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Abstract: The Hosoya index m(G) and the Merrifield–Simmons index i(G) of a graph G are the
number of matchings and the number of independent sets in G. In this paper, we establish exact
formulas for the expected value of the Hosoya index and Merrifield–Simmons index of the random
cyclooctylene chains, which are graphs of a chemical chain consisting of n octagons, each of which is
connected to the end of the previous octagon by an edge. In addition, we obtain the expected values
and the average values of the two indexes through the relevant chemical diagrams and a series of
accurate formulas with respect to the set of all cyclooctylene chains with n octagons.
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1. Introduction

Cyclooctylene and its derivatives have attracted the attention of chemists for many years,
and have extensive industrial applications [1–4]. Cyclooctylene is an organic compound, fully
known as “1, 3, 5, 7-cyclooctylene”, which is a completely unsaturated derivative of cyclooctane.
It is a colorless to golden liquid at room temperature. It belongs to cyclic polyolefin and its
structure is similar to that of benzene. Unlike benzene, cyclooctylene is not aromatic. Its chemical
properties are similar to those of unsaturated hydrocarbons [4]. It can undergo addition reaction
and is easy to hydrogenate to form cyclooctane. It is also easy to oxidize and polymerize.
There are many important compounds of cyclooctylene, which serve as precursors to many
scientifically and commercially interesting materials.

The Hosoya index was redefined by a chemist in 1971, it is a structure descriptor defined
on the basis of a molecular diagram, the chemist also showed that some of the physical and
chemical properties of the Hosoya index in chemistry are strongly related to alkanes (saturated
hydrocarbons). In a series of subsequent papers, Hosoya et al. [5–12] and others [13] also showed
that the Hosoya index is related to a variety of physicochemical properties of alkanes. A series
of other studies on this index have shown that the Hosoya index also has a wide applicability
in the theory of conjugated π-electron systems [9,14–22]. In addition, the development of the
Merrifield–Simmons index began with an unsuccessful theory in 1980—in this year, the chemists
Merrifield and Simmons elaborated a theory aimed at describing molecular structure by means
of finite-set topology, although not for the better at the time, but the topological formalism
attracted the attention of colleagues and eventually became known as the Merrifield–Simmons
index. This was the number of open sets of the finite topology, which is equal to the number of
independent sets of vertices of the graph corresponding to that topology [23], and a series of
articles [20,24–26] were published. The Hosoya index and the Merrifield–Simmons index are
very popular in the development of combinatorial chemistry, and often used in mathematical
chemistry as a typical example to demonstrate relevant conclusions. In recent years, a lot of
research has been conducted on the extremal problem for these two indices. For a survey of
results and techniques related to the Hosoya index and the Merrifield–Simmons index, see
Wagner and Gutman [27]. For recent works along these lines see Andriatiana [28], Hosoya [29],
Luthe et al. [30].
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In this paper, we are going to give a series of explicit formulas for the expected values
of the Hosoya index (i.e., the number of matchings) and the Merrifield-Simmons index (i.e.,
the number of independent sets) of a random cyclooctylene chain [31–34] and enrich the
conclusions of Huang Kuang and Deng. In addition, we reach the average values of the
two indexes with respect to the set of all cyclooctylene chains with n octagons [27,29,35].

All graphs mentioned in this paper are considered finite and simple graphs. We use
G = (V(G), E(G)) to represent a graph, then the vertex set is represented by V(G) and
the edge set is represented by E(G). According to the descriptions in these three men’s
(Guihua Huang, Meijun Kuang and Hanyuan Deng [29]) previous papers, we can know
for a vertex u ∈ V, G− u is the graph induced by V − {u}. For an edge e ∈ E, G− e is the
graph obtained from G by deleting the edge e. N(v) = {u|uv ∈ E} denotes the neighbors
of v in G, and NG[v] = {v} ∪ N(v) is the closed neighborhood of v.

The set of edges in a graph G is called a matching M such that two edges from M
have a vertex in common [36–38]. The size of a graph can be determined by the number of
edges of M. Let us denote by mk(G) the number of matchings of size k in G. Obviously,
m0(G) = 1, m1(G) = |E|. The total number of matchings in G is denoted by m(G) =

∑k>0 mk(G). A set S ⊆ V of vertices of G is an independent set in G if no two vertices of
S are adjacent. ik(G) denotes the number of independent sets in G with k vertices. Clearly,
i0(G) = 1 and i1(G) = |V|. The total number of independent sets in G is denoted by
i(G) = ∑k>0 ik(G). In chemical literature, the Hosoya index and the Merrifield–Simmons index
are usually represented by m(G) and i(G) [39,40].

The following results belong to the mathematical folklore and will be used in the
computations:

(i) Gutman and Polansky [41]: If uv is an edge of G, then

m(G) = m(G− uv) + m(G− {u, v}). (1)

(ii) Gutman and Polansky [41]: If v is a vertex of G, then

i(G) = i(G− v) + i(G− NG(v)). (2)

(iii) Gutman and Polansky [41]: If G is a graph with components G1, G2, · · · , Gk, then

m(G) =
k

∏
i=1

m(Gi), i(G) =
k

∏
i=1

i(Gi). (3)

(iv) m(P2) = 2, m(P3) = 3, m(P4) = 5, m(P5) = 8, m(P6) = 13, m(P7) = 21 and
m(C8) = 47;

(v) i(P1) = 2, i(P2) = 3, i(P3) = 5, i(P4) = 8, i(P5) = 13, i(P6) = 21, i(P7) = 34 and
i(C8) = 47

where Pn is the path on n vertices and Cn is the cycle on n vertices.
The graph discussed in this article is a connected graph in which no edge is contained

in more than one cycle. A cyclooctylene in which no octagon has more than two cut-vertices
is called a cyclooctylene chain. Obviously, each cyclooctylene chain contains exactly two
octagons with only one cut-vertex. Those octagons are called terminal, all other octagons are
internal. The number of octagons in a given cyclooctylene chain is called its length. Additionally,
a cyclooctylene chain Gn with n octagons can be regarded as an octagonal chain Gn−1 with
n− 1 octagons to which a new terminal octagon has been adjoined by an edge, see Figure 1.

Figure 1. A cyclooctylene chain Gn with n octagons.

For n > 3, the final octagon can be joined in four manners, these connections can be
represented by the following symbols: G1

n, G2
n, G3

n, G4
n, see Figure 2.
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Figure 2. The four types of local arrangements in cyclooctylene chains.

A random cyclooctylene chain Gn(p1, p2, p3) with n octagons, it is formed by continuing
to join the octagons at the end of the last octagon in a cyclooctylene chain. At each step
k(= 3, 4, · · · , n), there are four different possible ways to connect, as shown below:

Gk−1 −→ G1
k with probability p1;

Gk−1 −→ G2
k with probability p2;

Gk−1 −→ G3
k with probability p3.

Gk−1 −→ G4
k with probability p4 = 1− p1 − p2 − p3

where the probabilities p1, p2, p3 are constants, irrelative to the step parameter k.
Specially, Gn is the ortho-chain On, the meta-chain M′n M′′n and the para-chain Ln for

p1 = 1, p2 = 1, p3 = 1 and p4 = 1, respectively.

2. The Expected Value of the Hosoya Index of a Random Cyclooctylene Chain

According to the description in the previous section, the octagonal chain Gn(p1, p2, p3) is
obtained at random by attaching Gn−1, a new terminal octagon from one of the four possible con-
structions. This connection method is called a zeroth-order Markov Process. For Gn(p1, p2, p3),
the Hosoya index is a random variable. In the second argument section, we are going to obtain a
simple exact formula of its expected value E(m(Gn(p1, p2, p3))). There are four types of auxiliary
random graphs Ak, Bk, Ck and Dk, where Ak ∈ {A1

k , A2
k , A3

k , A4
k}, Bk ∈ {B1

k , B2
k , B3

k , B4
k}, Ck ∈

{C1
k , C2

k , C3
k , C4

k} and Dk ∈ {D1
k , D2

k , D3
k , D4

k} shown in Figure 3.

(I) If Gn = G1
n in Figure 2, then by Equations (1) and (3),

(i) If An−2 = A1
n−2 in Figure 3, then by Equations (1) and (3),

m(An−2) = m(An−2 − e) + m(An−2 − {u, v}) = m(P7)m(Gn−2) + m(P6)m(An−3) = 21m(Gn−2) + 13m(An−3).

Similarly, we have:

(ii) If An−2 = A2
n−2, then

m(An−2) = m(P7)m(Gn−2) + m(P6)m(Bn−3) = 21m(Gn−2) + 13m(Bn−3).

(iii) If An−2 = A3
n−2, then

m(An−2) = m(P7)m(Gn−2) + m(P6)m(Cn−3) = 21m(Gn−2) + 13m(Cn−3).

(iv) If An−2 = A4
n−2, then

m(An−2) = m(P7)m(Gn−2) + m(P6)m(Dn−3) = 21m(Gn−2) + 13m(Dn−3).

(II) If Gn = G2
n in Figure 2, then by Equations (1) and (3),
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m(Gn) = m(Gn − e) + m(Gn − {u, v}) = m(C8)m(Gn−1) + m(P7)m(Bn−2) = 47m(Gn−1) + 21m(Bn−2).

(i) If Bn−2 = B1
n−2 in Figure 3, then by Equations (1) and (3),

m(Bn−2) = m(Bn−2 − e) + m(Bn−2 − {u, v}) = m(P7)m(Gn−2) + m(P5)m(An−3) = 21m(Gn−2) + 8m(An−3).

Figure 3. The four types of auxiliary graphs.

Similarly, we have:

(ii) If Bn−2 = B2
n−2, then

m(Bn−2) = m(P7)m(Gn−2) + m(P5)m(Bn−3) = 21m(Gn−2) + 8m(Bn−3).

(iii) If Bn−2 = B3
n−2, then

m(Bn−2) = m(P7)m(Gn−2) + m(P5)m(Cn−3) = 21m(Gn−2) + 8m(Cn−3).

(iv) If Bn−2 = B4
n−2, then

m(Bn−2) = m(P7)m(Gn−2) + m(P5)m(Dn−3) = 21m(Gn−2) + 8m(Dn−3).

(III) If Gn = G3
n in Figure 2, then by Equations (1) and (3),

m(Gn) = m(Gn − e) + m(Gn − {u, v}) = m(C8)m(Gn−1) + m(P7)m(Cn−2) = 47m(Gn−1) + 21m(Cn−2).

(i) If Cn−2 = C1
n−2 in Figure 3, then by Equations (1) and (3),

m(Cn−2) = m(Cn−2 − e) + m(Cn−2 − {u, v}) = m(P7)m(Gn−2) + m(P2)m(P4)m(An−3) = 21m(Gn−2) + 10m(An−3).

Similarly, we have:

(ii) If Cn−2 = C2
n−2, then

m(Cn−2) = m(P7)m(Gn−2) + m(P2)m(P4)m(Bn−3) = 21m(Gn−2) + 10m(Bn−3).

(iii) If Cn−2 = C3
n−2, then
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m(Cn−2) = m(P7)m(Gn−2) + m(P2)m(P4)m(Cn−3) = 21m(Gn−2) + 10m(Cn−3).

(iv) If Cn−2 = C4
n−2, then

m(Cn−2) = m(P7)m(Gn−2) + m(P2)m(P4)m(Dn−3) = 21m(Gn−2) + 10m(Dn−3).

(IV) If Gn = G4
n in Figure 2, then by Equations (1) and (3),

m(Gn) = m(Gn − e) + m(Gn − {u, v}) = m(C8)m(Gn−1) + m(P7)m(Dn−2) = 47m(Gn−1) + 21m(Dn−2).

(i) If Dn−2 = D1
n−2 in Figure 3, then by Equations (1) and (3),

m(Dn−2) = m(Dn−2 − e) + m(Dn−2 − {u, v}) = m(P7)m(Gn−2) + m(P3)m(P3)m(An−3) = 21m(Gn−2) + 9m(An−3).

Similarly, we have:

(ii) If Dn−2 = D2
n−2, then

m(Dn−2) = m(P7)m(Gn−2) + m(P3)m(P3)m(Bn−3) = 21m(Gn−2) + 9m(Bn−3).

(iii) If Dn−2 = D3
n−2, then

m(Dn−2) = m(P7)m(Gn−2) + m(P3)m(P3)m(Cn−3) = 21m(Gn−2) + 9m(Cn−3).

(iv) If Dn−2 = D4
n−2, then

m(Dn−2) = m(P7)m(Gn−2) + m(P3)m(P3)m(Dn−3) = 21m(Gn−2) + 9m(Dn−3).

Note that p1 + p2 + p3 + p4 = 1, using the formulas in (I) to (IV), we can obtain the
expected value E(m(Gn)) o f m(Gn).

E(m(Gn)) = p1E(m(G1
n)) + p2E(m(G2

n)) + p3E(m(G3
n)) + p4E(m(G4

n)). Then,

E(m(G1
n)) = 47E(m(Gn−1)) + 21E(m(An−2))

= 47E(m(Gn−1)) + 21[21p1E(m(Gn−2)) + 13p1E(m(An−3))
+21p2E(m(Gn−2)) + 13p2E(m(Bn−3)) + 21p3E(m(Gn−2))
+13p3E(m(Cn−3)) + 21p4E(m(Gn−2)) + 13p4E(m(Dn−3))]

= 47E(m(Gn−1)) + 441E(m(Gn−2)) + 273p1E(m(An−3))
+273p2E(m(Bn−3)) + 273p3E(m(Cn−3)) + 273p4E(m(Dn−3)).

E(m(G2
n)) = 47E(m(Gn−1)) + 21E(m(Bn−2))

= 47E(m(Gn−1)) + 21[21p1E(m(Gn−2)) + 8p1E(m(An−3))
+21p2E(m(Gn−2)) + 8p2E(m(Bn−3)) + 21p3E(m(Gn−2))
+8p3E(m(Cn−3)) + 21p4E(m(Gn−2)) + 8p4E(m(Dn−3))]

= 47E(m(Gn−1)) + 441E(m(Gn−2)) + 168p1E(m(An−3))
+168p2E(m(Bn−3)) + 168p3E(m(Cn−3)) + 168p4E(m(Dn−3)).

E(m(G3
n)) = 47E(m(Gn−1)) + 21E(m(Cn−2))

a + 21p2E(m(Gn−2)) + 10p2E(m(Bn−3)) + 21p3E(m(Gn−2))
+10p3E(m(Cn−3)) + 21p4E(m(Gn−2)) + 10p4E(m(Dn−3))]

= 47E(m(Gn−1)) + 441E(m(Gn−2)) + 210p1E(m(An−3))
+210p2E(m(Bn−3)) + 210p3E(m(Cn−3)) + 210p4E(m(Dn−3)).

E(m(G4
n)) = 47E(m(Gn−1)) + 21E(m(Dn−2))

= 47E(m(Gn−1)) + 21[21p1E(m(Gn−2)) + 9p1E(m(An−3))
+21p2E(m(Gn−2)) + 9p2E(m(Bn−3)) + 21p3E(m(Gn−2))
+9p3E(m(Cn−3)) + 21p4E(m(Gn−2)) + 9p4E(m(Dn−3))]

= 47E(m(Gn−1)) + 441E(m(Gn−2)) + 189p1E(m(An−3))
+189p2E(m(Bn−3)) + 189p3E(m(Cn−3)) + 189p4E(m(Dn−3)).

E(m(Gn)) = 47E(m(Gn−1)) + 441E(m(Gn−2))
+(273p2

1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(An−3))
+(273p1 p2 + 168p2

2 + 210p2 p3 + 189p2 p4)E(m(Bn−3))
+(273p1 p3 + 168p2 p3 + 210p2

3 + 189p3 p4)E(m(Cn−3))
+(273p1 p4 + 168p2 p4 + 210p3 p4 + 189p2

4)E(m(Dn−3)).

(4)
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Similarly, we can obtain the expected values E(m(An−3)) of m(An−3),
E(m(Bn−3)) of m(Bn−3), E(m(Cn−3)) of m(Cn−3) and E(m(Dn−3)) of m(Dn−3),

E(m(An−3)) = p1E(m(A1
n−3)) + p2E(m(A2

n−3)) + p3E(m(A3
n−3)) + p4E(m(A4

n−3))
= 21p1E(m(Gn−3)) + 13p1E(m(An−4)) + 21p2E(m(Gn−3)) + 13p2E(m(Bn−4))

+21p3E(m(Gn−3)) + 13p3E(m(Cn−4)) + 21p4E(m(Gn−3)) + 13p4E(m(Dn−4))
= 21E(m(Gn−3)) + 13p1E(m(An−4)) + 13p2E(m(Bn−4)) + 13p3E(m(Cn−4)) + 13p4E(m(Dn−4)).

(5)

E(m(Bn−3)) = p1E(m(B1
n−3)) + p2E(m(B2

n−3)) + p3E(m(B3
n−3)) + p4E(m(B4

n−3))
= 21E(m(Gn−3)) + 8p1E(m(An−4)) + 8p2E(m(Bn−4)) + 8p3E(m(Cn−4)) + 8p4E(m(Dn−4)).

(6)

E(m(Cn−3)) = p1E(m(C1
n−3)) + p2E(m(C2

n−3)) + p3E(m(C3
n−3)) + p4E(m(C4

n−3))
= 21E(m(Gn−3)) + 10p1E(m(An−4)) + 10p2E(m(Bn−4)) + 10p3E(m(Cn−4)) + 10p4E(m(Dn−4)).

(7)

E(m(Dn−3)) = p1E(m(D1
n−3)) + p2E(m(D2

n−3)) + p3E(m(D3
n−3)) + p4E(m(D4

n−3))
= 21E(m(Gn−3)) + 9p1E(m(An−4)) + 9p2E(m(Bn−4)) + 9p3E(m(Cn−4)) + 9p4E(m(Dn−4)).

(8)

From Equations (4), (5), (6), (7) and (8), respectively, we have

(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(An−3))

= 21(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(Gn−3))

+13p1(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(An−4))

+13p2(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(Bn−4))

+13p3(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(Cn−4))

+13p4(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(Dn−4))

= 21(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(Gn−3))

+13p1(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(An−4))

+13p1(273p1 p2 + 168p2
2 + 210p2 p3 + 189p2 p4)E(m(Bn−4))

+13p1(273p1 p3 + 168p2 p3 + 210p2
3 + 189p3 p4)E(m(Cn−4))

+13p1(273p1 p4 + 168p2 p4 + 210p3 p4 + 189p2
4)E(m(Dn−4))

= 21(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)E(m(Gn−3))

+13p1[E(m(Gn−1))− 47E(m(Gn−2))− 441E(m(Gn−3))].

(273p1 p2 + 168p2
2 + 210p2 p3 + 189p2 p4)E(m(Bn−3))

= 21(273p1 p2 + 168p2
2 + 210p2 p3 + 189p2 p4)E(m(Gn−3))

+8p2[E(m(Gn−1))− 47E(m(Gn−2))− 441E(m(Gn−3))].
(273p1 p3 + 168p2 p3 + 210p2

3 + 189p3 p4)E(m(Cn−3))
= 21(273p1 p3 + 168p2 p3 + 210p2

3 + 189p3 p4)E(m(Gn−3))
+10p3[E(m(Gn−1))− 47E(m(Gn−2))− 441E(m(Gn−3))].

(273p1 p4 + 168p2 p4 + 210p3 p4 + 189p2
4)E(m(Dn−3))

= 21(273p1 p4 + 168p2 p4 + 210p3 p4 + 189p2
4)E(m(Gn−3))

+9p4[E(m(Gn−1))− 47E(m(Gn−2))− 441E(m(Gn−3))].

Substituting these formulas into Equations (4), we have

E(m(Gn)) = 47E(m(Gn−1)) + 441E(m(Gn−2)) + [21(273p2
1 + 168p1 p2 + 210p1 p3 + 189p1 p4)

+21(273p1 p2 + 168p2
2 + 210p2 p3 + 189p2 p4) + 21(273p1 p3 + 168p2 p3 + 210p2

3 + 189p3 p4)
+21(273p1 p4 + 168p2 p4 + 210p3 p4 + 189p2

4)]E(m(Dn−3)) + (13p1 + 8p2 + 10p3 + 9p4)
×[E(m(Gn−1))− 47E(m(Gn−2))− 441E(m(Gn−3))]

= (4p1 − p2 + p3 + 56)E(m(Gn−1))− (188p1 − 47p2 + 47p3 − 18)E(m(Gn−2)).
(since p4 = 1− p1 − p2 − p3).

(9)

A recurrence relation for the expected value of the Hosoya index of a random cy-
clooctylene chain is obtained

E(m(Gn)) = (4p1 − p2 + p3 + 56)E(m(Gn−1))− (188p1 − 47p2 + 47p3 − 18)E(m(Gn−2)).
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The boundary condition is
E(m(G1)) = m(C8) = 47, E(m(G2)) = 3150 (According to the Figure 4).

Figure 4. Special graph.

Using the above recurrence relation and the boundary conditions, we have

Theorem 1. The expected value of the Hosoya index of a random cyclooctylene chain
Gn(p1, p2, p3) is

E(m(Gn)) =
−4p1 + p2 − p3 + 38 +

√
(4p1 − p2 + p3 − 38)2 + 1764

2
√
(4p1 − p2 + p3 − 38)2 + 1764

×(4p1 − p2 + p3 + 56 +
√
(4p1 − p2 + p3 − 38)2 + 1764

2
)n

+
4p1 − p2 + p3 − 38 +

√
(4p1 − p2 + p3 − 38)2 + 1764

2
√
(4p1 − p2 + p3 − 38)2 + 1764

×(4p1 − p2 + p3 + 56−
√
(4p1 − p2 + p3 − 38)2 + 1764

2
)n.

Let p1 = 1, p2 = 1, p3 = 1 and p1 = p2 = p3 = 0, p4 = 1, respectively, we can obtain
the Hosoya indices of the ortho-chain On, the meta-chain M′n M′′n and the para-chain Ln
from Theorem 1.

Corollary 1.

m(On) =
17 +

√
730

2
√

730
× (30 +

√
730)n +

−17 +
√

730
2
√

730
× (30−

√
730)n;

m(M′n) =
13 +

√
365

2
√

365
× (

55 + 3
√

365
2

)n +
−13 +

√
365

2
√

365
× (

55− 3
√

365
2

)n;

m(M′′n ) =
37 +

√
3133

2
√

3133
× (

57 +
√

3133
2

)n +
−37 +

√
3133

2
√

3133
× (

57−
√

3133
2

)n;

m(Ln) =
19 +

√
802

2
√

802
× (28 +

√
802)n +

−19 +
√

802
2
√

802
× (28−

√
802)n.

3. The Expected Value of the Merrifield–Simmons Index of a Random
Cyclooctylene Chain

In this section, we will present a simple exact formula of its expected value E(i(Gn(p1, p2, p3))).

(I) If Gn = G1
n in Figure 2, then by Equations (2) and (3),

i(Gn) = i(Gn − v) + i(Gn − N[v]) = i(P7)i(Gn−1) + i(P5)i(An−2) = 34i(Gn−1) + 13i(An−2).

(i) If An−2 = A1
n−2 in Figure 3, then by Equations (2) and (3),

i(An−2) = i(P6)i(Gn−2) + i(P5)i(An−3) = 21i(Gn−2) + 13i(An−3).

Similarly, we have:

(ii) If An−2 = A2
n−2, then

i(An−2) = i(P6)i(Gn−2) + i(P5)i(Bn−3) = 21i(Gn−2) + 13i(Bn−3).
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(iii) If An−2 = A3
n−2, then

i(An−2) = i(P6)i(Gn−2) + i(P5)i(Cn−3) = 21i(Gn−2) + 13i(Cn−3).

(iv) If An−2 = A4
n−2, then

i(An−2) = i(P6)i(Gn−2) + i(P5)i(Dn−3) = 21i(Gn−2) + 13i(Dn−3).

(II) If Gn = G2
n in Figure 2, then by Equations (2) and (3),

i(Gn) = i(Gn− v)+ i(Gn−N[v]) = i(P7)i(Gn−1)+ i(P5)i(Bn−2) = 34i(Gn−1)+ 13i(Bn−2).

(i) If Bn−2 = B1
n−2 in Figure 3, then by Equations (2) and (3),

i(Bn−2) = i(P1)i(P5)i(Gn−2) + i(P4)i(An−3) = 26i(Gn−2) + 8i(An−3).

Similarly, we have:

(ii) If Bn−2 = B2
n−2, then

i(Bn−2) = i(P1)i(P5)i(Gn−2) + i(P4)i(Bn−3) = 26i(Gn−2) + 8i(Bn−3).

(iii) If Bn−2 = B3
n−2, then

i(Bn−2) = i(P1)i(P5)i(Gn−2) + i(P4)i(Cn−3) = 26i(Gn−2) + 8i(Cn−3).

(iv) If Bn−2 = B4
n−2, then

i(Bn−2) = i(P1)i(P5)i(Gn−2) + i(P4)i(Dn−3) = 26i(Gn−2) + 8i(Dn−3).

(III) If Gn = G3
n in Figure 2, then by Equations (1.2) and (1.3),

i(Gn) = i(Gn− v)+ i(Gn−N[v]) = i(P7)i(Gn−1)+ i(P5)i(Cn−2) = 34i(Gn−1)+ 13i(Cn−2).

(i) If Cn−2 = C1
n−2 in Figure 3, then by Equations (2) and (3),

i(Cn−2) = i(P2)i(P4)i(Gn−2) + i(P1)i(P3)i(An−3) = 24i(Gn−2) + 10i(An−3).

Similarly, we have:

(ii) If Cn−2 = C2
n−2, then

i(Cn−2) = i(P2)i(P4)i(Gn−2) + i(P1)i(P3)i(Bn−3) = 24i(Gn−2) + 10i(Bn−3).

(iii) If Cn−2 = C3
n−2, then

i(Cn−2) = i(P2)i(P4)i(Gn−2) + i(P1)i(P3)i(Cn−3) = 24i(Gn−2) + 10i(Cn−3).

(iv) If Cn−2 = C4
n−2, then

i(Cn−2) = i(P2)i(P4)i(Gn−2) + i(P1)i(P3)i(Dn−3) = 24i(Gn−2) + 10i(Dn−3).

(IV) If Gn = G4
n in Figure 2, then by Equations (2) and (3),

i(Gn) = i(Gn − v) + i(Gn − N[v]) = i(P7)i(Gn−1) + i(P5)i(Dn−2) = 34i(Gn−1) + 13i(Dn−2).

(i) If Dn−2 = D1
n−2 in Figure 3, then by Equations (2) and (3),

i(Dn−2) = i(P3)i(P3)i(Gn−2) + i(P2)i(P2)i(An−3) = 25i(Gn−2) + 9i(An−3).

Similarly, we have:

(ii) If Dn−2 = D2
n−2, then

i(Dn−2) = i(P3)i(P3)i(Gn−2) + i(P2)i(P2)i(Bn−3) = 25i(Gn−2) + 9i(Bn−3).

(iii) If Dn−2 = D3
n−2, then

i(Dn−2) = i(P3)i(P3)i(Gn−2) + i(P2)i(P2)i(Cn−3) = 25i(Gn−2) + 9i(Cn−3).

(iv) If Dn−2 = D4
n−2, then

i(Dn−2) = i(P3)i(P3)i(Gn−2) + i(P2)i(P2)i(Dn−3) = 25i(Gn−2) + 9i(Dn−3).

Note that p1 + p2 + p3 + p4 = 1, using the formulas in (I) to (IV), we can get the
expected value E(i(Gn)) o f i(Gn).
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E(i(Gn)) = p1E(i(G1
n)) + p2E(i(G2

n)) + p3E(i(G3
n)) + p4E(i(G4

n)). Then,

E(i(G1
n)) = 34E(i(Gn−1)) + 13[21p1E(i(Gn−2)) + 13p1E(i(An−3))

+21p2E(i(Gn−2)) + 13p2E(i(Bn−3)) + 21p3E(i(Gn−2))
+13p3E(i(Cn−3)) + 21p4E(i(Gn−2)) + 13p4E(i(Dn−3))]

= 34E(i(Gn−1)) + 273E(i(Gn−2)) + 169p1E(i(An−3))
+169p2E(i(Bn−3)) + 169p3E(i(Cn−3)) + 169p4E(i(Dn−3)).

E(i(G2
n)) = 34E(i(Gn−1)) + 13[26p1E(i(Gn−2)) + 8p1E(i(An−3))

+26p2E(i(Gn−2)) + 8p2E(i(Bn−3)) + 26p3E(i(Gn−2))
+8p3E(i(Cn−3)) + 26p4E(i(Gn−2)) + 8p4E(i(Dn−3))]

= 34E(i(Gn−1)) + 338E(i(Gn−2)) + 104p1E(i(An−3))
+104p2E(i(Bn−3)) + 104p3E(i(Cn−3)) + 104p4E(i(Dn−3)).

E(i(G3
n)) = 34E(i(Gn−1)) + 13[24p1E(i(Gn−2)) + 10p1E(i(An−3))

+24p2E(i(Gn−2)) + 10p2E(i(Bn−3)) + 24p3E(i(Gn−2))
+10p3E(i(Cn−3)) + 24p4E(i(Gn−2)) + 10p4E(i(Dn−3))]

= 34E(i(Gn−1)) + 312E(i(Gn−2)) + 130p1E(i(An−3))
+130p2E(i(Bn−3)) + 130p3E(i(Cn−3)) + 130p4E(i(Dn−3)).

E(i(G4
n)) = 34E(i(Gn−1)) + 13[25p1E(i(Gn−2)) + 9p1E(i(An−3))

+25p2E(i(Gn−2)) + 9p2E(i(Bn−3)) + 25p3E(i(Gn−2))
+9p3E(i(Cn−3)) + 25p4E(i(Gn−2)) + 9p4E(i(Dn−3))]

= 34E(i(Gn−1)) + 325E(i(Gn−2)) + 117p1E(i(An−3))
+117p2E(i(Bn−3)) + 117p3E(i(Cn−3)) + 117p4E(i(Dn−3)).

E(i(Gn)) = 34E(i(Gn−1)) + (273p1 + 338p2 + 312p3 + 325p4)E(i(Gn−2))
+(169p2

1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(An−3))
+(169p1 p2 + 104p2

2 + 130p2 p3 + 117p2 p4)E(i(Bn−3))
+(169p1 p3 + 104p2 p3 + 130p2

3 + 117p3 p4)E(i(Cn−3))
+(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2

4)E(i(Dn−3)).

(10)

Similarly, we can obtain the expected values E(i(An−3)) of i(An−3), E(i(Bn−3)) of
i(Bn−3), E(i(Cn−3)) of i(Cn−3) and E(i(Dn−3)) of i(Dn−3),

E(i(An−3)) = p1E(i(A1
n−3)) + p2E(i(A2

n−3)) + p3E(i(A3
n−3)) + p4E(i(A4

n−3))
= p1[21E(i(Gn−3)) + 13E(i(An−4))] + p2[21E(i(Gn−3)) + 13E(i(Bn−4))]

+p3[21E(i(Gn−3)) + 13E(i(Cn−4))] + p4[21E(i(Gn−3)) + 13E(i(Dn−4))]
= 21E(i(Gn−3)) + 13p1E(i(An−4)) + 13p2E(i(Bn−4)) + 13p3E(i(Cn−4)) + 13p4E(i(Dn−4)).

(11)

E(i(Bn−3)) = p1E(i(B1
n−3)) + p2E(i(B2

n−3)) + p3E(i(B3
n−3)) + p4E(i(B4

n−3))
= p1[26E(i(Gn−3)) + 8E(i(An−4))] + p2[26E(i(Gn−3)) + 8E(i(Bn−4))]

+p3[26E(i(Gn−3)) + 8E(i(Cn−4))] + p4[26E(i(Gn−3)) + 8E(i(Dn−4))]
= 26E(i(Gn−3)) + 8p1E(i(An−4)) + 8p2E(i(Bn−4)) + 8p3E(i(Cn−4)) + 8p4E(i(Dn−4)).

(12)

E(i(Cn−3)) = p1E(i(C1
n−3)) + p2E(i(C2

n−3)) + p3E(i(C3
n−3)) + p4E(i(C4

n−3))
= p1[24E(i(Gn−3)) + 10E(i(An−4))] + p2[24E(i(Gn−3)) + 10E(i(Bn−4))]

+p3[24E(i(Gn−3)) + 10E(i(Cn−4))] + p4[24E(i(Gn−3)) + 10E(i(Dn−4))]
= 24E(i(Gn−3)) + 10p1E(i(An−4)) + 10p2E(i(Bn−4)) + 10p3E(i(Cn−4)) + 10p4E(i(Dn−4)).

(13)

E(i(Dn−3)) = p1E(i(D1
n−3)) + p2E(i(D2

n−3)) + p3E(i(D3
n−3)) + p4E(i(D4

n−3))
= p1[25E(i(Gn−3)) + 9E(i(An−4))] + p2[25E(i(Gn−3)) + 9E(i(Bn−4))]

+p3[25E(i(Gn−3)) + 9E(i(Cn−4))] + p4[25E(i(Gn−3)) + 9E(i(Dn−4))]
= 25E(i(Gn−3)) + 9p1E(i(An−4)) + 9p2E(i(Bn−4)) + 9p3E(i(Cn−4)) + 9p4E(i(Dn−4)).

(14)
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From Equations (10), (11), (12), (13) and (14), respectively, we have

(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(An−3))

= 21(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(Gn−3))

+13p1(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(An−4))

+13p2(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(Bn−4))

+13p3(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(Cn−4))

+13p4(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(Dn−4))

= 21(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(Gn−3))

+13p1(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(An−4))

+13p1(169p1 p2 + 104p2
2 + 130p2 p3 + 117p2 p4)E(i(Bn−4))

+13p1(169p1 p3 + 104p2 p3 + 130p2
3 + 117p3 p4)E(i(Cn−4))

+13p1(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2
4)E(i(Dn−4)).

Similarly,

(169p1 p2 + 104p2
2 + 130p2 p3 + 117p2 p4)E(i(Bn−3))

= 26(169p1 p2 + 104p2
2 + 130p2 p3 + 117p2 p4)E(i(Gn−3))

+8p2(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(An−4))

+8p2(169p1 p2 + 104p2
2 + 130p2 p3 + 117p2 p4)E(i(Bn−4))

+8p2(169p1 p3 + 104p2 p3 + 130p2
3 + 117p3 p4)E(i(Cn−4))

+8p2(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2
4)E(i(Dn−4)).

(169p1 p3 + 104p2 p3 + 130p2
3 + 117p3 p4)E(i(Cn−3))

= 24(169p1 p3 + 104p2 p3 + 130p2
3 + 117p3 p4)E(i(Gn−3))

+10p3(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(An−4))

+10p3(169p1 p2 + 104p2
2 + 130p2 p3 + 117p2 p4)E(i(Bn−4))

+10p3(169p1 p3 + 104p2 p3 + 130p2
3 + 117p3 p4)E(i(Cn−4))

+10p3(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2
4)E(i(Dn−4)).

(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2
4)E(i(Dn−3))

= 25(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2
4)E(i(Gn−3))

+9p4(169p2
1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(An−4))

+9p4(169p1 p2 + 104p2
2 + 130p2 p3 + 117p2 p4)E(i(Bn−4))

+9p4(169p1 p3 + 104p2 p3 + 130p2
3 + 117p3 p4)E(i(Cn−4))

+9p4(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2
4)E(i(Dn−4)).

Substituting these formulas into Equations (10), we have

E(i(Gn)) = 34E(i(Gn−1)) + (273p1 + 338p2 + 312p3 + 325p4)E(i(Gn−2))
+[21(169p2

1 + 104p1 p2 + 130p1 p3 + 117p1 p4)
+26(169p1 p2 + 104p2

2 + 130p2 p3 + 117p2 p4)
+24(169p1 p3 + 104p2 p3 + 130p2

3 + 117p3 p4)
+25(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2

4)]E(i(Dn−3))
+(13p1 + 8p2 + 10p3 + 9p4)[(169p2

1 + 104p1 p2 + 130p1 p3 + 117p1 p4)E(i(An−4))
+(169p1 p2 + 104p2

2 + 130p2 p3 + 117p2 p4)E(i(Bn−4))
+(169p1 p3 + 104p2 p3 + 130p2

3 + 117p3 p4)E(i(Cn−4))
+(169p1 p4 + 104p2 p4 + 130p3 p4 + 117p2

4)E(i(Dn−4))]
= (13p1 + 8p2 + 10p3 + 9p4 + 34)E(i(Gn−1))− (169p1 − 66p2 + 28p3 − 19p4)E(i(Gn−2))
= (4p1 − p2 + p3 + 43)E(i(Gn−1))− (188p1 − 47p2 + 47p3 − 19)E(i(Gn−2)).

(since p4 = 1− p1 − p2 − p3).

A recurrence relation for the expected value of the Merrifield–Simmons index of a
random cyclooctylene chain is obtained

E(i(Gn)) = (4p1 − p2 + p3 + 43)E(i(Gn−1))− (188p1 − 47p2 + 47p3 − 19)E(i(Gn−2)).
The boundary condition is
E(i(G1)) = i(C8) = 47, E(i(G2)) = 2040 (According to the Figure 4)
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Using the above recurrence relation and the boundary conditions, we have

Theorem 2. The expected value of the Merrifield–Simmons index of a random cyclooctylene chain
Gn(p1, p2, p3) is

E(i(Gn)) =
−4p1 + p2 − p3 + 51 +

√
(4p1 − p2 + p3 − 51)2 − 676

2
√
(4p1 − p2 + p3 − 51)2 − 676

×(4p1 − p2 + p3 + 43 +
√
(4p1 − p2 + p3 − 51)2 − 676

2
)n

+
4p1 − p2 + p3 − 51 +

√
(4p1 − p2 + p3 − 51)2 − 676

2
√
(4p1 − p2 + p3 − 51)2 − 676

×(4p1 − p2 + p3 + 43−
√
(4p1 − p2 + p3 − 51)2 − 676

2
)n.

Let p1 = 1, p2 = 1, p3 = 1 and p1 = p2 = p3 = 0, p4 = 1, respectively, we can obtain
the Merrifieid–Simmons indices of the ortho-chain On, the meta-chain M′n M′′n and the
para-chain Ln from Theorem 2.

Corollary 2.

i(On) =
1√

1533
[(

47 +
√

1533
2

)n+1 − (
47−

√
1533

2
)n+1];

i(M′n) =
26 +

√
507

2
√

507
× (21 +

√
507)n +

−26 +
√

507
2
√

507
× (21−

√
507)n;

i(M′′n ) =
25 + 2

√
114

4
√

114
× (22 + 2

√
114)n +

−25 + 2
√

114
4
√

114
× (22− 2

√
114)n;

i(Ln) =
51 + 5

√
77

10
√

77
× (

43 + 5
√

77
2

)n +
−51 + 5

√
77

10
√

77
× (

43− 5
√

77
2

)n.

4. The Average Value of Hosoya Index and Merrifield–Simmons Index

Let ζn be the set of all cyclooctylene chains with n octagons. The average values of the
Hosoya index and the Merrifield–Simmons index with respect to ζn are

mavr(ζn) =
1
|ζn| ∑

G∈ζn

m(G) and iavr(ζn) =
1
|ζn| ∑

G∈ζn

i(G).

In order to obtain the average values mavr(ζn) and iavr(ζn), we only need to take
p1 = p2 = p3 = p4 = 1

4 in the expected values E(m(Gn)) and E(i(Gn)). From Theorems 1
and 2, we have

Theorem 3. The average value of the Hosoya index and the Merrifield–Simmons index with respect
to ζn are

mavr(ζn) =
37 +

√
3133

2
√

3133
× (

57 +
√

3133
2

)n +
−37 +

√
3133

2
√

3133
× (

57−
√

3133
2

)n;

iavr(ζn) =
25 + 2

√
114

4
√

114
× (22 + 2

√
114)n +

−25 + 2
√

114
4
√

114
× (22− 2

√
114)n.

Surprisingly, Theorem 3. shows that the average values of the Hosoya index and the
Merrifield–Simmons index with respect to ζn are just the expected values of the Hosoya
index and the Merrifield–Simmons index of the metachain M′′n .
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5. Discussion

Previously, many people have analyzed and studied the Hosoya index m(Gn) and
Merrifield–Simmons index i(Gn), for example, similar contents to the ones in this paper
have been studied in the random polyethylene chains, that is, studying the two indexes of
connectting the hexagonal chemical chain at the end, and obtaining the index expectation of
different connection modes at the end according to the relevant known conclusions, on the
basis of obtaining the probability of different connection modes of the terminal hexagon,
the exponential problem of three different chains is further solved.

According to the relevant contents of the hexagon introduced before, in this article,
we further push down and obtain the end connected octagon. Firstly, a series of exact
formulas to push the Hosoya index and the Merrifield–Simmons index are presented,
and the two indexes of the simple graph used in the later research process are calculated.
Then, the corresponding chemical diagrams in the calculation process are depicted by
drawing software through different connection methods. Finally, different formulas and
corresponding graphs are combined to obtain the expected values of the two indexes of the
random cyclooctylene chain with n octagons; it is inferred that four different probabilities
represent different connection modes of terminal octagons, which means that there are
accurate values of the Hosoya index and the Merrifield–Simmons index of four chemical
chains, meanwhile, we also obtain the average value with respect to the set of all the
random cyclooctylene chains.

6. Concluding Remarks

There are still some limitations and problems for further study in this paper. Firstly,
for the graphs studied by Hosoya index and Merrifield–Simmons index, they are all finite
simple and directional graphs with special restriction conditions. Therefore, there are many
problems related to different graphs that have not been solved for later discussion and
study. Secondly, the exact formula given in the process of research expectation is only one
research method. There are many different ways to solve the two indices, and different
ways have different advantages and disadvantages. Finally, there are still many questions
about the different indices of different chemical chains that require further study and
characterization. This paper only presents the Hosoya index and Merrifield–Simmons
index of random cyclooctylene chains, cyclooctylene and their derivatives have attracted a
lot of attention, and their composition and structure are also being studied in the direction
of graph theory.
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37. Došlić, T.M.; ȧloy, F. Chain hexagonal cacti: Matchings and independent set. Discret. Math. 2010, 310, 1676–1690. [CrossRef]
38. Hosoya, H.; Kawasaki, K.; Mizutani, K. Topological index and thermodynamic properties. I. Empirical rules on the boiling point

of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 1972, 45, 3415–3421. [CrossRef]
39. Narumi, H. Statistico-mechanical aspect of the Hosoya index. Int. El J. Mol. Des. 2003, 2, 375–382.
40. Wagner, S.; Gutman, I. Maxima and minima of the Hosoya index and the Merrifield-Simmons index. Acta Appl. Math. 2010, 112, 323–346.

[CrossRef]
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