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Abstract: We address here the space-fractional stochastic Hirota–Maccari system (SFSHMs) derived
by the multiplicative Brownian motion in the Stratonovich sense. To acquire innovative elliptic,
trigonometric and rational stochastic fractional solutions, we employ the Jacobi elliptic functions
method. The attained solutions are useful in describing certain fascinating physical phenomena
due to the significance of the Hirota–Maccari system in optical fibers. We use MATLAB programm
to draw our figures and exhibit several 3D graphs in order to demonstrate how the multiplicative
Brownian motion and fractional derivative affect the exact solutions of the SFSHMs. We prove that
the solutions of SFSHMs are stabilized by the multiplicative Brownian motion around zero.

Keywords: fractional Hirota–Maccari system; stochastic Hirota–Maccari system; Jacobi elliptic
functions method

1. Introduction

Recently, numerous significant phenomena have been represented by fractional deriva-
tives, including electro-magnetic, image processing, acoustics, electrochemistry and anoma-
lous diffusion phenomena [1–6]. One benefit of fractional models is that they may be
stated more specifically than integer models, which encourages us to construct a number of
significant and practical fractional models. On the other hand, the advantages of taking
random influences into account in the analysis, simulation, prediction and modeling of
complex processes have been highlighted in several fields including chemistry, geophysics,
fluid mechanics, biology, atmosphere, physics, climate dynamics, engineering and other
fields [7–10]. Since noise may produce statistical features and significant phenomena, it
cannot be ignored. In general, it is more difficult to obtain exact solutions to fractional
PDEs forced by a stochastic term than to classical ones.

Recently, finding approximate and exact solutions to PDEs using a variety of ap-
proaches has become the main objective for many scientists. Many effective methods,
including the sine-Gordon expansion method [11], the trial equation method [12], (G′/G)-
expansion [13,14], semi-inverse variational principle [15], the ansatz approach [16], per-
turbation methods [17,18], Darboux transformation [19], tanh-sech [20,21], exp(−φ(ς))-
expansion [22] and the Jacobi elliptic function [23,24], have been devised to obtain exact
solutions to PDEs.
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As a result, we study here the following stochastic fractional-space Hirota–Maccari
system (SFSHMs) with multiplicative noise in the Stratonovich sense:

iΦt +Dα
xyΦ + iDα

xxxΦ + ΦΨ− iΦDα
x(|Φ|

2) + iσΦ ◦Wt = 0, (1)

3Dα
xΨ +Dα

y(|Φ|
2) = 0, (2)

where Ψ(x, y, t) denotes the real field of scalars and Φ(x, y, t) is the complex scalar field,
x, y are independent spatial variables and t is the temporal variable. Dα

x is the conformable
derivative (CD) for α ∈ (0, 1] [25]. Wt =

dW
dt is the time derivative of Brownian motion W(t)

and σ is a noise strength.
The stochastic integral

∫ t
0 Φ(s)dW(s) is called the Stratonovich stochastic integral

(denoted by
∫ t

0 Φ(s) ◦ dW(s)), if we calculate the stochastic integral at the middle, while the
stochastic integral

∫ t
0 Φ(s)dW(s) is called Itô (denoted by

∫ t
0 Φ(s)dW(s)) when we calculate

it at the left end [26]. The relation between the Stratonovich integral and Itô integral is:∫ t

0
Φ(s, Zs)dW(s) =

∫ t

0
Φ(s, Zs) ◦ dW(s)− 1

2

∫ t

0
Φ(s, Zs)

∂Φ(s, Zs)

∂z
ds. (3)

The conformable derivative for the function φ : (0, ∞)→ R is defined for α ∈ (0, 1] as

Dα
xφ(x) = lim

κ→0

φ(x + κx1−α)− φ(x)
κ

. (4)

The important property of CD is the following chain rule:

Dα
x(φ1 ◦ φ2)(x) = x1−αφ′2(x)φ′1(φ2(x)).

The Hirota–Maccari system (1-2), with σ = 0 and α = 1, was derived by Maccari [27].
There are several physical applications of the integrable Hirota–Maccari system including
the transmission of optical pulses across nematic liquid crystal waveguides and for a certain
parameter regime, the transmission of femtosecond pulses through optical fibers. Due to
the importance of the Hirota–Maccari system, many researchers have examined a lot of
techniques in order to find the exact solutions for this system, such as the extended trial
equation and the generalized Kudryashov [28], tanh-coth, sec-tan, rational sinh-cosh and
sech-csch methods [29], (G′/G)-expansion [30], Hirota bilinear method [31], Weierstrass
elliptic function expansion [32], Painleve approach [33], Painleve test [34], general projective
Riccati equation and improved tan( φ(θ)

2 )-expansion method [35] and complex hyperbolic-
function [36]. While the exact solutions of stochastic Hirota–Maccari system have been
studied in [37] in the Itô sense by using three different methods: Riccati–Bernoulli sub-ODE,
sine-cosine and He’s semi-inverse.

The originality of this paper is to acquire the analytical solutions of the SFSHMs (1-2).
This work is the first to attain the exact solutions of the SFSHMs (1-2). We employ the
Jacobi elliptic functions approach to obtain a broad range of solutions, including hyperbolic,
trigonometric and rational functions. Moreover, to study the effects of Brownian motion on
the solutions of the SFSHMs (1-2), we build 3D graphs for some of the developed solutions
by using MATLAB tools.

This is how the paper is organized: We use a suitable wave transformation in Section 2
to provide the wave equation of SFSHMs. We employ the Jacobi elliptic functions approach
in Section 3 to obtain the analytical solutions of the SFSHMs (1-2). In Section 4, we look at
how the Brownian motion affects the generated solutions. Finally, we state the conclusions
of this paper.
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2. Wave Equation for SFSHMs

To get the wave equation of the SFSHMs (1-2), let us utilize the following transforma-
tion:

Φ(x, y, t) = Q(ζ)eiθ−σW(t)−σ2t, Ψ(x, y, t) = P(ζ)e−2σW(t)−2σ2t, (5)

with
ζ = (

ζ1

α
xα +

ζ2

α
yα + ζ3t), θ =

θ1

α
xα +

θ2

α
yα + θ3t,

where θk, ζk for k = 1, 2, 3 are nonzero constants. We substitute Equation (5) into Equations
(1-2), and use

dΦ
dt

= (ζ3Q′ + iθ3Q− σQWt +
1
2

σ2Q− σ2Q)eiθ−σW(t)−σ2t,

= (ζ3Q′ + iθ3Q− σQWt −
1
2

σ2Q)eiθ−σW(t)−σ2t,

= (ζ3Q′ + iθ3Q− σQ ◦Wt)eiθ−σW(t)−σ2t,

and

Dα
xΦ = (ζ1Q′ + iθ1Q)eiθ−σW(t)−σ2t, Dα

y Φ(|Φ|2) = ζ2(Q2)′e−2σW(t)−2σ2t,

Dα
xxxΦ = (ζ3

1Q′′′ + 3iθ1ζ2
1Q′′ − 2θ2

1ζ1Q′ − θ2
1ζ1Q′ − iθ3

1Q)eiθ−σW(t)−σ2t,

Dα
xyΦ = (ζ1ζ2Q′′ + iζ1θ2Q′ + iζ2θ1Q′ − θ1θ2Q)eiθ−σW(t)−σ2t,

to obtain for the real part

(ζ1ζ2 − θ1ζ2
1)Q

′′ − (θ3 + θ1θ2 − θ3
1)Q + QPe−2σW(t)−2σ2t = 0 , (6)

3ζ1P′ + ζ2(Q2)′ = 0. (7)

Integrating Equation (7), we have

P =
−ζ2

3ζ1
Q2. (8)

Setting Equation (8) into Equation (6) we obtain

Q′′ − A1Q3e−2σW(t)−2σ2t − A2Q = 0, (9)

where

A1 =
ζ2

3ζ1(ζ1ζ2 − θ1ζ2
1)

and A2 =
θ3 + θ1θ2 − θ3

1
ζ1ζ2 − θ1ζ2

1
. (10)

Taking expectation E(·) on both sides for Equation (9), we attain

Q′′ − A1Q3e−2σ2tE(e−2σW(t))− A2Q = 0. (11)

Since W(t) is a normal process, then E(e−2σW(t)) = e2σ2t. Therefore Equation (11)
becomes

Q′′ − A1Q3 − A2Q = 0. (12)

3. The Analytical Solutions of the SFSHMs

In this section, we use the Jacobi elliptic functions method [38] to acquire the solutions
to Equation (12). Consequently, we obtain the analytical solutions of the SFSHMs (1-2).
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3.1. Method Description

Let the solutions of Equation (12) have the form

Q(ζ) =
N

∑
i=1

aiZ i(ζ), (13)

where Z solves

Z ′ =
√

1
2
`1Z4 + `2Z2 + `3, (14)

where `1, `2 and `3 are real parameters and N is a positive integer number.
We notice that Equation (14) has a variety of solutions depending on `1, `2 and `3

as in the following Table 1 :

Table 1. All possible solutions for Equation (14) for different values of `1, `2 and `3.

Case `1 `2 `3 Z(ζ)

1 2m2 −(1 + m2) 1 sn(ζ)

2 2 2m2 − 1 −m2(1−m2) ds(ζ)

3 2 2−m2 (1−m2) cs(ζ)

4 −2m2 2m2 − 1 (1−m2) cn(ζ)

5 −2 2−m2 (m2 − 1) dn(ζ)

6 m2

2
(m2−2)

2
1
4

sn(ζ)
1±dn(ζ)

7 m2

2
(m2−2)

2
m2

4
sn(ζ)

1±dn(ζ)

8 −1
2

(m2+1)
2

−(1−m2)2

4
mcn(ζ)± dn(ζ)

9 m2−1
2

(m2+1)
2

(m2−1)
4

dn(ζ)
1±sn(ζ)

10 1−m2

2
(1−m2)

2
(1−m2)

4
cn(ζ)

1±sn(ζ)

11 (1−m2)2

2
(1−m2)2

2
1
4

sn(ζ)
dn±cn(ζ)

12 2 0 0 c
ζ

13 0 1 0 ceζ

Where dn(ζ) = dn(ζ, m), cn(ζ) = cn(ζ, m), sn(ζ) = sn(ζ, m) are the Jacobi elliptic
functions (JEFs) for 0 < m < 1. If m→ 1, then the JEFs are transformed into the following
hyperbolic functions:

cs(ζ) → csch(ζ), sn(ζ)→ tanh(ζ), cn(ζ)→ sech(ζ),

dn(ζ) → sech(ζ), ds→ csch(ζ).

3.2. Solutions of SFSHMs

Let us balance Q′′ with Q3 in Equation (12) to define N as follows:

N+ 2 = 3N =⇒ N = 1. (15)

Equation (14) is rewritten with N = 1 as

Q(ζ) = a0 + a1Z(ζ). (16)

Differentiating Equation (16) twice, we have, by using (14),

Q′′ = a1`2Z + a1`1Z3. (17)
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Plugging Equation (16) and Equation (17) into Equation (12) we have

(a1`1 − A1a3
1)Z3 − 3a0a2

1 A1Z2 + (a1`2 − 3A1a2
0a1 + A2a1)Z − (A1a3

0 − A2a0) = 0.

Setting each coefficient of Z k for k = 0, 1, 2, 3 equal to zero, we attain

a1`1 − A1a3
1 = 0,

3a0a2
1 A1 = 0,

a1`2 − 3A1a2
0a1 + A2a1 = 0,

and
A1a3

0 − A2a0 = 0.

We obtain by solving these equations

a0 = 0, a1 = ±

√
`1

A1
, `2 = −A2.

Thus, Equation (12) has the following solution

Q(ζ) = ±

√
`1

A1
Z(ζ), for

`1

A1
> 0. (18)

The following are two sets that depend on `1 and A1 :
First set: If `1 > 0 (from Table 1)and A1 > 0, then the wave Equation (12) has the

solution Q(ζ) as in the following Table 2:

Table 2. All possible solutions for wave Equation (12) when `1 > 0.

Case `1 `2 `3 Z(ζ) Q(ζ)

1 2m2 −(1 + m2) 1 sn(ζ) ±
√

`1
A1

sn(ζ)

2 2 2m2 − 1 −m2(1−m2) ds(ζ) ±
√

`1
A1

ds(ζ)

3 2 2−m2 (1−m2) cs(ζ) ±
√

`1
A1

cs(ζ)

4 m2

2
(m2−2)

2
1
4 or m2

4
sn(ζ)

1±dn(ζ)
±
√

`1
A1

sn(ζ)
1±dn(ζ)

5 1−m2

2
(1−m2)

2
(1−m2)

4
cn(ζ)

1±sn(ζ)
±
√

`1
A1

cn(ζ)
1±sn(ζ)

6 (1−m2)2

2
(1−m2)2

2
1
4

sn(ζ)
dn±cn(ζ)

±
√

`1
A1

sn(ζ)
dn±cn(ζ)

7 2 0 0 c
ζ ±

√
`1
A1

c
ζ

If m→ 1, then the previous Table 2 becomes
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Table 3. All possible solutions for wave Equation (12) when `1 > 0 and m→ 1.

Case `1 `2 `3 Z(ζ) Q(ζ)

1 2 −2 1 tanh(ζ) ±
√

`1
A1

tanh(ζ)

2 2 1 0 sech(ζ) ±
√

`1
A1

sech(ζ)

3 2 1 0 csch(ζ) ±
√

`1
A1

csch(ζ)

4 1
2

−1
2

1
4

tanh(ζ)
1±sech(ζ)

±
√

`1
A1

tanh(ζ)
1±sech(ζ)

5 2 0 0 c
ζ ±

√
`1
A1

c
ζ

Now, using the previous Table 2 (or Table 3 when m→ 1) and Equations (5) and (18),
we obtain the exact solutions of the SFSHMs (1-2), for `1

A1
> 0, as follows:

Φ(x, y, t) = Q(ζ)e(iθ−σW(t)−σ2t), (19)

Ψ(x, y, t) =
−ζ2

3ζ1
Q2(ζ)e(−2σW(t)−2σ2t), (20)

where ζ = ( ζ1
α xα + ζ2

α yα + ζ3t), θ = θ1
α xα + θ2

α yα + θ3t.
Second set: If `1 < 0 and A1 < 0, then the solutions Q(ζ) of the wave Equation (12) are

Table 4. All possible solutions for wave Equation (12) when `1 < 0.

Case `1 `2 `3 Z(ζ) Q(ζ)

1 −2m2 2m2 − 1 (1−m2) cn(ζ) ±
√

`1
A1

cn(ζ)

2 −2 2−m2 (m2 − 1) dn(ζ) ±
√

`1
A1

dn(ζ)

3 −1
2

(m2+1)
2

−(1−m2)2

4
mcn(ζ)± dn(ζ) ±

√
`1
A1

[mcn(ζ)± dn(ζ)]

4 m2−1
2

(m2+1)
2

(m2−1)
4

dn(ζ)
1±sn(ζ) ±

√
`1
A1

dn(ζ)
1±sn(ζ)

If m→ 1, then the previous Table 4 becomes

Table 5. All possible solutions for wave Equation (12) when `1 < 0 and m→ 1.

Case `1 `2 `3 Z(ζ) Q(ζ)

1 −2 1 0 sech(ζ) ±
√

`1
A1

sech(ζ)

2 −1
2 2 0 2sech(ζ) ±2

√
`1
A1

sech(ζ)

In this situation, we may obtain the analytical solutions of the SFSHMs (1-2) as reported
in Equations (19) and (20) by utilizing the previous Table 4 (or Table 5 when m→ 1).

4. The Effect of Noise and Fractional Derivative on Solutions

In this article, the impact of noise and fractional derivative on the acquired solutions
of the SFSHMs (1-2) is discussed. We utilize the MATLAB tools to create some graphs, for
various noise strength σ, for the following solutions:

Φ(x, y, t) =

√
`1

A1
sn(

ζ1

α
xα +

ζ2

α
yα + ζ3t)e(iθ−σW(t)−σ2t), (21)
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Ψ(x, y, t) =
−ζ2`1

3ζ1 A1
sn2(

ζ1

α
xα +

ζ2

α
yα + ζ3t)e−2σW(t)−2σ2t. (22)

Fixing the following parameters: ζ1 = ζ2 = θ2 = 1, θ1 = 0.5, θ3 = 0.4, and y = 0.5,
then ζ3 = −2, and A1 = 2

3 . In this case m = 0.5, `1 = 0.5 and ζ = 1
α xα + 1

α (0.5)α − 2t.
Firstly the effect of noise: In the next Figure 1, when σ = 0, we observe that the surface

fluctuates

Equation (21) with σ = 0 Equation (22) with σ = 0

Figure 1. 3D profile of Equations (21) and (22) with σ = 0.

Furthermore, in Figure 2, if the noise intensity is raised, the surface becomes more
planar after small transit behaviors as follows:

Equation (21) with σ = 1 Equation (22) with σ = 1

Equation (21) with σ = 2 Equation (22) with σ = 2

Figure 2. 3D profile of Equations (21) and (22) with σ = 1, 2.

Secondly the effect of fractional order: In Figures 3 and 4, if σ = 0, we can observe that as
α increases, the surface extends:
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σ = 0, α = 0.3 σ = 0, α = 0.5

σ = 0, α = 0.7 σ = 0, α = 1

Figure 3. 3D profile of Equation (21) with σ = 0 and various α.

σ = 0, α = 0.3 σ = 0, α = 0.5

σ = 0, α = 0.7 σ = 0, α = 1

Figure 4. 3D profile of Equation (22) with σ = 0 and various α.

5. Conclusions

The stochastic fractional-space Hirota–Maccari system (1-2) were taken into considera-
tion in this work. To obtain stochastic trigonometric, elliptic, rational solutions, we used the
Jacobi elliptic functions approach. The obtained solutions will be very helpful for further
research in disciplines such as optical fibers and others. Finally, an illustration is provided
of how multiplicative Brownian motion affects the exact solutions of the SFSHMs (1-2). In
future studies, we can consider SDSEs with additive noise.
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