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Abstract: Existence and uniqueness of solutions for a simplified model of immiscible two-phase
flow in porous media are obtained in this paper. The mathematical model is a simplified physical
model with hysteresis in the flux functions. The resulting semilinear hyperbolic-parabolic equation is
expected from numerical work to admit non-monotone imbibition-drainage fronts. We prove the
local existence of imbibition-drainage fronts. The uniqueness, global existence, maximal regularity
and boundedness of the solutions are also discussed. Methodically, the results are established by
means of semigroup theory and fractional interpolation spaces.
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1. Introduction

A great many studies in applied mathematics and mathematical physics are concerned
with multiphase flow in porous media. From a mathematical point of view, these studies
are important because they feature intrinsically nonlinear equations and hysteresis. Nonlin-
earity and hysteresis are longstanding “hot topics” that continue to generate fundamental
insights and progress in mathematics, physics and engineering.

The purpose and significance of this work is to report rigorous results based on
nonlinear semigroup theory for a simplified one-dimensional mathematical model of
immiscible two-phase flow with hysteresis in porous media. It exhibits strongly nonlinear
and nonmonotone solutions as a result of hysteresis. Our simplified model is introduced
here as the nonlinear initial and boundary value problem

ut(z, t) + f (u, z)uz(z, t)− Duzz(z, t) = 0, z ∈ Ω, 0 < t ≤ T
u(z, 0) = u0(z), z ∈ Ω
uz(z, t) = 0, z ∈ ∂Ω, 0 < t ≤ T

(1)

where z ∈ Ω is position, Ω = (0, 1) is the domain, t ∈ [0, T] is the time, u : Ω× [0, T]→ R
is the unknown saturation function of the wetting phase, and u0 : Ω → R is the initial
saturation. The nonlinear term is defined as

f (u, z) = χ(z, za) f ′im(u) + [1− χ(z, za)] f ′dr(u) (2)

with fi ∈ C2(R) with i ∈ {im, dr} and a fixed position za ∈ (0, 1). The characteristic
function χ(·, za) is defined as χ(z, za) = 1 for z ≥ za and as χ(z, za) = 0 for z < za. Further,
ut denotes the derivative with respect to t, uz denotes the derivative with respect to z, and
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uzz denotes the second derivative with respect to z. We assume throughout this paper that
fi(u) with i ∈ {im, dr} are twice continuously differentiable and

fi(0) = 0, fi(1) = 1, f ′i (w) = f ′′i (w) = 0, w ∈ R \ (0, 1). (3)

Furthermore, we assume that D is a positive non-zero constant, 0 < D < ∞.
Many authors have discussed the existence and uniqueness of weak solutions for two-

phase flow equations using different analytical approaches, see [1–5]. The field is much too
large to be reviewed here, and we thus restrict attention on the problem of nonmonotone
solutions [6–8]. Our objective in this paper differs from most other works, because we wish
to apply nonlinear semigroup theory and fractional interpolation spaces to problem (1) in
the limit of small D → 0. Presently, there exist several nonlinear semigroup approaches
in the literature to prove the existence and uniqueness of solutions of elliptic–parabolic
partial differential equations, see [9–15]. The works of [9–12] addressed elliptic–parabolic
problems in porous media.

However, for elliptic–parabolic partial differential equations, such as (1), all analytical
investigations known to us neglect hysteresis in f (u, z) and assume f (u, z) = f (u). Ex-
ceptions are [13,16], where a generalized Prandtl–Ishlinskii play operator and a Preisach
hysteresis model are discussed. There, the hysteresis operators only affect the time deriva-
tive ∂/∂t and not the nonlinear function f . Our method in this paper is based on the
decoupling of hysteresis processes.

2. Methods

In this section, some basic methods and notations are recalled. Let X be a Banach
space and denote its norm by ‖·‖. The space of bounded linear mappings X → X is
denoted by B(X). The uniform operator norm in B(X) is indicated by ‖·‖B(X). The norm
in the Lebesgue space L∞(Ω) is written as ‖·‖∞. For s ∈ R the norm on the fractional
Sobolev spaces Hs(Ω) = Ws,2(Ω) will be denoted by ‖·‖Hs . The closure of the space of
test functions C∞

0 (Ω) inHs(Ω) will be denoted byHs
0(Ω). The spaceHs

N(Ω), defined for
s > 3/2, denotes the Sobolev space with zero Neumann boundary conditions. The duality
products of Hs(Ω) and H−s(Ω) are denoted by 〈·, ·〉. In the scope of this article, all
Lebesgue and Sobolev spaces are defined on the domain Ω and from now are written
without the domain Ω. For more details on the definitions, see ([15], Chapter 1).

Definition 1 ([15], Chapter 1). Let 0 < T < ∞ and 0 < σ < β ≤ 1. Then, the space
F β,σ((0, T]; X) consists of functions h : (0, T]→ X fulfilling the following conditions:

1. The limit limt→0 t1−βh(t) exists in X.
2. The function h is Hölder continuous with exponent σ and weight function s1−β+σ, i.e.,

sup
0≤s<t≤T

s1−β+σ‖h(t)− h(s)‖
(t− s)σ

< ∞, (4a)

sup
0≤s<t

s1−β+σ‖h(t)− h(s)‖
(t− s)σ

t→0−→ 0. (4b)

Endowing F β,σ((0, T]; X) with the norm

‖h‖F β,σ(0,T] := sup
0≤t≤T

t1−β‖h(t)‖+ sup
0≤s<t≤T

s1−β+σ‖h(t)− h(s)‖
(t− s)σ

(5)

a Banach space is obtained.
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Let A : X ⊃ D(A)→ X be a densely defined, closed linear operator with the resolvent
set ρ(A) and the spectrum σ(A). We use the notation

Σω := {λ ∈ C \ {0} : |arg λ| < ω} (6)

for open sectors in the complex plane. The domain D(A), of the operator A, is a Banach
space equipped with the graph norm |x|A = ‖x‖+ ‖Ax‖.

Definition 2 ([15], Chapter 2 and 3). 1. An operator A in a Banach space X is called sectorial,
if 0 ∈ ρ(A) and if there exists an angle ω ∈ (0, π] and a constant M ≥ 1 such that

σ(A) ⊂ Σω, (7a)∥∥∥(λI − A)−1
∥∥∥ ≤ M

|λ| for λ ∈ C \ Σω. (7b)

If A is sectorial, the infimum of all ω ∈ (0, π] such that Equation (7) holds is denoted by ωA
and is called the sectorial angle of A.

2. A family of operators {G(z) ∈ B(X) : z ∈ Σω} with ω ∈ (0, π/2), is called an analytic
semigroup if it satisfies the following properties:

(a) The mapping z→ G(z) is analytic in Σω.
(b) For z1, z2 ∈ Σω, the relation G(z1 + z2) = G(z1)G(z2) holds.
(c) G(0) = I holds, and the following strong convergence condition holds for all x ∈ X

and ω′ ∈ (0, ω):

G(z)x → x for z→ 0 with z ∈ Σω′ \ {0} . (8)

3. A sectorial operator A generates an analytic semigroup, and this semigroup is denoted by
e−tA with t > 0.

We use the definition of fractional powers by the Dunford integral.

Definition 3 ([15], Chapter 2). For z ∈ C with <z > 0 one defines

A−z =
1

2πi

∫
Υ

λ−z(λ− A)−1 dλ (9)

where the integral contour Υ lies in ρ(A) and surrounds σ(A) counterclockwise excluding the
negative real axis. The principal branch on C \ (−∞, 0] is chosen for the analytic function λ−z.
Clearly, A−z is a one-to-one function for any <z > 0. Then, the positive fractional powers are
defined as

Az = (A−z)−1 for <z > 0 (10)

with domain D(Az) = R(A−z) whereR(·) denotes the range.

Lemma 1 ([15], Eqs. (2.129),(2.133)). Let A be a sectorial operator with angle ωA < π/2 and
let e−tA with t > 0 denote the analytic semigroup generated by −A. For all θ > 0 there exists a
constant Cθ < ∞ such that the inequalities∥∥∥Aθe−tA

∥∥∥ ≤ Cθt−θ for 0 < θ < ∞, (11)∥∥∥(e−tA − 1
)

A−θ
∥∥∥ ≤ Cθtθ for 0 < θ ≤ 1, (12)

hold for all t > 0.
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Theorem 1 ([15], Chapter 2). Let D = const. and let ε > 0. Then, for z ∈ Ω, the operator

A = − ∂

∂z

(
D

∂

∂z

)
+ ε, (13)

D(A) = H2
N := {u ∈ H2 : uz|∂Ω = 0} (14)

in L2 is sectorial with angle ωA < π/2. For any ωA < ω ≤ π/2, the operator fulfills Equa-
tions (7a) and (7b), where the constant M is determined by Ω, D and ω and depends on ε.

Proof. This follows from Theorem 2.3, Theorem 2.7 and the discussion at the beginning of
Chapter 2 in [15].

3. Results

In the following, we prove the existence of local solutions in Theorem 3. We show
that local solutions are global in Corollary 1. Finally, in Theorem 4, we prove that initial
conditions with values in [0, 1] lead to solutions with values in [0, 1]. By “solutions”, we
mean functions that belong to the space U defined in Theorem 3 below and that satisfy
Equation (15).

As remarked above, the notation L2 = L2(Ω), Hk = Hk(Ω) and ‖·‖ = ‖·‖X=L2 is
used. In this section, the initial and boundary value problem (1) is solved in the function
space C

(
(0, T];L2). Problem (1) is transformed into the abstract Cauchy problem{

ut(t) + Au(t) = F(u(t)), t > 0
u(0) = u0

(15)

with the linear operator A : D(A)→ L2 defined by

A = −D∂2
z + ε (16)

with fixed ε > 0 as in Theorem 1 and the nonlinear function F : D(A1/2)→ L2 defined by

F(u) = −χ(·, za) f ′im(u)uz − [1− χ(·, za)] f ′dr(u)uz + εu. (17)

The domain D(A) of the linear operator A is given by

D(A) = H2
N = {u ∈ H2 : uz|∂Ω = 0}. (18)

The domains of the fractional powers Aθ of A (or the interpolation spaces between
D(A) and L2) are given by

D(Aθ) =

{
H2θ for 0 ≤ θ < 3/4,
H2θ

N for 3/4 < θ ≤ 1,
(19)

see ([15], Chapter 16). Therefore the domain of the nonlinear function F is given as

D(A1/2) = H1.

Lemma 2. For bounded functions fi ∈ C2 with bounded derivatives f ′i and f ′′i where i ∈ {im, dr},
u, v ∈ H1, χ(·, za) : Ω → {0, 1} is bounded and measurable, za ∈ Ω and ε > 0 the nonlinear
function F : H1 → L2 with

F(u) = −χ(·, za) f ′im(u)uz − [1− χ(·, za)] f ′dr(u)uz + εu (20)
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fulfills the inequalities

‖F(u)− F(v)‖ ≤ CF

[(
1 +

∥∥∥A1/2v
∥∥∥)∥∥∥A1/2(u− v)

∥∥∥] (21)

‖F(u)‖ ≤ CF

∥∥∥A1/2u
∥∥∥ (22)

for all u, v ∈ H1 with 0 < CF < ∞ and the operator A defined above in Equation (16).

Proof. The functions f ′im, f ′dr and χ(·, za) are bounded and measurable. Therefore, the
nonlinear function F is continuous as a sum of continuous functions, and it maps every
u ∈ H1 to F(u) ∈ L2.

For convenience the notations χim = χ(·, za) and χdr = 1− χ(·, za) are used. Then
one obtains

‖F(u)− F(v)‖ ≤ ∑
i∈{im,dr}

‖χi‖∞
∥∥ f ′i (v)vz − f ′i (u)uz

∥∥+ ε‖u− v‖

≤ ∑
i∈{im,dr}

(∥∥ f ′i (u)(vz − uz)
∥∥+ ∥∥vz

(
f ′i (v)− f ′i (u)

)∥∥)+ ε‖u− v‖ (23)

for u, v ∈ H1. Let N be the embedding constantH1 → L∞ and define

C′f ,i := sup
w∈R

∣∣ f ′i (w)
∣∣, (24a)

C′′f ,i = sup
w∈R

∣∣ f ′′i (w)
∣∣ (24b)

CF = max
{

C′f ,im + C′f ,dr + ε, N
(

C′′f ,im + C′′f ,dr

)}
(24c)

for i ∈ {im, dr}. The embedding ofH1 → L∞ holds because Ω is one-dimensional. With
these definitions, Equation (23) is estimated as

‖F(u)− F(v)‖ ≤ ∑
i∈{im,dr}

(
C′f ,i‖vz − uz‖+ C′′f ,i‖vz(v− u)‖

)
+ ε‖u− v‖

≤
(

C′f ,im + C′f ,dr + ε
)
‖u− v‖H1 +

(
C′′f ,im + C′′f ,dr

)
‖vz‖‖u− v‖∞

≤
(

C′f ,im + C′f ,dr + ε
)
‖u− v‖H1 + N

(
C′′f ,im + C′′f ,dr

)
‖v‖H1‖u− v‖H1

≤ CF

[(
1 +

∥∥∥A1/2v
∥∥∥)∥∥∥A1/2(u− v)

∥∥∥] (25)

which proves (21). The verification of (22) follows from (21) by setting v = 0.

Theorem 2. Problem (15) with A given by (16) and F(u) given by (17) is well-defined for all
L2-valued functions u(t) that satisfy

u ∈ U = C
(
(0, T];H2

N

)
∩ C
(
[0, T];H1

)
∩ C1

(
(0, T];L2

)
. (26)

Proof. First, A is an operator C
(
(0, T];H2

N
)
→ C

(
(0, T];L2). Second, the time derivative

d/dt is an operator C1((0, T];L2)→ C((0, T];L2). According to Lemma 2 F is a mapping
H1 → L2. This implies that it is also a mapping C

(
[0, T];H1)→ C([0, T];L2).

Theorem 3. Define the linear operator A : D(A) = H2
N → L2 as in Theorem 1 and the nonlinear

function F : D(A1/2) = H1 → L2 as in Lemma 2. There exists a T > 0, such that, for every
u0 ∈ H1, there exists a unique local solution u of problem (1) in the function space

U = C
(
(0, T];H2

N

)
∩ C
(
[0, T];H1

)
∩ C1

(
(0, T];L2

)
. (27)
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Further, if u0 ∈ H2
N , then this solution belongs to the space

U2 = C
(
[0, T];H2

N

)
∩ C1

(
[0, T],L2

)
. (28)

Remark 1. The definition of U explains the solution concept: The factor C1((0, T],L2) ensures that
the solutions u possess a strong derivative with respect to time, considered as L2-valued functions
on (0, T]. The factor C((0, T],H2

N) ensures that the solutions u belong to the domain of A for
t > 0. The factor C([0, T],H1) ensures that u(0+) = u0 with respect to the topology ofH1. These
solutions are solutions in the weak sense, in particular.

Proof. Following [15], the idea of the proof is to rewrite problem (15) as{
ut(t) + Au(t) = G(t), t > 0
u(0) = u0

. (29)

To this end, the fixed-point theorem is applied to the mapping M

Mu(t) = e−tAu0 +
∫ t

0
e−(t−τ)AF(u(τ))dτ (30)

which is defined on the space X (T) ⊃ U defined in Equation (31) and seen to be a con-
traction on a suitably chosen closed subset Y(T, CT) with 0 < CT < ∞. The first step is to
determine Y(T, CT) and to verify the requirements for the fixed point theorem ([17], Theo-
rem 1.A, p. 17). In the second step, it is shown that, if u is a fixed point of the mapping M,
then, for every σ ∈ (0, 1/2), the function F ◦ u is an element of the space F 1/2,σ((0, T],L2).
If F ◦ u ∈ F 1/2,σ((0, T],L2), then G(t) = F(u(t)) is an admissible inhomogeneity for the
Cauchy problem (29). Finally, the uniqueness of the solution is shown.

Using Equations (16) and (17), the initial and boundary value problem (1) is trans-
formed into an abstract Cauchy problem (15).

The linear operator A, defined in (16), is a sectorial operator with angle ωA < π/2 by
virtue of Theorem 1 and the infinitesimal generator of the analytic semigroup e−tA.

Step 1: Requirements for the fixed-point theorem. For every T > 0, the Banach Space X (T)
is defined as

X (T) = C
(
[0, T];H1

)
⊃ U (31)

with norm ‖u‖X = sup0≤t≤T

∥∥∥A1/2u(t)
∥∥∥. Additionally, one defines the closed subset

Y(T, CT) ⊂ X (T) of all u that satisfy∥∥∥A1/2u(t)
∥∥∥ ≤ CT for all t ∈ [0, T]. (32)

Now, we derive conditions for the constants CT and T from Equation (32) such that
the mapping M from Equation (30) maps Y(T, CT) into Y(T, CT). For any 0 ≤ σ < 1/2
and 0 < t ≤ T, one derives the estimate∥∥∥A1/2+σ Mu(t)

∥∥∥ =

∥∥∥∥A1/2+σ

{
e−tAu0 +

∫ t

0
e−(t−τ)AF(u(τ))dτ

}∥∥∥∥
≤
∥∥∥A1/2+σe−tAu0

∥∥∥+ ∥∥∥∥A1/2+σ
∫ t

0
e−(t−τ)AF(u(τ))dτ

∥∥∥∥ (33)

≤
∥∥∥Aσe−tA

∥∥∥∥∥∥A1/2u0

∥∥∥+ ∫ t

0

∥∥∥A1/2+σe−(t−τ)A
∥∥∥‖F(u(τ))‖dτ.
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Using Lemma 1, Equation (22) from Lemma 2 and Equation (32), we find∥∥∥A1/2+σ Mu(t)
∥∥∥ ≤ ∥∥∥Aσe−tA

∥∥∥∥∥∥A1/2u0

∥∥∥+ CF

∫ t

0

∥∥∥A1/2+σe−(t−τ)A
∥∥∥∥∥∥A1/2u

∥∥∥dτ

≤
∥∥∥Aσe−tA

∥∥∥∥∥∥A1/2u0

∥∥∥+ CFCT

∫ t

0

∥∥∥A1/2+σe−(t−τ)A
∥∥∥dτ

≤
∥∥∥Aσe−tA

∥∥∥∥∥∥A1/2u0

∥∥∥+ CFCTC 1
2−σt1/2−σ. (34)

For σ = 0, Equation (32) holds if the right side of Equation (34) is smaller or equal to CT
and∥∥∥e−tA

∥∥∥∥∥∥A
1
2 u0

∥∥∥+ CFCTC 1
2
t

1
2 ≤ CT ⇔ CT

(
1− CFC 1

2
t

1
2

)
≥
∥∥∥e−tA

∥∥∥∥∥∥A
1
2 u0

∥∥∥. (35)

If 1− CFC1/2T1/2 > 0 or equivalently

T < (CFC1/2)
−2 (36)

holds, then CT can be chosen such that

CT > sup
0≤t≤T

∥∥∥e−tA
∥∥∥

∥∥∥A1/2u0

∥∥∥
1− CFC1/2T1/2 . (37)

The right hand side of (37) is bounded because the norm
∥∥e−tA

∥∥ is bounded according
to ([15], Proposition 2.5, p.86). Then, the mapping M fulfills the condition

sup
0≤t≤T

∥∥∥A1/2Mu(t)
∥∥∥ ≤ CT (38)

where CT is given by (37), and Mu(t) ∈ Y(T, CT) holds.
The next step is to show that M : Y(T, CT)→ Y(T, CT) is a contraction mapping. One

estimates

sup
0≤t≤T

‖Mu(t)−Mv(t)‖X ≤
∥∥∥∥∫ t

0
e−(t−τ)A{F(u(τ))− F(v(τ))}dτ

∥∥∥∥
X

= sup
0≤t≤T

∥∥∥∥A1/2
∫ t

0
e−(t−τ)A{F(u(τ))− F(v(τ))}dτ

∥∥∥∥
≤ sup

0≤t≤T

∫ t

0

∥∥∥A1/2e−(t−τ)A
∥∥∥‖F(u(τ))− F(v(τ))‖dτ. (39)

Using Lemma 2 and Equation (25) to estimate the integral term, one obtains

sup
0≤t≤T

‖Mu(t)−Mv(t)‖X ≤ CF(1 + C) sup
0≤t≤T

∫ t

0

∥∥∥A1/2e−(t−τ)A
∥∥∥∥∥∥A1/2(u− v)

∥∥∥dτ

≤ CF(1 + C)
∫ T

0

∥∥∥A1/2e−(t−τ)A
∥∥∥dτ

∥∥∥A1/2(u− v)
∥∥∥

≤ CF(1 + C)
∫ T

0

∥∥∥A1/2e−(t−τ)A
∥∥∥dτ‖u− v‖X

≤ CF(1 + C)C1/2T1/2‖u− v‖X . (40)

Thus, the mapping M : Y(T, CT)→ Y(T, CT) is a contraction if CF(1 + C)C1/2T1/2 < 1 or
equivalently

T < (CF(1 + C)C1/2)
−2. (41)
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It remains to prove that Mu(t) ∈ C
(
[0, T];H1) holds. For this purpose, one calculates for

t > s > 0

Mu(t)−Mu(s) = e−tAu0 +
∫ t

0
e−(t−τ)AF(u(τ))dτ −Mu(s)

= e−tAu0 +
∫ s

0
e−(t−τ)AF(u(τ))dτ−Mu(s)+

∫ t

s
e−(t−τ)AF(u(τ))dτ

= e−(t−s)A Mu(s)−Mu(s) +
∫ t

s
e−(t−τ)AF(u(τ))dτ

=
[
e−(t−s)A − 1

]
Mu(s) +

∫ t

s
e−(t−τ)AF(u(τ))dτ. (42)

With Equation (42), one obtains∥∥∥A1/2{Mu(t)−Mu(s)}
∥∥∥

≤
∥∥∥A−σ

[
e−(t−s)A − 1

]∥∥∥∥∥∥A1/2+σ Mu(s)
∥∥∥+ ∥∥∥∥A1/2

∫ t

s
e−(t−τ)AF(u(τ))dτ

∥∥∥∥
≤
∥∥∥A−σ

[
e−(t−s)A − 1

]∥∥∥∥∥∥A1/2+σ Mu(s)
∥∥∥+ ∫ t

s

∥∥∥A1/2e−(t−τ)A
∥∥∥‖F(u(τ))‖dτ. (43)

Then, Equations (12), (22), (32) and (34) lead to∥∥∥A1/2{Mu(t)−Mu(s)}
∥∥∥

≤ Cσ(t− s)σ
(

Cσs−σ
∥∥∥A

1
2 u0

∥∥∥+ CFCTC 1
2−σs

1
2−σ
)
+ CFCTC 1

2

∫ t

s
(t− τ)−

1
2 dτ

≤ (t− s)σs−σ
(

Cu0 + CAs1/2
)
+ C(t− s)1/2

= (t− s)σs−σ
(

Cu0 + CAs1/2 + C(t− s)1/2−σsσ
)

≤ (t− s)σs−σ
(

Cu0 + CAt1/2 + Ct1/2−σtσ
)

≤ (t− s)σs−σ
(

Cu0 + Ct1/2
)

≤ C(t− s)σs−σ. (44)

Equation (44) shows that Mu(t) is now part of the function space C
(
(0, T];H1). The

estimate ∥∥∥A1/2{Mu(t)−Mu(0)}
∥∥∥ =

∥∥∥∥A1/2
∫ t

0
e−(t−τ)AF(u(τ))dτ

∥∥∥∥
≤ CFCTC1/2

∫ t

0
(t− τ)−1/2 dτ

≤ CFCTC1/2t1/2 (45)

shows that

lim
t→0

∥∥∥A1/2{Mu(t)−Mu(0)}
∥∥∥ = lim

t→0
Ct1/2 = 0 (46)

and therefore Mu(t) is part of C
(
[0, T];H1).

If Equations (36), (37) and (41) are fulfilled, then a fixed point Mu = u ∈ Y(T, CT)
exists according to ([17], Theorem 1.A, p. 17), and the fixed point u(t) obeys

u(t) = e−tAu0 +
∫ t

0
e−(t−τ)AF(u(τ))dτ for all t ∈ [0, T]. (47)

Step 2: Show that F ◦ u ∈ F 1,σ([0, T],L2) holds for any fixed point u of M. It is immediate
from the definition of Y(T, CT) and Lemma 2 that F ◦ u is a continuous function on [0, T].
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The function F(u) has to fulfill condition (4) from Definition 1. Using Equations (21), (38)
and (44), one obtains, for 0 < s < t ≤ T, the estimate

‖F(u(t))− F(u(s))‖ = ‖F(Mu(t))− F(Mu(s))‖

≤ CF

[(
1 +

∥∥∥A1/2Mu(t)
∥∥∥)∥∥∥A1/2(Mu(t)−Mu(s))

∥∥∥]
≤ CF(1 + CT)

∥∥∥A1/2(Mu(t)−Mu(s))
∥∥∥

≤ CF (t− s)σs−σ. (48)

Therefore, we can conclude that F ◦ u ∈ F 1,σ([0, T],L2) is true, and we can write the
semilinear evolution problem (15) as a linear evolution problem (29).

Using ([15], Theorems 3.4, 3.5, p. 124, 126), it follows that the fixed points u (see
Equation (47)) are elements of the function space U from (27). Further, it follows that u
belongs to the function space U2 from Equation (28) if u0 ∈ H2

N .
Step 3: Uniqueness of solutions. Any solution u ∈ U of problem (4.1) satisfies F ◦ u ∈

F 1/2,σ((0, T],L2) and is a solution of the problem (4.15) with G(t) = F(u(t)) in the sense of
([15], Theorem 3.4). According to ([15], Theorem 3.4, Eq. (3.13)), any solution u ∈ U of (29)
is also a fixed point of M. Therefore, uniqueness follows from the fixed point theorem ([17],
Theorem 1.A, p. 17).

Corollary 1. Every local solution of problem (1), in the sense of Theorem 3, extends uniquely to a
global solution.

Proof. Because the constant T > 0 in Theorem 3 is independent of the initial condi-
tion u0 the theorem can be applied repeatedly to prove the existence of a solution u ∈
C((0, ∞),H2

N)∩C([0, ∞),H1) that is piecewise differentiable as a function with values inL2.
Invoking uniqueness, piecewise differentiability improves to differentiability for all t > 0
as a function with values in L2, that is, one obtains u ∈ C((0, ∞),H2

N) ∩ C([0, ∞),H1) ∩
C1((0, ∞),L2).

Theorem 4. Let u0 ∈ H1 and u(z, t) be the unique global solution of problem (1). If the initial
condition fulfills 0 ≤ u0 ≤ 1, then the global solution u fulfills 0 ≤ u ≤ 1 as well.

Proof. First, the lower bound 0 ≤ u(t) is discussed by using a penalty function

E(u) =


u2

2
for −∞ < u < 0

0 for 0 ≤ u < ∞
(49)

which is continuously differentiable and whose first derivative satisfies the general Lips-
chitz condition. The function

H(t) =
∫

Ω
E(u(t))dz =

∫
Ω1

E(u(t))dz +
∫

Ω2

E(u(t))dz (50)

averages the value of the penalty function over the domain Ω. In Equation (50), it holds
that Ω1 ∪Ω2 = Ω and Ω1 ∩Ω2 = ∅. The domain Ω1 denotes the time-dependent domain
where E(u) > 0 holds and Ω2 denotes the time-dependent domain where E(u) = 0 holds.
Clearly, H(t) is a continuously differentiable function for t > 0 because u ∈ U with
the derivative
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d
dt

H(t) =
∫

Ω

dE(u)
du

ut dz

= D
∫

Ω

dE(u)
du

uzz dz−
∫

Ω
∑

i∈{im,dr}

dE(u)
du

χi f ′i (u)uz dz

= −D
∫

Ω
∂z

(
dE(u)

du

)
uz dz−

∫
Ω

∑
i∈{im,dr}

dE(u)
du

χi f ′i (u)uz dz

= −D
∫

Ω1

|uz|2 dz−
∫

Ω
∑

i∈{im,dr}

dE(u)
du

χi f ′i (u)uz dz (51)

where χim = χ(z, za) and χdr = 1− χ(z, za). Since f ′i (u) = 0 for any −∞ < u < 0 and
dE(u)/du = 0 for any 0 ≤ u < ∞, it holds that∫

Ω

dE(u)
du

χim f ′im(u)uz dz =
∫

Ω

dE(u)
du

χdr f ′dr(u)uz dz = 0. (52)

Thus, we find H(t) ≤ H(0), and H(0) = 0 implies H(t) ≡ 0, i.e., 0 ≤ u(t) for t ∈ [0, T].
Similarly, we can easily prove that u(t) ≤ 1 for every t ∈ [0, T] by taking u∗(z, t) =

1− u(z, t) on [0, ∞) and formulating problem (1) as follows
u∗t (z, t) + f ∗(u, z)u∗z (z, t)− Du∗zz(z, t) = 0, z ∈ Ω, 0 < t ≤ T
u∗(z, 0) = u∗0(z), z ∈ Ω
u∗z (z, t) = 0, z ∈ ∂Ω, 0 < t ≤ T

(53)

with z ∈ Ω, t ∈ (0, Tu0 ] and

f ∗(u, z) = χ(z, za) f ′im(1− u∗(z)) + [1− χ(z, za)] f ′dr(1− u∗(z)). (54)

4. Discussion

In the following discussion, the above results for Equation (1) are interpreted from the
perspective of previous studies. Hysteretic two-phase flow in porous media was previously
modeled using the initial and boundary value problem [8]

ut(z, t) + ∂
∂z fG (u)− Duzz(z, t) = 0, z ∈ Ω, t > 0

u(z, 0) = u0(z), z ∈ Ω
uz(z, t) = 0, z ∈ ∂Ω, t > 0

(55)

with the nonlinear fractional flow functions fG : [0, 1] → R+ and the capillary coefficient
D > 0. Problem (55) becomes equivalent to Equation (1) for ∂

∂z fG (u) = f (u, z)uz where
the derivative is a distributional derivative. The fractional flow function is indexed by a
graph G(z, t) ∈ [0, 1]×R+ ×R+ ×R, see ([8], Equation (9)). The graph G(z, t) represents
different flow processes obtained from a suitable hysteresis model. At a fixed z, this
depends on the saturation history u(z, t) at z. Let the time instants ti with i = 0, . . . , N
and 0 = t0 < t1 < t2 < · · · < tN < t denote the switching times between drainage and
imbibition at z. The graph G changes only at these switching instants.

Consider the initial-boundary value problem for Equation (55) with a non-monotone
initial condition as shown in Figure 1. Assume without loss of generality, that the profile
propagates in the positive z-direction. Let u(z, t) with z ∈ Ω be the saturation profile at
time t. Then the imbibition interval I(t) at time t is defined as the largest singly connected
interval on which u(z, t) is monotone decreasing but not constant everywhere. Similarly,
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the drainage interval D(t) at time t is defined as the largest singly connected interval on
which u(z, t) is monotone increasing but not constant everywhere. For the initial saturation
profile of Figure 1 at time t = 0, the two intervals are illustrated as gray regions in the top
row of Figure 2. Additionally, a time-dependent plateau interval is defined as

P(t) =
{

z : ut(z, t) = 0 , u(z, t) = max
z′∈Ω

u(z′, t)
}

. (56)

P(t = 0) is illustrated as the gray region in the left graph of the second row in Figure 2.
The propagated plateau interval P(T) for T > 0 is depicted in the second row on the
right. Throughout Figure 2, the initial condition u(z, 0) is plotted as a dashed line, and the
propagated profile u(z, T) with T > 0 is shown as a solid line. Because P(0) ∩ P(T) 6= ∅, a
position za ∈ P(0) ∩ P(T) can be selected such that the drainage process on the left (z < za)
decouples from the imbibition process on the right (z > za).

0 1

0

1

Figure 1. Initial condition u(z, 0) for problem (55) with a single overshoot.

Numerical solutions for problem (55) with initial data as shown in Figure 1 were
studied in [6–8]. For this simple class of processes with a single saturation overshoot, the
saturation history at positions z > za has length N(z) = 0, while N(z) = 1 for z ≤ za.
For any time t with 0 < t < T, there is a fixed graph G im describing the flow process
at each z ∈ I(t) in terms of a flow function fim(u; {u∗0}) parametrized by the saturation
value u∗0 = u(z, 0) at t0 = 0. Furthermore, there is a fixed graph Gdr describing the
flow process at each z ∈ D(t) in terms of a flow function fdr(u; {u∗1}) parametrized
by the saturation value u∗1 = u(z, t1) at the time instant t1(z) when the flow process
switched from imbibition to drainage. For a single overshoot, the value of u∗1 is, of course,
u∗z = maxz∈Ω u(z, 0). By continuity of the hysteresis model and by continuity of the graph
G = G im ∪ Gdr, the flux is continous for all z ∈ P(t) with 0 < t < T. In this situation, the
first order term in Equation (55) simplifies to

∂

∂z
fG (u) =

∂

∂z

(
χI(t) fim(u; {u∗0}) + χD(t) fdr(u; {u∗1})− χP(t) fim(u; {u∗0})

)
(57a)

=
∂

∂z

(
χI(t) fim(u; {u∗0}) + χD(t) fdr(u; {u∗1})− χP(t) fdr(u; {u∗1})

)
(57b)

= χI(t) f ′im(u; {u∗0})uz + χD(t) f ′dr(u; {u∗1})uz − χP(t) f ′im(u; {u∗0})uz (57c)

= χ(z, za) f ′im(u; {u∗0})uz + [1− χ(z, za)] f ′dr(u; {u∗1})uz (57d)

where fim( · ; {u∗0}) = fG im( · ) and fdr( · ; {u∗0}) = fGdr( · ). A possible choice for
fG can be seen in ([8], Equation (2)). The term χP(t) f ′im(u; {u∗0})uz is necessary because
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the imbibition interval and drainage interval are overlapping in the plateau interval P(t).
Inserting this into the differential Equation (55) gives

ut + χ(z, za) f ′im(u; {u∗0})uz + [1− χ(z, za)] f ′dr(u; {u∗1})uz − Duzz = 0 (58a)

where {u∗0} = u0(z) = u(z, 0) is the initial condition and {u∗1} = u(z, t1(z)) is the
saturation at position z at the switching time t1. The fractional flow functions for imbibition
and drainage at the switching point obey flux continuity at t1, i.e.

fim(u(z, t1); {u∗0}) = fdr(u(z, t1); {u∗1}) (58b)

for all z ∈ P(t). Note that the fractional flow functions are explicitly position dependent
due to hysteresis.

0 1

0

1

Figure 2. Schematic illustration for the decoupling of the imbibition and drainage fronts. The initial
saturation profile u(z, 0) is the dashed line, and the propagated profile u(z, T) with T > 0 is shown
as a solid line. The top left figure illustrates I(0) in gray, the top right figure illustrates D(0) in gray,
the middle left figure shows the intersection P(0) = I(0) ∩D(0) at time t = 0, the middle right figure
shows P(T) at some time T > 0, and the lower left figure shows P(0) ∩ P(T). The location za in the
lower right subfigure can be chosen arbitrarily from within the gray interval P(0) ∩ P(T) in the lower
left subfigure.

Numerical (and experimental) evidence in [6–8] suggest that imbibition and drainage
fronts decouple for the simple class of hysteretic processes with a single saturation over-
shoot assumed in our mathematical model. The decoupling assumption is supported by
noting that, for D = 0, piecewise constant functions are indeed weak solutions.
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The decoupling is implemented here in this work by assuming that the set P(t) has
positive measure for some nonempty time interval [0, T] with T > 0. If the decoupling
assumption holds true, then the fractional flow functions

fim(u(z, t); {u∗0}) = fdr(u(z, t); {u∗1}) (59)

agree for all z ∈ P(t). In this way, a plateau in the saturation determines two position-
independent fractional flow functions that agree on P(t) for 0 < t < T. The rigorous
results for problem (1) obtained in this work support the numerical results for problem (55)
in [8]. The main point here is that, given a non-monotone single overshoot initial condition
similar to the one shown in Figure 1, there is an open interval

⋂T
t=0 P(t) ⊂ (I(t) ∩D(t))

with u = const. for t ∈ [0, T] and za ∈
⋂T

t=0 P(t). This fact ensures the decoupling of the
imbibition and the drainage front, and Equation (55) can be reduced to Equation (1) for
t ∈ [0, T].

Acknowledgments: The authors are grateful to Dr. Bakkyaraj T. for many fruitful discussions.
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