fields, the h̄-term is (3/4)h̄2/ϕ̂(x)2, while for the effectively
full oscillator fields, we suggest consideration of a new h̄-term, which is 2h̄2/ϕ̂(x)2. This
alternative h̄-term can be seen in Equations (7), (10) and (11) in [11], followed by letting
the constant Φ2 → 0. The purpose of this procedure is to guarantee that the field ϕ(x)
is present when ϕ(x) < 0 as well as when ϕ(x) > 0, guided by continuity thanks to the
gradient term. This suggestion may be considered as a worthy h̄-term proposal alongside
the standard ‘(3/4)-term’.
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