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Abstract: In this paper, we investigate some nonoscillatory and oscillatory solutions for a class of
second-order nonlinear neutral delay differential equations with positive and negative coefficients.
By means of the method of contraction mapping principle and some integral inequality techniques,
we extend the recent results provided in the literature.
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1. Introduction

Only recently, some scholars ([1,2]) studied the oscillation of the following mixed-type
second-order equation:

(r(x)(y′(x))α)′ = p(x)yα(τ(x)), x ≥ 0,

where p, r ∈ C([x0, ∞), (0, ∞)), α is the ratio of two positive odd integers, lim
x→∞

τ(x) = ∞,

τ(x) ∈ C1([x0, ∞),<) and τ′(x) > 0.
The researchers ([3,4]) studied the oscillation of the following second-order half-linear

neutral delay differential equation:

(r(x)(y(x) + p(x)y(τ(x)))α)′)′ + q(x)yα(σ(x)) = 0, x ≥ x0 > 0,

where α is the ratio of two positive odd integers, r, p ∈ C1([x0, ∞), (0, ∞)), q ∈ C([x0, ∞),<),
τ, σ ∈ C([x0, ∞),<), τ(x) ≤ x, σ(x) ≤ x and lim

x→∞
τ(x) = lim

x→∞
σ(x) = ∞.

Baculíková et al. [5] considered the oscillation of the following second-order delay
differential equation:

(a(x)(y(x)− p(x)yα(τ(x)))′)′ + q(x)yβ(σ(x)) = 0, x ≥ x0 > 0,

where 0 < α ≤ 1, α and β are the ratio of two positive odd integers, a ∈ C1([x0, ∞), (0, ∞)),
p, q ∈ C([x0, ∞), (0, ∞)), 0 < p(x) ≤ p < 1, τ, σ ∈ C1([x0, ∞), (0, ∞)), τ(x) ≤ x, σ(x) ≤ x,
τ′(x) > 0, σ′(x) > 0 and lim

x→∞
τ(x) = lim

x→∞
σ(x) = ∞.

Oscillation phenomena take part in delay differential equations from real world
applications. We refer the reader to [6–23] (where oscillation and/or delay situations take
part in models from mathematical biology and physics when their formulation includes
cross-diffusion terms) and the references cited therein.

Thus, many scholars were concerned about the second-order equation with positive
and negative coefficients. In [24], Lin et al. studied the following equation:
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[a(x)(y(x) + p(x)y(x− τ))′]′ + q(x)G(y(x− δ))− r(x)H(y(x− σ)) = 0, (1)

where x ≥ x0, τ ∈ (0, ∞), δ, σ ∈ [0, ∞), p, q, r ∈ C([x0, ∞),<) and G, H ∈ C(<,<), and
a(x), p(x), q(x), r(x), G(x) and H(x) satisfy some of the following assumptions.

Assumption 1 (c1). G and H satisfy local Lipschitz condition, and uG(u) > 0, uH(u) > 0 for
u 6= 0.

Assumption 2 (c2). a(x) > 0, q(x), r(x) ≥ 0,
∫ ∞ A(x)q(x)dx < ∞,

∫ ∞ A(x)r(x)dx < ∞,
where A(x) =

∫ x
x0

1
a(s)ds.

Assumption 3 (c3). mq(x)− r(x) is eventually non-negative for every m > 0.

Assumption 4 (c4). |p(x)| ≤ p0 < 1
2 eventually.

Assumption 5 (c5). p(x) ≥ 0 eventually, and 0 < p1 < 1; p(x) ≤ 0 eventually, and −1 <
p2 < 0, where p1 = lim sup

x→∞
p(x), p2 = lim inf

x→∞
p(x).

Assumption 6 (c6). p(x) > 1 eventually, and 1 < p2 < p1 < p2
2 < +∞; p(x) < −1

eventually, and −∞ < p2 < p1 < −1, where p1 and p2 are the same as that in (c5).

By using the contraction mapping principle, they obtained the existence of nonoscilla-
tory solutions of (1) when (c1)–(c3), (c4) (or (c1)–(c3), (c5) or (c1)–(c3) and (c6)) hold.

In [25], Zhang et al. extended the results of [24] to the case p(x) = 1 and indicated
that the condition (c3) is redundant.

When a(x) ≡ 1, we extend the number of neutral terms and positive and negative
coefficient terms from single to multiple, and then we obtain the following equation:[

y(x) + η
l

∑
i=1

pi(x)y(x− τi)

]′′
+

m

∑
j=1

qj(x)G(y(x− δj))−
n

∑
k=1

rk(x)H(y(x− σk)) = 0, (2)

where x ≥ x0, η = ±1, l, m, n ∈ N, pi(x) (i = 1, · · · , l) ∈ C2([x0, ∞),<), qj(x) (j =
1, · · · , m) and rk(x) (k = 1, · · · , n) ∈ C([x0, ∞),<), G, H ∈ C([x0, ∞),<) and G(v) =
H(v) = 0 for v = 0.

When we consider (2), some of the following five assumptions are satisfied.

Assumption 7 (H1). 0 < h1 ≤ qj(x) ≤ h2, j = 1, 2, · · · , m;

Assumption 8 (H2). Set the following values:

A := {y ∈ X : M2 ≤ y(x) ≤ M1, x ≥ x0},

where X denotes the set which includes all continuous and bounded functions on [x0, ∞) with the
sup norm, M1 > 1 and M2 > 0. Let G and H satisfy Lipschitz conditions in A; that is, for any
y1, y2 ∈ A, there exist L1, L2 > 0 such that the following is the case.

|G(y1)− G(y2)| ≤ L1|y1 − y2|,

|H(y1)− H(y2)| ≤ L2|y1 − y2|;

Assumption 9 (H3). 0 < m1 ≤ G(u)
u ≤ m2 and 0 < N1 ≤ H(u)

u ≤ N2 for u 6= 0.

Assumption 10 (H4). ∑n
k=1
∫ +∞

x0
xrk(x)dx < ∞.

Assumption 11 (H5). ∑m
j=1
∫ +∞

x0
xqj(x)dx < ∞.



Axioms 2022, 11, 281 3 of 11

Let κ := max{τ1, τ2, · · · , τl , δ1, δ2, · · · , δm, σ1, σ2, · · · , σn}.

Definition 1. A function y is called a solution of (2) on the interval I = [x0, ∞), if y is continuous,
y(x) + η ∑l

i=1 pi(x)y(x− τi) is continuously differentiable and y satisfies (2) on x ∈ I.

We only consider the nontrivial solution of (2), which satisfies sup{|y(x)| : x ≥ X} > 0
for all X ≥ x0.

Definition 2. A nontrivial solution of (2) is nonoscillatory if it is eventually positive or eventually
negative. Otherwise, it is oscillatory.

Motivated by the useful work of Lin et al. and Zhang et al., in this paper, we obtain
some new conditions of the existence of nonoscillatory solutions of the Equation (2).

Recently, the scholars ([26–33]) investigated the oscillatory properties of Equations (1)
and (2). When a(x) ≡ 1, in [31], Thandapani et al. obtained that every solution of (1) is
oscillatory if the following assumptions are satisfied.

Assumption 12 (B0). τ, δ and σ are nonnegative constants with δ ≥ σ ≥ τ;

Assumption 13 (B1). There exist α ≥ 1 and a positive constant M1 such that G(v)
vα ≤ M1 for

v 6= 0.

Assumption 14 (B2). There exist M2, M > 0 such that 0 ≤ H(v)
v ≤ M2 and 0 ≤ G(v)

H(v) ≤ M for
v 6= 0.

Assumption 15 (B3). p(x) is bounded.

Assumption 16 (B4).
∫ ∞

x0

∫ u
u−δ+σ r(v)dvdu < ∞.

Assumption 17 (B5). There exists a constant k such that q(x)−Mr(x− δ + σ) ≥ k > 0 for all
x ≥ x0.

In [28,29,33], the authors established some criteria that ensured that every solution
of (1) with G ≡ H is oscillatory. In particular, some authors ([26,27,32]) considered the
oscillatory and asymptotic behavior of Equation (2) with G(v) = H(v) = v.

The above research has greatly stimulated our interest. Thus, in this article, we
investigate the oscillatory behavior of the Equation (2) under some assumptions that are
different from the previous ones.

Under some new assumptions (i.e., (c3) is not needed and we replace assumption
(c2) with (H4) and (H5); (B0), (B1) and (B5) are not required and we provide assumption
(H4) instead of (B4)), we study the second-order nonlinear delay differential equation with
multiple neutral terms and positive and negative coefficients terms. Motivated by the
above research, we obtain some new conditions of the existence of nonoscillatory solution
of (2) by using the contraction mapping principle, and we obtain some criteria that ensure
the oscillation of bounded solutions of Equation (2) by utilizing the integral inequality
technique. Our results extend the research work in this field.

2. Nonoscillatory Solution
When η = 1, (2) becomes the following.[

y(x) +
l

∑
i=1

pi(x)y(x− τi)

]′′
+

m

∑
j=1

qj(x)G(y(x− δj))−
n

∑
k=1

rk(x)H(y(x− σk)) = 0, x ≥ x0. (3)

When η = −1, (2) becomes the following.
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[
y(x)−

l

∑
i=1

pi(x)y(x− τi)

]′′
+

m

∑
j=1

qj(x)G(y(x− δj))−
n

∑
k=1

rk(x)H(y(x− σk)) = 0, x ≥ x0. (4)

In this section, we investigate the existence of the nonoscillatory solution of Equa-
tions (3) and (4).

Lemma 1. Suppose (H2), (H4) and (H5) hold. If pi(x) satisfies the following:

0 <
l

∑
i=1

pi(x) ≤ p < 1, (5)

then (3) has a nonoscillatory solution.

Proof. It is easy to verify that if (H2) holds, then (H3) holds. Let L = max{L1, L2},
α1 = max{G(y) : y ∈ A} and α2 = max{H(y) : y ∈ A}. According to (H5) and (H4),
we have the following:

0 <
m

∑
j=1

∫ +∞

x0

(s− x0)qj(s)ds <
m

∑
j=1

∫ +∞

x0

sqj(s)ds < ∞ (6)

and the following is obtained.

0 <
n

∑
k=1

∫ +∞

x0

(s− x0)rk(s)ds <
n

∑
k=1

∫ +∞

x0

srk(s)ds < ∞. (7)

By (6) and (7), we obtain the following.

lim
x0→∞

m

∑
j=1

∫ +∞

x0

(s− x0)qj(s)ds = 0

lim
x0→∞

n

∑
k=1

∫ +∞

x0

(s− x0)rk(s)ds = 0.

Thus, we can choose a sufficiently large x such that the following is the case.

m

∑
j=1

∫ +∞

x
(s− x)qj(s)ds +

n

∑
k=1

∫ +∞

x
(s− x)rk(s)ds <

1− p
2L

, (8)

m

∑
j=1

∫ +∞

x
α1(s− x)qj(s)ds < 1− pM1 −M2, (9)

n

∑
k=1

∫ +∞

x
α2(s− x)rk(s)ds < M1 − 1. (10)

Set the following.

z(x) := y(x) +
l

∑
i=1

pi(x)y(x− τi), (11)

w(x) := −
m

∑
j=1

∫ +∞

x
(s− x)qj(s)G(y(s− δj))ds

u(x) :=
n

∑
k=1

∫ +∞

x
(s− x)rk(s)H(y(s− σk))ds. (12)

Define a mapping T : A→ X with the following.
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(Ty)(x) :=1−
l

∑
i=1

pi(x)y(x− τi)−
m

∑
j=1

∫ +∞

x
(s− x)qj(s)G(y(s− δj))ds

+
n

∑
k=1

∫ +∞

x
(s− x)rk(s)H(y(s− σk))ds.

Clearly, Ty is continuous. For every y ∈ A and x ≥ x1, from (10), we obtain the
following.

(Ty)(x) ≤ 1 +
n

∑
k=1

∫ +∞

x
(s− x)rk(s)H(y(s− σk))ds

≤ 1 + α2

n

∑
k=1

∫ +∞

x
(s− x)rk(s)ds ≤ M1.

From (9), we have the following.

(Ty)(x) ≥ 1− pM1 −
m

∑
j=1

∫ +∞

x
(s− x)qj(s)G(y(s− δj))ds

≥ 1− pM1 − α1

m

∑
j=1

∫ +∞

x
(s− x)qj(s)ds ≥ M2.

Thus, TA ⊂ A. We claim that T is a contraction mapping on A. Indeed, for any
y1, y2 ∈ A and x ≥ x1, by (8), we have the following.

|(Ty1)(x)−(Ty2)(x)| ≤ |p(y1(x− τi)− y2(x− τi))|

+ L1

m

∑
j=1

∫ ∞

x
(s− x)qj(s)|(y1(s− δj)− y2(s− δj))|ds

+ L2

n

∑
k=1

∫ ∞

x
(s− x)rk(s)|(y1(s− σk)− y2(s− σk))|ds

≤ ‖y1 − y2‖
{

p + L

(
m

∑
j=1

∫ ∞

x
(s− x)qj(s)ds +

n

∑
k=1

∫ ∞

x
(s− x)rk(s)ds

)}

<
p + 1

2
‖y1 − y2‖.

By taking the sup norm of the above inequality, we have the following.

‖Ty1 − Ty2‖ <
p + 1

2
‖y1 − y2‖.

Because of (5), we obtain p+1
2 < 1. Refer to a similar proof of ([24], Theorem 2), and

we know that T has a fixed point y∗.

Lemma 2. If the assumptions of Lemma 1 are satisfied, then Equation (4) has a nonoscillatory
solution.

Proof. Similarly to the proof of Lemma 1, according to (H4) and (H5), we have (6), and (7)
holds. Thus, we choose a sufficiently large x such that (8) the following is the case:

m

∑
j=1

∫ +∞

x
α1(s− x)qj(s)ds < 1−M2, (13)
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and
n

∑
k=1

∫ +∞

x
α2(s− x)rk(s)ds < (1− p)M1 − 1, (14)

hold. Similarly, we define the mapping T1 : A→ X as follows.

(T1y)(x) :=1 +
l

∑
i=1

pi(x)y(x− τi)−
m

∑
j=1

∫ +∞

x
(s− x)qj(s)G(y(s− δj))ds

+
n

∑
k=1

∫ +∞

x
(s− x)rk(s)H(y(s− σk))ds.

Obviously, T1y is continuous. For any y ∈ A and x ≥ x2, by (14), we have the
following.

(T1y)(x) ≤ 1 +
l

∑
i=1

pi(x)y(x− τi) +
n

∑
k=1

∫ +∞

x
(s− x)rk(s)H(y(s− σk))ds

≤ 1 + pM1 + α2

n

∑
k=1

∫ +∞

x
(s− x)rk(s)ds ≤ M1.

By (13), we have the following.

(T1y)(x) ≥ 1−
m

∑
j=1

∫ +∞

x
(s− x)qj(s)G(y(s− δj))ds

≥ 1− α1

m

∑
j=1

∫ +∞

x
(s− x)qj(s)ds ≥ M2.

Thus, T1 A ⊂ A. Next, we prove that T1 is a contraction mapping on A. For any
y1, y2 ∈ A and x ≥ x2, by (8), we have the following.

|(T1y1)(x)−(T1y2)(x)| ≤ |p(y1(x− τi)− y2(x− τi))|

+ L1

m

∑
j=1

∫ ∞

x
(s− x)qj(s)|(y1(s− δj)− y2(s− δj))|ds

+ L2

n

∑
k=1

∫ ∞

x
(s− x)rk(s)|(y1(s− σk)− y2(s− σk))|ds

≤ ‖y1 − y2‖
{

p + L

(
m

∑
j=1

∫ ∞

x
(s− x)qj(s)ds +

n

∑
k=1

∫ ∞

x
(s− x)rk(s)ds

)}

<
p + 1

2
‖y1 − y2‖.

Refer to a similar proof of ([24], Theorem 2), we obtain that T1 has a fixed point y∗.

Theorem 1. Suppose (H2), (H4) and (H5) hold. If pi(x) satisfies (5), then (2) has a nonoscilla-
tory solution.

Proof. According to Lemmas 1 and 2, we obtain (2), which has a nonoscillatory solution.
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Example 1. Consider the following equation.[
y(x) +

1
8

y(x− 1)
]′′
− e−

x
2

(
1− 1

e−x + 2

)
y( x

2 )[y
2( x

2 ) + 2]
y2( x

2 ) + 1

− 1
8

e−
x−1

2

(
1− 2

e−x+1 + 3

)
y( x−1

2 )[y2( x−1
2 ) + 3]

y2( x−1
2 ) + 1

= 0.

(15)

Here, we have the following.

l = 1, p1(x) =
1
8

,

q(x) = 0,

n = 2, r1(x) = e−
x
2

(
1− 1

e−x + 2

)
, r2(x) =

1
8

e−
x−1

2

(
1− 2

e−x+1 + 3

)
.

It is easy to verify that p1(x) and q(x) satisfy (5) and (H5), respectively, and r1(x) and r2(x)
satisfy (H4). Therefore, by Theorem 1, y(x) = e−x is a nonoscillatory solution of (15).

Example 2. Consider the following equation:[
y(x)− 3

4
y(x− 2)

]′′
+

3
4

e−
x−2

2

(
1− 2

e−x+2 + 3

)
y( x−2

2 )[y2( x−2
2 ) + 3]

y2( x−2
2 ) + 1

− e−
x
2

(
1− 1

e−x + 2

)
y( x

2 )[y
2( x

2 ) + 2]
y2( x

2 ) + 1
= 0,

(16)

and we have the following.

l = 1, p1(x) =
3
4

,

m = 1, q1(x) =
3
4

e−
x−2

2

(
1− 2

e−x+2 + 3

)
,

n = 1, r1(x) = e−
x
2

(
1− 1

e−x + 2

)
.

It is easily verified that p1(x), q1(x) and r1(x) satisfy (5), (H5) and (H4), respectively.
By Theorem 1, (16) has a nonoscillatory y(x) = e−x.

3. Oscillatory Criteria

In this section, the oscillation criteria of (2) will be given, and some examples will be
illustrated to demonstrate the results.

Lemma 3. Suppose that (H1), (H3) and (H4) hold and pi(x) ∈ C([x0, ∞),<+) is bounded. If the
bounded solution y(x) of (3) satisfies lim

x→∞
y(x) 6= 0, then y(x) is oscillatory.

Proof. Suppose toward a contradiction, there is no loss of generality in assuming that y is
an eventually a positive-bounded solution of (3). Thus, there exists x1 ≥ x0 + κ such that
y(x− κ) > 0 for x ≥ x1. Furthermore, there exists K > 0 such that y(x) ≤ K for x ≥ x1.
From (7), we may choose a sufficiently large x > x2 ≥ x1 + κ, such that the following is the
case.

n

∑
k=1

∫ +∞

x
(s− x)rk(s)ds <

1
2N2

. (17)

Let the following be the case:

w(x) = z(x)− u(x), (18)
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where z(x) and u(x) are defined in (11) and (12), respectively. Then, we have the following.

w′′(x) = −
m

∑
j=1

qj(x)G(y(x− δj)). (19)

From (H1) and (H3), we obtain w′′(x) < 0. Hence, w′(x) > 0 or w′(x) < 0 for all
x ≥ x3 ≥ x2 + κ, and x3 is sufficiently large.

If w′(x) < 0 for all x ≥ x3, then the following is the case.

lim
x→∞

w(x) = −∞. (20)

According to (3), (17), (18) and (H3), we obtain the following:

w(x) ≥ −N2K
n

∑
k=1

∫ +∞

x
(s− x)rk(s)ds ≥ −K

2
> −∞,

which contradicts (20). Thus, w(x) is increasing for all x ≥ x3. From (H1), qj(x) ≥ h1,
j = 1, · · · , m for all x ≥ x3. Integrating (19) from x3 to +∞, we obtain the following.

∞ > w′(x3) ≥
m

∑
j=1

∫ +∞

x3

qj(x)G(y(x− δj))dx ≥ h1m1

m

∑
j=1

∫ +∞

x3

y(x− δj)dx.

Therefore, y ∈ L1([x3, ∞)), which contradicts lim
x→∞

y(x) 6= 0. The proof is complete.

Lemma 4. If the assumptions of Lemma 3 are satisfied and if the bounded solution y(x) of Equa-
tion (4) satisfies lim

x→∞
y(x) 6= 0, then y(x) is oscillatory.

Proof. Just as in the proof of Lemma 3, assume that y is an eventually positive-bounded
solution of (4). Since lim

x→∞
y(x) 6= 0, 0 < y(x− κ) < K for x ≥ x1 ≥ x0 + κ, where K > 0.

Define the following.

Y(x) = y(x)−
l

∑
i=1

pi(x)y(x− τi).

w1(x) = Y(x)− u(x). (21)

Then, the following is the case.

w′′1 (x) = Y′′(x)− u′′(x)

= −
m

∑
j=1

qj(x)G(y(x− δj)) < 0, x ≥ x2 ≥ x1 + κ.
(22)

Hence, w′1(x) > 0 or w′1(x) < 0 for all x ≥ x3, where x3 ≥ x2 + κ is sufficiently large.
If w′1(x) < 0 for all x ≥ x3, we have the following.

lim
x→∞

w1(x) = −∞. (23)

Because pi(x) is bounded, then we have the following:

pi(x) ≤ pi, i = 1, · · · , l,
l

∑
i=1

pi < P (24)
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where pi and P are non-negative constants. By means of (17), (21), (24) and (H3), we have
the following:

w1(x) ≥ −
[

l

∑
i=1

pi(x) + N2

n

∑
k=1

∫ +∞

x2

(s− x)rk(s)ds

]
K ≥ −

(
P +

1
2

)
K > −∞,

which contradicts (23). Hence, w1(x) is increasing for all x ≥ x3. Following the same
method as in Lemma 3, from (H1) and inequality (22), we obtain y ∈ L1([x3, ∞)), which
contradicts lim

x→∞
y(x) 6= 0. The proof is complete.

Theorem 2. Suppose that (H1), (H3) and (H4) hold and pi(x) ∈ C([x0, ∞),<+) is bounded. If
the bounded solution y(x) of (2) satisfies lim

x→∞
y(x) 6= 0, then y(x) is oscillatory.

Proof. According to Lemmas 3 and 4, we obtain that if the bounded solution y(x) of (2)
satisfies lim

x→∞
y(x) 6= 0, then y(x) is oscillatory.

Example 3. Consider the following equation.[
y(x) + y(x− 3π

2
)

]′′
+ (e−x + 1)

(
1− 1

sin2 x + 2

)
y(x− 2π)[y2(x− 2π) + 2]

y2(x− 2π) + 1

+

(
1− 1

cos2 x + 2

)
y(x− 3π

2 )[y2(x− 3π
2 ) + 2]

y2(x− 3π
2 ) + 1

− e−x
(

1− 2
sin4 x + 3

)
y(x− 2π)[y4(x− 2π) + 3]

y4(x− 2π) + 1
= 0.

(25)

Here, we have the following.
l = 1, p1(x) = 1,

m = 2, q1(x) = (e−x + 1)
(

1− 1
sin2 x + 2

)
, q2(x) =

(
1− 1

cos2 x + 2

)
,

n = 1, r1(x) = e−x
(

1− 2
sin4 x + 3

)
.

It is easy to verify that 1
2 ≤ q1(x) ≤ 4

3 , 1
2 ≤ q2(x) ≤ 2

3 and
∫ +∞

x0
(s− x)r1(s)ds < ∞.

Therefore, according to Theorem 2, we know that every bounded solution of (2) that does not tend to
zero is oscillatory. Indeed, y(x) = sin x is a bounded oscillatory solution of (25).

Example 4. Consider the following equation.[
y(x)− 1

23 y(x− π)− 1
23 y(x− 2π)

]′′
+ (e−x + 1)

(
1− 1

sin2 x + 2

)
y(x− 2π)[y2(x− 2π) + 2]

y2(x− 2π) + 1

− e−x
(

1− 2
sin4x + 3

)
y(x− 2π)[y4(x− 2π) + 3]

y4(x− 2π) + 1
= 0.

(26)

We have the following.

l = 2, p1(x) = p2(x) =
1
23 ,

m = 1, q1(x) = (e−x + 1)
(

1− 1
sin2 x + 2

)
,

n = 1, r1(x) = e−x
(

1− 2
sin4 x + 3

)
.
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It is clear that ∑2
i=1 pi(x) ≤ 1, 1

2 ≤ q1(x) ≤ 4
3 and

∫ +∞
x0

(s− x)r1(s)ds < ∞. Therefore,
according to Theorem 2, we know that every bounded solution of (2) that does not tend to zero is
oscillatory. Indeed, y(x) = sin x is a bounded oscillatory solution of (26).

4. Remark

Comparing with the results of [24–29,31–33], we increased the number of the positive
and negative coefficient terms and the neutral terms of the second-order delay differential
equation with positive and negative coefficients from single to multiple and generalized
the equation from a linear case to a nonlinear case.

Motivated by the useful work of Lin et al. and Zhang et al. ([24,25]), we provide some
new conditions under which Equation (2) has a nonoscillatory solution. More precisely,
(c3) is not needed and we replace assumption (c2) with (H4) and (H5).

For the oscillation of Equation (2), we present some assumptions that are different
from those in [31], i.e., (B0), (B1) and (B5) are not necessary and we provide assumption
(H4) instead of (B4). Compared with the studies of Malojlović et al. ([27,32]), we generalize
their work to the nonlinear situation and provide different assumptions. Firstly, we provide
condition (H4) instead of the following condition:

n

∑
i=1

∫ ∞

0

∫ s−σi

s−δi

qi(ξ)dξds < 1

in [27] or
n

∑
i=1

∫ ∞

0

∫ s−σi

s−δi

qi(ξ)dξds < pj1(x)

in [32]. Secondly, assumptions (H1) and (H2) in [27] (or (H2) and (H3) in [32]) are not needed,
which means that there is no relationship between the positive and negative coefficients.

We obtain not only the oscillation criteria but also the existence of the nonoscillation
solution of (2); thus, our results are an extension of theirs.
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