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Abstract: In this paper, we give a method to characterize graphs determined by their adjacency
spectrum. At first, we give two parameters Π1(G) and Π2(G), which are related to coefficients of
the characteristic polynomial of graph G. All connected graphs with Π1(G) ∈ {1, 0,−1,−2,−3}
and Π2(G) ∈ {0,−1,−2,−3} are characterized. Some interesting properties of Π1(G) and Π2(G)

are also given. We then find the necessary and sufficient conditions for two classes of graphs to be
determined by their adjacency spectrum.
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1. Introduction

All graphs considered here are finite and simple. Undefined notations and terminolo-
gies will conform to those in [1].

For a graph G with n(G) vertices and m(G) edges, V(G) and E(G) are used to
denote the vertex set and the edge set of G, respectively. For v ∈ V(G), NG(v) =
{u|u ∈ V(G), uv ∈ E(G)} and dG(v) (or simple by dv) be the degree of a vertex v in
G. Let v1, v2 ∈ V(G), set NG(v1v2) = NG(v1)

⋃
NG(v2)− {v1, v2}. If v1v2 ∈ E(G), take

dG(v1v2) = |NG(v1v2)|. Let v ∈ V(G), e ∈ E(G) and Ck, k ≥ 3 be a cycle of G, use G− v,
G− e and G− Ck to denote the graphs obtained from G by deleting the vertex v, the edge
e and all vertices of Ck, respectively. Let H be a subgraph of G, and (H)E denotes the
subgraph of G induced by the edge set E(H). Let G and H be two graph which we denote
by G ∪ H as the disjoint union of G and H and by lH the disjoint union of l copies of H.

For a graph G with n vertices, its adjacency matrix A(G) is the n× n matrix with (i, j)th
entry equaling to 1 if vertices i and j are adjacent and equaling to 0 otherwise. D(G) denotes
the degrees matrix corresponding to vertices of G on the main diagonal. The Laplacian
matrix of G is denoted by L(G), where L(G) = D(G)−A(G). The characteristic polynomial
of the adjacency matrix A(G) (respectively, Laplacian matrix L(G)) is denoted by PA(G, λ)
(respectively, PL(G, µ)). The eigenvalues of A(G) (L(G)) are also called the adjacency
(Laplacian) eigenvalues of G. Since both matrices A(G) and L(G) are real symmetric
matrices, their eigenvalues are all real numbers. We can therefore assume that λ1(G) ≥
λ2(G) ≥ · · · ≥ λn(G) and µ1(G) ≥ µ2(G) ≥ · · · µn−1 ≥ µn(G)(= 0) are adjacency
eigenvalues and the Laplacian eigenvalues of G, respectively. The multiset of eigenvalues of
A(G) and L(G) are called the adjacency spectrum and Laplacian spectrum of G, respectively.
The maximum eigenvalue of A(G) is called the index of G. Two graphs are said to be
cospectral with respect to the adjacency (respectively, Laplacian) matrix if they have the
same adjacency (respectively, Laplacian) spectrum. A graph is said to be determined
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(DS for short) by its adjacency (respectively, Laplacian) spectrum if there is no other non-
isomorphic graph with the same spectrum with respect to the adjacency (respectively,
Laplacian) matrix.

To date, numerous examples of cospectral but non-isomorphic graphs have been
reported. For example, Schwenk showed that the proportion of trees on n vertices which
are characterized by their spectra converges towards zero as n increases in [2] and Godsil
and Mckay in [3,4] gave some constructions for pairs of cospectral graphs. Recently, many
graphs with special structures have been proved to be determined by their spectrum, as
can be seen in [5–18]. The authors in [6,7,11] investigated the cospectrality of graphs up to
order 11 and gave a survey on the spectral characterizations of graphs. Some results on the
Laplacian spectral characterizations of graphs can be found in [19–21].

Here, we list some connected graphs determined by their adjacency spectrum as
following:

(i) The path with n vertices Pn and its complement, where n ≥ 2, the complete
graph Kn, the regular complete bipartite graph Km,m, the cycle Cn and their complements,
some graphs obtained by deleting some edges from Kn are determined by their adjacency
spectrum [6–8,22]. We write P = {Pn|n ≥ 2} and C = {Ct|t ≥ 3}.

(ii) Let T(l1, l2, l3) denote a tree with a vertex v of degree 3 such that T(l1, l2, l3)− v =
Pl1 ∪ Pl2 ∪ Pl3 . Then, T(l1, l2, l3) is determined by its adjacency spectrum if and only if
(l1, l2, l3) 6= (a, a, 2a− 2) for any a ≥ 1 [14,17]. Write T1 = {T(l1, l2, l3)|1 ≤ l1 ≤ l2 ≤ l3}.

(iii) A lollipop graph, denoted by Q(s1, s2), is obtained by identifying a vertex of Cs1

and a vertex of Ps2 . Then, the lollipop graph is determined by its adjacency spectrum [5,10].
(iv) All connected graphs with an index in the interval (2,

√
2 +
√

5) are determined
by their adjacency spectrum [9].

(v) The sandglass graph is obtained by appending a triangle to each pendant vertex of
a path. Then, the sandglass graph is determined by its adjacency spectrum [12].

(vi) The θ graph, denoted by θ(i, j, k), is a graph consisting of the two given vertices
joined by three paths whose order is i + 2, j + 2, and k + 2, respectively, with any two of
these paths only having the given vertices in common. The dumbbell graph, denoted by
D(a, b, c), consists of two vertex-disjoint cycles Ca, Cb and a path Pc+1 joining them having
only its end-vertices in common with the cycles. An ∞-graph B(r, s) is a graph consisting
of two cycles Cr and Cs with just a vertex in common. The authors in [15,16,23–25] gave
some DS-graphs among θ-graphs and all DS-graphs of the dumbbell graphs and ∞-graphs.
In [26], the authors proved the θ-graphs without C4 as its subgraphs are DS.

In this paper, we give two parameters Π1(G) and Π2(G) related to the characteris-
tic polynomial of G. Some properties of Π1(G) and Π2(G) were obtained in Section 3.
We characterized all connected graphs with Π1(G) ∈ {1, 0,−1,−2,−3} and Π2(G) ∈
{0,−1,−2,−3}. From Section 3, one can see that Π2(G) ∈ {0,−1,−2} for all graphs G
in (i)–(vi) as shown above, except for Kn, Km,m, Pn and Cn. By applying the results of the
parameters Π1(G) and Π2(G) in Section 4, we give the necessary and sufficient conditions
for two classes of graphs to be DS with respect to their adjacency spectrum. We also give a
method to characterize the graphs determined by their adjacency spectrum in Section 4.
Section 5 gives a summary.

2. Some Lemmas

For a graph G, let PA(G, λ) =
n
∑

k=0
bk(G)λn−k be the characteristic polynomial of G. In

this section, we give some basic lemmas.

Lemma 1 ([27]). Let G be a graph with k components G1, G2, · · · , Gk. Then

PA(G, λ) =
k

∏
i=1

PA(Gi, λ).
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Lemma 2 ([27]). Let G be a graph with the vertex v and the edge e. Denote by C(v)(C(e)) the set
of all cycles in G containing a vertex v (respectively, the edge e = uv). We then have

(1) PA(G, λ) = λPA(G− v, λ)− ∑
u∼v

PA(G− {u, v}, λ)− 2 ∑C∈C(v) PA(G−V(C), λ).

(2) PA(G, λ) = PA(G− uv, λ)− PA(G− {u, v}, λ)− 2 ∑C∈C(e) PA(G−V(C), λ).

The Sachs graphs of G is the graph with its component being either K2 or a cycle.

Lemma 3 ([27]). Let G be a graph on n vertices. Then

bi(G) = ∑
U∈Ui

(−1)k(U)2c(U),

where Ui denotes the set of the Sachs graphs of G with i vertices, k(U) is the number of components
of U and c(U) is the number of cycles contained in U.

Let G be a graph with n vertices and m edges. We denote by NG(2, 2) the number of
subgraphs 2K2 and by NG(2, 2, 2) the number of subgraphs 3K2. We denote by NG(H) the
number of subgraphs H in G. Then, the following lemma is found in [28].

Lemma 4 ([28]). Let G be a graph with n vertices and m edges. Then

(1) NG(2, 2) =
(

m + 1
2

)
− 1

2 ∑
i∈V(G)

d2
i .

(2) NG(2, 2, 2) = m(m2+3m+4)
6 − m+2

2 ∑
i∈V(G)

d2
i +

1
3 ∑

i∈V(G)
d3

i + ∑
ij∈E(G)

didj − NG(K3).

From Lemmas 3 and 4, it is easy to obtain the following.

Lemma 5. Let G be a graph with n vertices and m edges. Then

(1) b0(G) = 1, b1(G) = 0,
(2) b2(G) = −m, b3(G) = −2NG(K3),

(3) b4(G) =

(
m + 1

2

)
− 1

2 ∑
i∈V(G)

d2
i − 2NG(C4),

(4) −b6(G) = m(m2+3m+4)
6 − m+2

2 ∑
i∈V(G)

d2
i + 1

3 ∑
i∈V(G)

d3
i + ∑

ij∈E(G)
didj − NG(K3)

−2NG(K2 ∪ C4)− 4NG(K3 ∪ K3) + 2NG(C6).

3. Two Invariants Related to Characteristic Polynomials

In this section, we investigate two invariants related to some coefficients of the charac-
teristic polynomials of G. Then, some properties of the invariants are given.

Definition 1. Let G be a graph, the parameter Π1(G) is defined by the following

Π1(G) =


0, if m(G) = 0,

b4(G)−
(

m(G)− 1
2

)
+ 1, if m(G) > 0.

It is easy to see that if PA(G, λ) = PA(H, λ), then b4(G) = b4(H) and m(G) = m(H).
Thus, we have:
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Theorem 1. Let G and H be two graphs with PA(G, λ) = PA(H, λ). Then

Π1(G) = Π1(H).

Theorem 2. Let G be a graph with components G1, G2, G3, · · · , Gk. Then

Π1(G) =
k

∑
i=1

Π1(Gi).

Proof. It is sufficient to prove the case k = 2. Let G = G1
⋃

G2, |V(Gi)| = ni and |E(Gi)| =
mi, for i = 1, 2. By Lemmas 2 and 5, we have

b4(G1 ∪ G2) = b4(G1) + b4(G2) + m1m2 and m(G1 ∪ G2) = m1 + m2.

By Definition 1, it follows

Π1(G) = b4(G1) + b4(G2) + m1m2 −
(

m1 + m2 − 1
2

)
+ 1

= b4(G1)−
(

m1 − 1
2

)
+ 1 + b4(G2)−

(
m2 − 1

2

)
+ 1

= Π1(G1) + Π1(G2).

Theorem 3. Let G be a graph with n vertices and uv ∈ E(G). Then

Π1(G) = Π1(G− uv)− |NG(uv)| − Nuv(C3)− 2Nuv(C4) + 1,

where Nuv(C3)(respectively, Nuv(C4)) denotes the number of triangles (respectively, C4) containing
the edge uv in G.

Proof. Since n(G) = n(G − uv) = n (namely, V(G) = V(G − uv)) and m(G − uv) =
m(G)− 1, by Lemma 5, we have

b4(G− uv) =

(
m(G− uv) + 1

2

)
− 1

2 ∑
i∈V(G)

d2
G−uv(i)− 2NG−uv(C4)

=

(
m(G)

2

)
− 1

2

(
∑

i∈V(G)\{u,v}
d2

G−uv(i) + d2
G−uv(u) + d2

G−uv(v)

)
−2NG−uv(C4).

Note that dG−uv(u) = dG(u) − 1, dG−uv(v) = dG(v) − 1, NG−uv(C4) = NG(C4) −
Nuv(C4) and dG(i) = dG−uv(i) if i 6∈ {u, v}. Since |NG(uv)| = dG(u)+ dG(v)−Nuv(C3)− 2,
we have

b4(G− uv) =

(
m(G) + 1

2

)
−m(G)− 1

2

(
∑

i∈V(G)
d2

G(i)− 2(dG(u) + dG(v)) + 2

)
−2(NG(C4)− Nuv(C4))

= b4(G)−m(G) + |NG(uv)|+ Nuv(C3) + 1 + 2Nuv(C4).
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Therefore, it follows

Π1(G− uv) = b4(G− uv)−
(

m(G)− 2
2

)
+ 1

= b4(G)−m(G)+|NG(uv)|+Nuv(C3) + 1+2Nuv(C4)−
(

m(G)−2
2

)
+1

= b4(G)−
(

m(G)− 1
2

)
+ 1 + |NG(uv)|+ Nuv(C3) + 2Nuv(C4)− 1

= Π1(G) + |NG(uv)|+ Nuv(C3) + 2Nuv(C4)− 1.

This implies that Π1(G) = Π1(G− uv)− |NG(uv)| − Nuv(C3)− 2Nuv(C4) + 1.

Note that if G is a connected graph, |NG(uv)| ≥ 1, except for G = K2. From Theorem 3,
we have:

Corollary 1. Let G be a connected graph with at least three vertices and uv ∈ E(G). Then

(1) Π1(G) ≤ Π1(G− uv), the equality holds if and only if uv is a pendent edge with dG(u) = 2
and dG(v) = 1.

(2) If uv is a pendent edge of G and dG(v) = 1, then

Π1(G) = Π1(G− uv)− dG−v(u) + 1.

Theorem 4. Let G be a connected graph. Then:

(1) Π1(G) ≤ 1, and the equality holds if and only if G ∈ P ;
(2) Π1(G) = 0 if and only if G ∈ {K1} ∪ C\{C4} ∪ T1.

Proof. (1) By induction on m(G). Since Π1(K1) = 0 and Π1(K2) = 1, we have (1) holds if
m(G) ≤ 1.

Suppose m(G) ≥ 2. Choose e ∈ E(G) such that G− e = H or H
⋃

K1. So, dG(e) ≥ 1
and Π1(G− e) = Π1(H). By the induction hypothesis, Π1(G− e) ≤ 1. By Corollary 1, it is
easy to get that Π1(G) ≤ Π1(G− e) ≤ 1 and Π1(G) = 1 if and only if dG(e) = 1, Ne(C3) =
Ne(C4) = 0 and Π1(G− e) = 1.

By the induction hypothesis, we have H ∈ P . Therefore G ∈ P .
Conversely, since Π1(P2) = 1 and Π1(G) = Π1(G− e)− dG(e)− Ne(C3)− 2Ne(C4) +

1, we can show that Π1(Pn) = Π1(Pn−1) = · · · = Π1(P2) = 1.
(2) By induction on m(G). Since Π1(K1) = 0 and Π1(K2) = 1, it is clear that (2) holds

if m(G) ≤ 1.
Suppose m(G) ≥ 2. Choose e ∈ E(G) such that H is connected. By Theorem 3,

we have
Π1(G− e) = dG(e) + Ne(C3) + 2Ne(C4)− 1.

Note that Π1(G) ≤ Π1(G− e). We consider only the following cases:
Case 1. Π1(G− e) = 1.
Note that dG(e) + Ne(C3) + 2Ne(C4) = 2 and dG(e) ≥ 1. If Ne(C3) = 1, dG(e) = 1

and Ne(C4) = 0, we have H ∈ P by (1). Hence, G ∼= C3. If Ne(C3) = 0, dG(e) = 2
and Ne(C4) = 0, we know that (G − e)E ∈ P by the induction hypothesis. Therefore
G ∈ {Cn(n ≥ 5)} ∪ T1.

Case 2. Π1(G− e) = 0.
Since dG(e)+ Ne(C3)+ 2Ne(C4) = 1 and dG(e) ≥ 1, we know that dG(e) = 1, Ne(C3) =

Ne(C4) = 0. By the induction hypothesis, H ∈ C\{C4} ∪ T1. Therefore, G ∈ T1.
Conversely, since Π1(Pn) = 1 and Π1(K1) = Π1(T(1, 1, 1)) = 0, we can show that

Π1(Cn) = Π1(Pn) − 1 = 0 if n ≥ 5, and Π1(T(l1, l2, l3)) = Π1(T(1, 1, 1)) = 0 and
Π1(C3) = 0 by Theorem 3.
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By Theorems 1–3, one can construct all connected graphs G with Π1(G) = i. Let
Γi = {G|G be a connected graph and Π1(G) = i}. By Theorem 4, Γ1 = {Pn|n ≥ 2} and
K1 ∈ Γ0. Now, we give an algorithm to construct all connected graphs in Γi as following.

Algorithm 1: Construction of all connected graphs with Π1(G) = i.
(i) Take Γ1 = {Pn|n ≥ 2} and Γ0 = {K1}.
(ii) Let i be an integer, i ≤ 0,
for k := 1 to i (step −1)

for each H ∈ Γk
for each u, v ∈ V(H), uv 6∈ E(H)

if NH(uv) = k− i− Nuv(C3)− 2Nuv(C4) + 1
then Γi := Γi ∪ {H + uv}

end for
for each u ∈ V(H)

if dH(u) = k− i + 1
then Γi := Γi ∪ {H + uv}, where v 6∈ V(H).

end for
end for

end for
Note. In the front steps, Nuv(C3) (respectively, Nuv(C4)) denotes the number of
triangles (respectively, C4) containing the edge uv in graph H + uv.

Lemma 6. Algorithm 1 achieves completeness, that is, if G is any connected graph with Π1(G) = i
and i ≤ 1, then G ∈ Γi by Algorithm 1.

Proof. By induction on Π1(G) and m(G), by Theorem 4, it is true for Π1(G) = 1, 0. Suppose
that the algorithm achieves completeness for Π1(G) > i. When Π1(G) = i, we shall prove
the completeness by induction on m(G).

By the proof of Theorem 4, we have that it is true for m(G) ≤ 1. Suppose m(G) ≥ 2,
and we consider the following cases:

Case 1. G has a pendant edge, say e = uv and dG(v) = 1. Then, G − e = H ∪ K1,
where H is connected. By Corollary 1

Π1(G) = Π1(H)− dG(e) + 1 ≤ Π1(H).

If dG(e) = 1, then Π1(H) = i and m(H) = m(G)− 1, so by the induction hypothesis
on m(G), H ∈ Γi. If dG(e) ≥ 2, then Π1(H) > i, say Π1(H) = l > i, and so H ∈ Γl by the
induction hypothesis on Π1(G). Hence, G must be obtained from H by adding the pendant
edge uv from Algorithm 1.

Case 2. G has no any pendant edge. Then, there exists at least an edge e = uv such
that H = G− uv is connected. Clearly, dG(uv) + Ne(C3) + 2Nuv(C4) ≥ 2. By Theorem 3,

Π1(G) = Π1(H)− dG(uv)− Nuv(C3)− 2Nuv(C4) + 1 < Π1(H).

Hence, Π1(H) > i, say Π1(H) = l > i. By the induction hypothesis on Π1(G), H ∈ Γl .
Therefore, G must be obtained from H by adding the edge uv by Algorithm 1. This com-
pletes the proof of the completeness. 2

Note that if uv ∈ V(G) and H = G− uv, then dG(uv) = NH(uv). By Lemma 6 and
Algorithm 1, we obtain the following theorem. Here, the proof is omitted.

Theorem 5. Let G be a connected graph. Then:

(i) Π1(G) = −1 if and only if G ∈ {G1, T2};
(ii) Π1(G) = −2 if and only if G ∈ {G2, G3, C4, T3, T4};
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(iii) Π1(G) = −3 if and only if G ∈ {G4, G5, G6, G7, G8, G9, G10, T5, T6, T7}, where all graphs
are listed in Figure 1.

Figure 1. Some connected graphs Π1 ≥ −3.

Note: Gi in Figure 1, for 1 ≤ i ≤ 14 and i 6= 10, does not contain C4 as its subgraphs
and all the dot lines of the graphs denote a path with at least two vertices.

Now we give another invariant as follows:

Definition 2. Let G be a connected graph. Set Π2(G) = Π1(G) + m(G)− n(G).

From Definitions 1 and 2 and Theorems 1–3, we can easily prove the following:

Theorem 6. (1) Let G and H be two graphs such that PA(G, λ) = PA(H, λ). Then

Π2(G) = Π2(H).

(2) Let G be a graph with k components G1, G2, · · · , Gk. Then

Π2(G) =
k

∑
i=1

Π2(Gi).

(3) Let G be a connected graph and e ∈ E(G). Then

Π2(G) = Π2(G− e)− dG(e)− 2Ne(C4)− Ne(C3) + 2.
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Theorem 7. Let G be a connected graph. Then, Π2(G) ≤ 0, and the equality holds if and only if
G ∈ P ∪ C\{C4}.

Proof. By induction in m(G), since Π2(K1) = −1 and Π2(K2) = 0, we have (1) which
holds when m(G) ≤ 1.

Suppose m(G) ≥ 2. Choose e ∈ E(G) such that (G − e)E is connected. Clearly,
dG(e) ≥ 1. We distinguish the three following cases:

Case 1. e is a pendant edge.
Obviously, G− e = H ∪ K1, where H = (G− e)E. By Theorem 5 and the induction

hypothesis, we have

Π2(G− e) = Π2(K1) + Π2(H) = −1 + Π2(H)

and
Π2(G) = Π2(H)− dG(e)− 2Ne(C4)− Ne(C3) + 1 ≤ Π2(H) ≤ 0.

Note that Π2(G) = 0 if and only if Π2(H) = 0, dG(e) = 1 and Ne(C3) = Ne(C4) = 0.
By the induction hypothesis, H ∈ P ∪ C\{C4}. Since G− e = H ∪ K1 and G is connected,
we have G ∈ P .

Case 2. e is an edge in a triangle.
We know that G− e is connected and Ne(C3) ≥ 1. By Theorem 6 (3),

Π2(G) = Π2(G− e)− dG(e)− 2Ne(C4)− Ne(C3) + 2 ≤ Π2(G− e) ≤ 0,

and Π2(G) = 0 if and only if Π2(G− e) = 0, Ne(C3) = dG(e) = 1 and Ne(C4) = 0. By the
induction hypothesis, G− e ∈ P ∪ C\{C4}. Thus, G ∼= C3(only if (G− e) ∼= P3).

Case 3. e is an edge in a cycle whose length is greater than 3.
Clearly, dG(e) ≥ 2. By Theorem 6 (3), we have

Π2(G) = Π2(G− e)− dG(e)− 2Ne(C4)− Ne(C3) + 2 ≤ Π2(G− e) ≤ 0

and Π2(G) = 0 if and only if Π2(G− e) = 0, dG(e) = 2 and Ne(C3) = Ne(C4) = 0. By the
induction hypothesis, G− e ∈ P ∪ C\{C4}. Hence, G ∈ C\{C3, C4}.

Conversely, by Theorem 4 and Definition 2, we can directly verify our findings.

Let Θi = {G|G be a connected graph and Π2(G) = i}. Similarly to Π1(G), we con-
struct all connected graphs in Θi by the following algorithm.

Lemma 7. Algorithm 2 is completeness, that is, if G is any connected graph with Π2(G) = i and
i ≤ 0, then G ∈ Θi by Algorithm 2.

Proof. By induction in Π2(G) and m(G). By Theorem 7, it is true for Π2(G) = 0. Suppose
that the algorithm is completeness for Π2(G) > i. When Π2(G) = i, we shall prove the
completeness by induction in m(G).

By the proof of Theorem 7, we have that it is true for m(G) ≤ 1. Suppose that
m(G) ≥ 2, and we consider the following cases:

Case 1. G has a pendant edge, say e = uv and dG(v) = 1. Then, G − e = H ∪ K1,
where H is connected. Note that Ne(C3) + 2Nuv(C4) = 0. By the proof of case 1 of Theorem
7, we have

Π2(G) = Π2(H)− dG(e) + 1 ≤ Π2(H).

If dG(e) = 1, then Π2(H) = i and m(H) = m(G)− 1, so by the induction hypothesis
on m(G), H ∈ Θi. If dG(e) ≥ 2, then Π2(H) > i, say Π2(H) = l > i, and so H ∈ Θl by the
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induction hypothesis on Π2(G). Hence, G must be obtained from H by adding the pendant
edge uv from Algorithm 2, where v 6∈ V(H).

Case 2. G has no any pendant edge. Then, there exists at least an edge e = uv such
that H = G− uv is connected. Since dG(uv) + Ne(C3) + 2Nuv(C4) ≥ 2, by Theorem 6 (3)
we have

Π2(G) = Π2(H)− dG(uv)− Nuv(C3)− 2Nuv(C4) + 2 ≤ Π2(H).

If dG(uv) + Ne(C3) + 2Nuv(C4) = 2, then Π2(H) = i and m(H) = m(G)− 1, so by
the induction hypothesis on m(G), H ∈ Θi. If dG(uv) + Ne(C3) + 2Nuv(C4) > 2, then
Π2(H) > i, say Π2(H) = l > i, and so H ∈ Θl by the induction hypothesis on Π2(G).
Hence, G must be obtained from H by adding the edge uv from Algorithm 2. This completes
the proof of the completeness.

Algorithm 2: Construction of all connected graphs with Π2(G) = i.
(i) Take Θ0 = {Pn|n ≥ 2} ∪ {C3} ∪ {Cn|n ≥ 5} and Θ−1 = {K1}.
(ii) Let i be a negative integer, i ≤ 0,
for k := 0 to i (step −1)

for each H ∈ Θk
for each u, v ∈ V(H), uv 6∈ E(H)

if NH(uv) = k− i− Nuv(C3)− 2Nuv(C4) + 2
then Θi := Θi ∪ {H + uv}

end for
for each u ∈ V(H)

if dH(u) = k− i + 1
then Θi := Θi ∪ {H + uv}, where v 6∈ V(H).

end for
end for

end for
Note. In the front steps, Nuv(C3) (respectively, Nuv(C4)) denotes the number of
triangles (respectively, C4) containing the edge uv in the graph H + uv.

From Lemma 7, Theorems 6 and 7 as well as Algorithm 2, we can prove the following.
Here, the proof is omitted.

Theorem 8. Let G be a connected graph. Then:

(1) Π2(G) = −1 if and only if G ∈ {K1, G1, T1};
(2) Π2(G) = −2 if and only if G ∈ {G2, G3, G4, G5, C4, T2};
(3) Π2(G) = −3 if and only if G ∈ {Gi, f or 6 ≤ i ≤ 14, T3, T4}, where Gi, for 1 ≤ i ≤ 14 and

i 6= 10, does not contain C4 as its subgraph.

Remark 1. The invariants Π1(G) and Π2(G) are important for determining DS graphs. By
Theorems 6 and 7, for each component Gi of the cospectral graphs of G, we have that Π2(Gi) ≥
Π2(G), which gives all possible cospectral graphs of G. It is therefore easy to find all possible
cospectral graphs of G. Then, by considering the invariants Π1(G) and Π2(G), it can be ascertained
whether G is determined by its adjacency spectrum.

Remark 2. By Algorithms 1 and 2, one can characterize all connected graphs with Π1(G) < −k
and Π2(G) < −k. For example, k = 4, 5. Since there are many classes of graphs with Π1(G) = −k
and Π2(G) = −k for a large positive integer k, it is difficult to characterize all graphs with
Π1(G) = −k and Π2(G) = −k.

Remark 3. In this section, we define two invariants for graph G, which satisfies two important
properties: component additivity (Theorems 2 and 6 (2)) and boundedness (Theorems 4 and 7).
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In fact, we define some new invariants with component additivity and boundedness. For example,
Π3(G) = π1(G)+ NG(K3) and Π4(G) = π2(G)+m(G)− n(G), which have similar properties
and applications of Π1(G) and Π2(G). The readers interested by new invariants may study their
properties and find more than DS graphs.

4. Some Graphs Determined by Their Adjacency Spectrum

For convenience, we denote by Gi the set {Gi}, for 1 ≤ i ≤ 14, and by Ti the set {Ti},
for 1 ≤ i ≤ 4. In Section 1, we list nearly all connected graphs G determined by their
adjacency spectrum, which Π2(G) ∈ {0,−1,−2}, except for Kn, Km,m, Pn and Cn. In fact,
the necessary and sufficient conditions for all connected G with Π2(G) = 0,−1 to be DS
were found. However, there are a few results on the DS-graphs of the connected graphs
G with Π2(G) ≤ −2, which are some special classes in G3, G4 and T2, seeing [9,15,16,26].
In this section, by using the results of previous sections, we shall give the necessary and
sufficient conditions for one class of trees T with Π2(T) = −3 and one class of graphs G
with Π2(G) = −2 to be DS with respect to their adjacency spectrum. In the following text,
we use PA(G) instead of PA(G, λ).

Lemma 8 ([27]). All roots of PA(Cn) and PA(Pn) are the following:

• PA(Cn) : 2cos 2iπ
n , i = 0, 1, · · · , n− 1.

• PA(Pn) : 2cos iπ
n+1 , i = 1, · · · , n.

Let λ = 2cosθ, set t1/2 = eiθ , and then it is useful to write the characteristic polynomial of Cn and
Pn in the following form:

(1) PA(Cn, t1/2 + t−1/2) = tn/2 + t−n/2 − 2,
(2) PA(Pn, t1/2 + t−1/2) = t−n/2(tn+1 − 1)/(t− 1).

The following graphs and lemmas are frequently used in following text.

Remark 4. The parameters of each graph in Figure 2 take the following values: n ≥ 6 for Wn,
s2 ≥ s1 ≥ 2 for W(s1, s2) and n ≥ 6 for T0(n).

Figure 2. Graphs Wn, W(s1, s2) and T0(n).

Lemma 9 ([27]). (1) Let H be a proper subgraph of a connected graph G, then

λ1(H) < λ1(G).

(2) For a graph G of n vertices with v ∈ V(G), let H = G− v, then

λ1(G) ≥ λ1(H) ≥ λ2(G) ≥ λ2(H) ≥ · · · ≥ λn−1(H) ≥ λn(G).

An internal path of G is a walk v0v1 · · · vk (k ≥ 1) that the vertices v1, v2, · · · , vk
are distinct (v0, vk do not need to distinct), dG(v0) ≥ 2, dG(vk) ≥ 2 and dG(vi) = 2 for
0 < i < k [27].

Lemma 10 ([27]). Let G be a connected graph that is not isomorphic to Wn and let Guv be the
graph obtained from G by subdividing the edge uv of G. If uv lies on an internal path of G, then
λ1(Guv) < λ1(G).

Lemma 11 ([27]). (1) The connected graphs with index 2 are precisely the graphs below: Cn(n ≥ 3),
Wn(n ≥ 6), K1,4 and T(a, b, c) for (a, b, c) ∈ {(2, 2, 2), (1, 2, 5), (1, 3, 3)}.
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(2) The connected graphs with an index of less than 2 precisely include the following graphs:
Pn(n ≥ 1) and T(a, b, c) for (a, b, c) ∈ {(1, 2, 2), (1, 2, 3), (1, 2, 4)} ∪ {(1, 1, n)|n ≥ 1}.

Woo and Neumaier in [29] gave the structure of graphs with
√

2 +
√

5 < λ1(G) ≤ 3
2

√
2.

An open quipu is a tree G of maximum degree 3 such that all vertices of degree 3 lie on a path
and a closed quipu is a connected graph G of maximum degree 3 such that all vertices of
degree 3 lie on a circuit and no other circuit exists. The following result can be found in [29].

Lemma 12 ([29]). Let G be a connected graph with
√

2 +
√

5 < λ1(G) ≤ 3
2

√
2. Then, ∆(G) ∈

{3, 4}, where ∆(G) denotes the maximum degree of G, and:

(1) If ∆(G) = 3, then G is an open quipu or a closed quipu.
(2) If ∆(G) = 4, then G ∼= T0(n), n ≥ 2.

Note that if G is an open quipu or a closed quipu, then λ1(G) may not belong to the
interval (

√
2 +
√

5, 3
2

√
2], as can be seen in [29]. For a connected G with Π2(G) ≥ −3

and
√

2 +
√

5 < λ1(G) ≤ 3
2

√
2, by Lemma 12 and Theorem 8, we have G ∈ {G1, G3, G7,

T1, T2, T3, T0(n)}. The inverse is not true. For example, λ1(D4) ' 2.17 > 3
2

√
2, where D4 is

the graph obtained by adding a pendent edge to C3 and D4 ∈ G1. Now, we consider the
spectral characterizations of two classes of trees T such that

√
2 +
√

5 < λ1(T) ≤ 3
2

√
2 and

Π2(T) = −3, that is W(s1, s2) and T0(n), as can be seen in Figure 2.

Lemma 13. Let T be a tree and H be a graph with m(H) = m(T) and n(H) = n(T). If Π1(H) =
Π1(T) and H has no Ck as its subgraph, k = 3, 4, then we have

|b6(H)| − |b6(T)| =
1
3 ∑

i∈V(H)

d3
i (H)− 1

3 ∑
i∈V(T)

d3
i (T)+ ∑

ij∈E(H)

didj− ∑
ij∈E(T)

didj+2NH(C6).

In particular, if H and G have the same degree sequence, then

|b6(H)| − |b6(T)| = ∑
ij∈E(H)

didj − ∑
ij∈E(T)

didj + 2NH(C6).

Proof. Since m(H) = m(T), n(H) = n(T) and NH(C3) = NH(C4) = 0, by Lemma 5, we
have ∑

i∈V(H)
d2

i = ∑
i∈V(T)

d2
i ; thus, the result holds. 2

Remark 5. The parameters of each graph in Figure 3 take the following values: s2 ≥ s1 ≥ 1 for
G31, s ≥ 1 for G32, s2 ≥ s1 ≥ 1 and s3 ≥ 3 for G33, n1 ≥ 2 for T31, s3 ≥ s1 ≥ 3 and s2 ≥ 3 for
T32, s1 ≥ 3, s2 ≥ 3 and s3 ≥ 3 for T33. Sometimes, we shall give the parameters of the graphs
above, say, G31(n1, n2) in Lemma 4.9 and the proof of Theorem 4.1, which are n1 and n2 instead of
the parameters s1 and s2 of G31, respectively.

Figure 3. Some graphs in G3 and T3.
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For a graph G with uv ∈ E(G), d×(uv) = dG(u) × dG(v) is said to be the product
degree of the edge uv. We denote by D×(G) the sequence of the product degree of G, that
is, D×(G) = {d×(e1), d×(e2), · · · , d×(em)}, where E(G) = {e1, e2, · · · , em}.

Lemma 14. Let H be a graph with m(H) = m(W(s1, s2)) and n(H) = n(W(s1, s2)). Let
Πi(H) = Πi(W(s1, s2), i = 1, 2, then we have:

(1) If H = G31 ∪ T(1, 1, 1), then |b6(H)| ≥ |b6(W(s1, s2))|, the equality holds if and only if H
does not contain C6 as its subgraph;

(2) If H ∈ {G31∪K1, G31∪T(1, 1, k), k ≥ 2, G32∪T(1, 1, 1), G33∪T(1, 1, 1)}, then |b6(H)| ≥
|b6(W(s1, s2))|+ 1, the equality holds if and only if H does not contain C6 as its subgraph;

(3) If H = H1 ∪ H2 and H is not a graph in (1) and (2), where H1 ∈ G3\{G3i|i = 1, 2, 3} and
H2 ∈ T1 ∪ {K1}, then |b6(H)| ≥ |b6(W(s1, s2))|+ 2;

(4) If H = H1 ∪ H2, where H1 ∈ G7 and H2 ∈ P , then |b6(H)| ≥ |b6(W(s1, s2))|+ 2.

Proof. It is easy to see that each H of (1) and (2) and W(s1, s2) have the same number
of vertices and edges, as well as the same degree sequence. From Lemma 13, by direct
computation, we see that (1) and (2) are true.

(3) Here, let G3i, i = 1, 2, 3, which do not contain C6 as its subgraph. For each graph
F ∈ G3, by Lemma 4.6 we have |b6(G32)| = |b6(G33)| = |b6(G31)| + 1 and |b6(F)| >
|b6(G32)| for all F ∈ G3\{G3i|i = 1, 2, 3}, where n(F) = n(G3i), i = 1, 2, 3. One can see
that |b6(T(l1, l2, l3))| = |b6(T(1, s1, s2))| + 1 = |b6(T(1, 1, k))| + 2 for 2 ≤ l1 ≤ l2 ≤ l3,
2 ≤ s1 ≤ s2 and 2 ≤ k, where n(T(l1, l2, l3)) = n(T(1, s1, s2)) = n(T(1, 1, k)). Therefore, we
have the following:

If H2 = K1, it follows that |b6(F ∪ K1)| ≥ |b6(G31 ∪ K1)|+ 1 for F ∈ G3\{G31}, which
implies that (3) is true.

If H2 = T(1, 1, 1), it follows that |b6(F ∪ T(1, 1, 1))| ≥ |b6(G32 ∪ T(1, 1, 1))| + 1 for
F ∈ G3\{G3i|i = 1, 2, 3}. By the (1) and (2) of the lemma, (3) holds.

If H2 = T(1, 1, k), 2 ≤ k, it follows that |b6(F ∪ T(1, 1, k))| ≥ |b6(G31 ∪ T(1, 1, k))|+ 1
for F ∈ G3\{G31}. By (2) of the lemma, (3) holds.

If H2 = T(1, s1, s2) with 2 ≤ s1 ≤ s2, or H2 = T(l1, l2, l3) with 2 ≤ l1 ≤ l2 ≤ l3, by the
arguments above, we have that (3) holds.

(4) If H1 ∈ G7 and H2 ∈ P and n(H1 ∪ H2) = n(W(s1, s2)), one sees that H1 ∪ H2
and W(s1, s2) have the same number of edges, the same degree sequence, and the distinct
product degree sequence. By the computation of the sum of the product degree, (4) follows
from Lemma 13.

Lemma 15. Let H ∈ T3 and n(H) = n(T0(n)) = n, then we have:

(1) If H = W(s1, s2), then |b6(W(s1, s2))| = |b6(T0(n))| − 1, for n ≥ 10;
(2) If H ∈ {T31, T32, T33}, then |b6(H)| = |b6(T0(n))|, for n(T31) ≥ 9 and n(T32) =

n(T33) ≥ 11;
(3) If H ∈ T3\{W(s1, s2), T1i|i = 1, 2, 3}, then |b6(H)| ≥ |b6(T0(n))|+ 1.

Proof. Note that s ≥ 2 for T31, 3 ≤ s1 ≤ s3 and 3 ≤ s2 for T32 and 3 ≤ s1, 3 ≤ s2 and 3 ≤ s3
for T33. By direct computation, (1) follows from Lemma 13.

For each H ∈ T3, by Lemma 13, we have that |b6(T31)| = |b6(T32)| = |b6(T33)| =
|b6(W(s1, s2))|+ 1 and |b6(H)| ≥ |b6(W(s1, s2))|+ 2 for H ∈ T3\{W(s1, s2), T1i|i = 1, 2, 3}.
By lemma (1), it is easy to see that (2) and (3) hold.

Lemma 16. (1) If H = G31(n1, n2) ∪ T(1, 1, 1), then H and W(s1, s2) are not cospectral, where
2 ≤ s1 ≤ s2, 1 ≤ n1 ≤ n2, n = n(H) = n(W(s1 + s2)).

(2) If PA(W(s1, s2)) = PA(W(t1, t2)) with 2 ≤ s1 ≤ s2 and 2 ≤ t1 ≤ t2, then s1 = t1 and
s2 = t2.
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Proof. (1) Suppose that W(s1, s2) and H are cospectral. Then, Π1(H) = Π1(W(s1, s2)),
|b6(H)| = |b6(W(s1, s2))| and H does not contain odd circles as its subgraphs. By Theorem 5
and Lemma 14 (1), H does not contain C4 and C6 as its subgraphs, which implies that
n1 + n2 ≥ 6.

By Lemmas 1 and 2, the characteristic polynomials of W(s1, s2) and H can be computed
as follows:

PA(W(s1, s2)) = λ3PA(Ps1+s2+3)− 2λ3PA(Ps1+s2+1) + λ3PA(Ps1+s2−1)−
λ2PA(Ps1+1)PA(Ps2+1) + λ2PA(Ps1+1)PA(Ps2−1)+
λ2PA(Ps1−1)PA(Ps2+1)− λ2PA(Ps1−1)PA(Ps2−1),

PA(H) = (λPA(P3)− λ2)(λ2PA(Cn1+n2+2)− 2λPA(Pn1+n2+1) + PA(Pn1)PA(Pn2)).

Since n = s1 + s2 + 6 = n1 + n2 + 8 ≥ 14, by Lemma 4.1 and eliminating the same terms

from PA(W(s1, s2), t1/2 + t−1/2)t
s1+s2+6

2 (t− 1)2/(t+ 1)2 and PA(H, t1/2 + t−1/2)t
n1+n2+8

2 (t−
1)2/(t + 1)2, we can write (using Mathematica5.0) PA(W(s1, s2)) and PA(H), denoted by φ1
and φ2, as follows:

φ1 : −t4 − t2+s1 + 2t3+s1 − t4+s1 − t2+s2 + 2t3+s2 − t4+s2 − t2+s1+s2 ,
φ2 : −2t4 + t5 + t6 − t3+n1 + t4+n1 − t5+n1 − 2t1+n1/2+n2/2 + 2t2+n1/2+n2/2

+ 2t3+n1/2+n2/2 − 4t4+n1/2+n2/2 + 2t5+n1/2+n2/2 + 2t6+n1/2+n2/2 − 2t7+n1/2+n2/2 − t3+n2 +
t4+n2 − t5+n2 + t2+n1+n2 + t3+n1+n2 − 2t4+n1+n2 .

Now, we prove the necessity of lemma (1) by comparing the coefficients of the corre-
sponding terms of φ1 and φ2.

Case 1. If s1 = s2, we have φ1 = −t4 − 2t2+s1 + 4t3+s1 − 2t4+s1 − t2+2s1 . Note that
s1 + s2 ≥ 8, and one sees s1 = s2 ≥ 4. Then, the least term of φ1 is −t4 while the first term
of φ2 is −2t4. Hence, other terms of the same exponents must exist in φ2 such that the sum
of the coefficients of which plus -2 equals -1. Since n1 + n2 ≥ 6 and n2 ≥ n1, it is easy to see
that all possible candidates are −t3+n1 , or −2t1+n1/2+n2/2. However, the least term of φ1
and φ2 are different, which is a contradiction.

Case 2. If 2 = s1 < s2, substituting s1 = 2 into φ1 and by eliminating the same terms
of φ1 and φ2, we have

φ′1 : 2t5 − t6 − t2+s2 + 2t3+s2 ,
φ′2 : t5 + t6 − t3+n1 + t4+n1 − t5+n1 − 2t1+n1/2+n2/2 + 2t2+n1/2+n2/2 + 2t3+n1/2+n2/2

− 4t4+n1/2+n2/2 + 2t5+n1/2+n2/2 + 2t6+n1/2+n2/2 − 2t7+n1/2+n2/2 − t3+n2 + t4+n2 − t5+n2 +
t2+n1+n2 + t3+n1+n2 .

Note that s1 + s2 ≥ 8 and s2 ≥ 6. Clearly, the least term of φ′1 is 2t5. Therefore,
other terms of the same exponents must exist in φ′2 such that the sum of the coefficients
of which plus 1 equals 2. Since n1 + n2 ≥ 6 and n2 ≥ n1 ≥ 1, it is not hard to see that all
possible candidates are −t3+n1 , t4+n1 , −2t1+n1/2+n2/2 and 2t2+n1/2+n2/2. All possible com-
binations of the terms are : {t5,−t3+n1 , 2t2+n1/2+n2/2}, or {t5, t4+n1}. For each combination
above, we have that the least term of φ′2 is −t4 and −t4 does not vanish from φ′2, which is
a contradiction.

Case 3. If 2 < s1 < s2, the least term of φ1 is −t4. Since the first term of φ2 is −2t4,
other terms of the same exponents must exist in φ2 such that the sum of the coefficients of
which plus -2 equals -1. Since n1 + n2 ≥ 6 and n2 ≥ n1 ≥ 1, it is easy to see that all possible
candidates are −t3+n1 and −2t1+n1/2+n2/2. However, we combine the terms, the coefficient
of which plus -2 is not -1, which completes the proof of (1).

(2) Since s1 + s2 = t1 + t2, from φ1, we get
PA(W(s1, s2)): −t2+s1 + 2t3+s1 − t4+s1 − t2+s2 + 2t3+s2 − t4+s2 ,
PA(W(t1, t2)): −t2+t1 + 2t3+t1 − t4+t1 − t2+t2 + 2t3+t2 − t4+t2 .
Therefore, it follows that s1 = t1 and s2 = t2.

Theorem 9. Let 2 ≤ s1 ≤ s2. Then, W(s1, s2) is determined by its adjacency spectrum.
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Proof. Let H be cospectral with W(s1, s2). Suppose that H has k connected components
H1, H2, · · · , Hk. By Theorems 3.6–3.8, it is not hard to see that

Π2(H) =
k

∑
i=1

Π2(Hi) = Π2(W(s1, s2)) = −3.

By Theorem 7, Π2(Hi) ≤ 0, therefore we have Π2(Hi) ≥ −3 for 1 ≤ i ≤ k. Choose the
middle vertex v of degree 3 of W(s1, s2) such that W(s1, s2)− v = T(1, 1, s1) ∪ T(1, 1, s2) ∪
K1. By Lemma 11, λ1(T(1, 1, n)) < 2. Thus, by Lemmas 9 and 12 (2), one can see that
λ1(W(s1, s2)) > 2 and λ2(W(s1, s2)) < 2. On the other hand, it is easy to obtain that
λ1(W2,2) <

3
2

√
2. By Lemma 10, λ1(W(s1, s2)) <

3
2

√
2 for all 2 ≤ s1 ≤ s2. Hence, we know

that H only has one component, say H1, such that 2 < λ1(H1) ≤ 3
2

√
2 and λ1(Hi) < 2 for

2 ≤ i ≤ k. Note that Π2(Hi) ≥ −3, by Lemmas 11, 12 and Theorem 8, we have

H1 ∈ G1 ∪ G3 ∪ G7 ∪ T1 ∪ T2 ∪ T3 ∪ {T0(n)|n ≥ 6}

and for i ≥ 2,

Hi ∈ P ∪ {T(1, 1, n)|n ≥ 1} ∪ {T(1, 2, k)|k = 2, 3, 4} ∪ {K1}.

Clearly, m(H1) = n(H1) for each H1 ∈ G1 ∪ G3 ∪ G7, m(H1) = n(H1) − 1 for each
H1 ∈ T1 ∪ T2 ∪ T3 ∪ {T0(n)|n ≥ 6} and m(Hi) = n(Hi)− 1 for each i ≥ 2. Since m(H)−
n(H) = m(W(s1, s2))− n(W(s1, s2)) = −1, we have the following:

(i) H = H1 ∪ H2, where H1 ∈ G1 ∪ G3 ∪ G7 and H2 ∈ P ∪ {T(1, 1, n)|n ≥ 1} ∪
{T(1, 2, k)|k = 2, 3, 4} ∪ {K1}; or

(ii) H ∈ T1 ∪ T2 ∪ T3 ∪ {T0(n)|n ≥ 6}.
Now we distinguish the following cases.
Case 1. H1 ∈ G1. By Theorems 4 and 5, Π1(H1) = −1 and Π1(H2) ≥ 0. Then, by

Theorem 2, Π1(H) ≥ −1, which contradicts Π1(H) = Π1(W(s1, s2)) = −2.
Case 2. H1 ∈ G3. By Theorems 4 and 5, Π1(H1) = Π1(W(s1, s2)) = −2. By Theorems 2

and 4, Π1(H2) = 0. By Lemma 14, we have that |b6(H)| = |b6(W(s1, s2))| if and only
if H = G31(n1, n2) ∪ T(1, 1, 1), where G31(n1, n2) does not contain C6 as its subgraphs.
From Lemma 16 (1), PA(H) 6= PA(W(s1, s2)).

Case 3. H1 ∈ G7. By Theorems 4 and Theorem 5, Π1(H1) = −3. Since Π1(W(s1, s2)) =
−2, by Theorems 2 and 4, Π1(H2) = 1, that is H2 ∼= Pt, t ≥ 2. By Lemma 14 (4), we have that
|b6(H)| ≥ |b6(W(s1, s2))|+ 2, which implies that PA(H) 6= PA(W(s1, s2)).

Case 4. H is a tree, that is H ∈ T1 ∪T2 ∪T3 ∪{T0(n)|n ≥ 6}. By Theorem 3.5, Π1(H) =
Π1(W(s1, s2)) = −2. It therefore follows that H ∈ T3 ∪ {T0(n)|n ≥ 6}. By Lemma 15,
H = Wt1,t2 , where t1 + t2 = s1 + s2. Therefore, H = W(s1, s2) from Lemma 16 (2). We
complete the proof of the theorem.

From the proof of Theorem 4.1, we obtain a method to find DS graphs by the follow-
ing steps.

(i) Characterize all connected graphs with Π1(G) = i and Π2(G) = j, where i ≤ 1 and
j ≤ 0.

(ii) For a given graph G, by applying the properties of invariants, such as Π1(G),
Π2(G) and the number of triangles etc., we find all possible cospectral graphs of G.

(iii) Using the results of the eigenvalues, by considering the coefficients of the charac-
teristic polynomial, we give a proof to whether G is determined by its adjacency spectrum.

Here, we give an example to determine whether the graph F(s1, s2) (as can be seen in
Figure 4) is DS by using the above method.
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Figure 4. F(s1, s2).

Lemma 17 ([21]). For a graph G, let TrA(G)k denote the trace of A(G)k ( or the number of close
walks of length k in G), then:

(i) TrA3 = 30NG(K3);
(ii) TrA5 = 30NG(K3) + 10NG(C5) + 10NG(D4), where D4 is the graph obtained from K3 by

adding an edge.

Suppose that H and F = F(s1, s2) are cospectral. At first, we give some invariants.
From Lemmas 2, 11 and 17 and Theorems 1 and 6, one can obtain the following invariants.

(i) H and F have the same number of vertices, edges and triangles.
(ii) NH(D4) + NH(C5) = NF(D4).
(iii) Πi(H) = Πi(F), i = 1, 2.
(iv) Two is an eigenvalue of F if and only if (s1, s2) ∈ {(4, 3), ((6, 2), (3, 5)}.
Then, by using some properties (Theorems 3.2–3.8) of Πi(i = 1, 2) and the invariants

above one give all possible cospectral graphs of F. Note that Π2(H) = Π2(F) = −2,
for (s1, s2) 6∈ {(4, 3), (6, 2), (3, 5)}, we have

H ∈ {G11 ∪ G12|G11, G12 ∈ G1} ∪ {G2|G2 ∈ G2} ∪ {G4 ∪ Pni |G4 ∈ G4, ni ≥ 2}.

Finally, using the properties of the eigenvalues (Lemmas 9–11), by considering coeffi-
cients of the characteristic polynomial (Lemmas 5 and 8), one can determine the cospectral
graphs of F.

From Lemmas 9 and 10, it is not hard to see that λ1(F) > λ1(G1) for all G1 ∈ G1.
By Lemma 5 , we have b6(G4 ∪ Pni ) ≥ b6(F) + 1 for all G4 ∈ G4, ni ≥ 2 and b6(H) = b6(F)
for H ∈ {G2|G2 ∈ G2} if and only if H = F(t1, t2), where t1 + t2 = s1 + s2. Hence, H must
be F(t1, t2) with t1 + t2 = s1 + s2. Let t1 > s1 and t2 < s2, by Lemmas 9 and 10, and it
follows that λ1(F(s1, s2)) > λ1(F(s1, t2)) > λ1(F(t1, t2)), which implies H = F(s1, s2).

When (s1, s2) ∈ {(4, 3), ((6, 2), (3, 5)}, by direct computation, we have that F(s1, s2) is
DS. Therefore, we obtain the following result.

Theorem 10. Let s1 ≥ 2 and s2 ≥ 2. Then, F(s1, s2) is determined by its adjacency spectrum.

5. Conclusions

In this paper, at first, we gave two invariants Π1(G) and Π2(G) of G, obtained
their properties and all connected graphs with Π1(G) ∈ {1, 0,−1,−2,−3} and Π2(G) ∈
{0,−1,−2,−3}. We then gave a method to characterize the graphs determined by their
adjacency spectrum. To date, one can find the necessary and sufficient conditions for all G
with Π2(G) ∈ {0,−1} to be determined by their adjacency spectrum, seeing [5–7,10,17].
For each graph G with Π2(G) = −2, we find some DS graphs in the families G4 and G5
from [15,16,23–26] and some DS graphs in the family T2 from [9]. In this paper, we obtained
two classes of DS graphs in the family G2 and T3. However, no other DS graphs in the
family Gi were found, where 6 ≤ i ≤ 14 and i 6= 10. A natural follow up would be to
characterize DS graphs in the families Gi, where 6 ≤ i ≤ 14 and i 6∈ {10, 11}. A more
interesting avenue would be that of constructing a database of cospectral graphs by the
above method and computation.
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