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Abstract: In this work, we present an approach for fuzzy aggregation of neural networks for fore-
casting. The interval type-3 aggregator is used to combine the outputs of the networks to improve
the quality of the prediction. This is carried out in such a way that the final output is better than the
outputs of the individual modules. In our approach, a fuzzy system is used to estimate the prediction
increments that will be assigned to the output in the process of combining them with a set of fuzzy
rules. The uncertainty in the process of aggregation is modeled with an interval type-3 fuzzy system,
which, in theory, can outperform type-2 and type-1 fuzzy systems. Publicly available data sets of
COVID-19 cases and the Dow Jones index were utilized to test the proposed approach, as it has been
stated that a pandemic wave can have an effect on the economies of countries. The simulation results
show that the COVID-19 data does have, in fact, an influence on the Dow Jones time series and its
use in the proposed model improves the forecast of the Dow Jones future values.
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1. Introduction

Fuzzy logic has become very important in different disciplines of study, and one of the
areas is the main focus of this work, which is the time series prediction area. It has also been
shown in the literature that the use of type-1 fuzzy logic helps to improve the results in many
problems [1,2]. Later, type-1 evolved into type-2 fuzzy systems with the work of Mendel
and others in 2001 [3,4]. Initially, interval type-2 fuzzy systems were studied and applied to
several problems [5]. Later, these systems were applied to many problems in areas, such as
robotics, control, diagnosis, and others [6]. Simulation and experimental results show that
interval type-2 outperforms type-1 fuzzy systems in situations with higher levels of noise,
dynamic environments, or in highly nonlinear problems [6–8]. Later, general type-2 fuzzy
systems were considered to manage higher levels of uncertainty, and good results have been
achieved in several application areas [9–11]. Recently, it has become apparent that type-3
fuzzy systems could help solve even more complex problems [12–14]. For this reason, in
this paper, we propose the basic constructs of type-3 fuzzy systems by extending the ideas
of type-2 fuzzy systems, and then applying them to a prediction problem.

It has been shown in several previous works that individual neural networks have
the ability to outperform statistical methods (in particular for nonlinear problems) and
ensembles (formed by sets of networks) can outperform individual neural networks. So,
for this reason, we concentrated our efforts on the aggregation part of the ensemble [15–17].
In particular, we focused on fuzzy aggregation, showing that by utilizing type-3 fuzzy logic
in the aggregation phase, we are able to outperform type-2 and type-1 fuzzy logic in time
series prediction.
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Recently, the very rapid propagation of COVID-19 occurred, including several waves,
and spreading to all continents of the world. In particular, in the case of Europe, several
countries, such as Italy, Spain, and France, were hit hard with the spread of the COVID-19
virus, with a significant number of confirmed cases and deaths [18–23]. In the case of
the American continent, the United States, Canada, and Brazil have also experienced a
significant number of cases due to the rapid spread of COVID-19 [24–26]. There are also
several recent works on the prediction and modeling of COVID-19 behavior in space and
time [27–29]. In addition, it has been recognized that the COVID-19 waves have affected
the economy (such as the Dow Jones in the USA). For this reason, we consider both time
series to test the proposed model.

The main goal of this paper is the proposal of a prediction method based on an ensemble
of neural networks with an interval type-3 fuzzy aggregator to combine the predictions
of the modules. We believe that the proposed method has the potential to work for any
complex time series and the reasoning behind this statement is as follows: It has been shown
that individual neural networks can outperform other methods in prediction and ensembles
of neural networks can outperform individual networks by having a set of predictors (such
as a group of experts) to achieve the prediction of complex time series problems. Of course,
to ensure an ensemble produces the best results, an aggregator for combining the outputs
of the modules is needed. In this case, a fuzzy system is used. In particular, a type-3 fuzzy
system is utilized to manage the uncertainty in combining the prediction of the modules,
and, in this way, the best results are obtained. In this work, we test the proposal with an
ensemble relating the prediction of COVID-19 data with the Dow Jones time series, but
other time series could be tested in the future with the same approach.

The key contribution is the proposal of mathematical definitions of interval type-3 fuzzy
theory, which were obtained by applying the extension principle to the type-2 fuzzy theory
definitions. In addition, the utilization of interval type-3 fuzzy theory in the aggregation of
neural network outputs (of an ensemble) for prediction has not been previously presented
in the literature. This paper shows that interval type-3 fuzzy theory has the potential to be
better than other methods in the literature for this task. We consider that these are important
contributions to the frontier knowledge in soft computing and its applications.

The structure of this article is defined as follows: Section 2 introduces the basic terminol-
ogy of interval type-3 fuzzy sets, Section 3 describes the proposed type-3 prediction method,
Section 4 summarizes the results, and Section 5 outlines the conclusions and future works.

2. Interval Type-3 Fuzzy Logic

Interval type-3 fuzzy logic can be viewed as an extension of the type-2 models.
We describe the basic terminology of type-3 fuzzy sets to show how it differs from its
type-2 counterpart.

Definition 1. A type-3 fuzzy set (T3 FS) [30–33], denoted by A(3), is represented by the
plot of a trivariate function, called the membership function (MF) of A(3), in the Cartesian
product X× [0, 1]× [0, 1] in [0, 1], where X is the universe of the primary variable of A(3),
x. The MF of µA(3) is formulated by µA(3)(x, u, v) (or µA(3) for short) and it is called a type-3
membership function (T3 MF) of the T3 FS:

µA(3) : X× [0, 1]× [0, 1]→ [0, 1]
A(3) =

{(
x, u(x), v(x, u), µA(3)(x, u, v)

) ∣∣ x ∈ X, u ∈ U ⊆ [0, 1], v ∈ V ⊆[0, 1]
} (1)

where U is the universe for the secondary variable u and V is the universe for the tertiary
variable v. If the tertiary MF is uniformily equal to 1, then we have an interval type-3 fuzzy
set (IT3 FS) with interval type-3 MF (IT3MF).

Figure 1 illustrates IT3 FS with IT3MF µ̃(x, u), where µ(x, u) is the LMF and µ(x, u) is
the UMF. The embedded secondary T1 MFs in x′ of A and A are f

x′
(u) and f x′(u).
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Figure 1. Fuzzy set with an IT3 MF µ̃(x, u).

In this case, we utilize interval type-3 MFs that are scaled Gaussians in the primary and
secondary, respectively. This function can be represented as, µ̃A(x, u) = ScaleGaussScaleGauss
IT3MF, with a Gaussian footprint of uncertainty FOU(A), characterized by the parameters [σ, m]
(UpperParameters) for the upper membership function (UMF) and the parameters λ (LowerScale)
and ` (LowerLag) for the lower membership function (LMF) to form the DOU = [µ(x), µ(x)]. The
vertical cuts A(x)(u) characterize the FOU(A), and are IT2 FSs with Gaussian IT2 MFs, µA(x)(u)
with parameters [σu,m(x)] for the UMF and LMF λ (LowerScale), ` (LowerLag). The IT3 MF,
µ̃A(x, u) = ScaleGaussScaleGaussIT3MF(x,{{[σ, m]}, λ, `}) is described with the following equations:

u(x) = exp

[
−1

2

(
x−m

σ

)2
]

(2)

u(x) = λ·exp

[
−1

2

(
x−m

σ∗

)2
]

(3)

where σ∗ = σ
√

ln(`)
ln(ε) and ε is the machine epsilon. If ` = 0, then σ∗ = σ. Then, u(x) and u(x)

are the upper and lower limits of the DOU. The range δ(u) and radius σu of the FOU are:

δ(u) = u(x)− u(x) (4)

σu =
δ(u)
2
√

3
+ ε (5)

The apex or core, m(x), of the IT3 MF µ̃(x, u) is defined by the expression:

m(x) = exp

[
−1

2

(
x−m

ρ

)2
]

(6)

where ρ = (σ + σ∗)/2. Then, the vertical cuts with IT2 MF, µA(x)(u) =
[

µA(x)
(u), µA(x)(u)

]
,

are described by the equations:

µA(x)(u) = exp

[
−1

2

(
u− u(x)

σu

)2
]

(7)
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µA(x)
(u) = λ·exp

[
−1

2

(
u− u(x)

σ∗u

)2
]

(8)

where σ∗u = σu

√
ln(`)
ln(ε) . If ` = 0, then σ∗u = σu. Then, µA(x)(u) and µA(x)

(u) are the UMF

and LMF of the IT2 FSs of the vertical cuts of the secondary IT2MF of the IT3 FS.
The interval type-3 fuzzy logic system (IT3 FLS) structure contains the same main

components (fuzzifier, rule base, inference machine and, in the final stage, an output
processing unit) as its analogous T2 FLSs. While in the case of T2 FLSs the final stage
consists of the process of type reduction to T1 FS + defuzzification, in the case of an IT3
FLS, the output processor consists of type reduction to IT2 FS + defuzzification. The fuzzy
operators of the inference machine of an IT3 FLS and the type reduction methods are
equivalent to a T2 FLS, except that in the inputs and outputs, we have IT3 FSs in an IT3 FLS.

3. Proposed Method

The method consists of utilizing two neural networks and then combining their
outputs with an interval type-3 fuzzy system to obtain a revised and improved forecast
of one of the time series by taking into account the influence of the other series. Figure 2
illustrates the architecture of the proposed method, where we can appreciate that two time
series enter the two modules (neural networks NN1 and NN2) and individual predictions
P1 and P2 are obtained with corresponding increments ∆P1 and ∆P2, respectively. Then,
these increments are the inputs to the fuzzy system for aggregation, which are obtained
after the inference process and increment for the time series number 1, and, finally, the
prediction is computed.
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Figure 2. Architecture of the proposed ensemble with type-3 fuzzy response aggregation.

The fuzzy rules for the aggregation of the results with two modules are:

1. If (∆P1 is high) and (∆P2 is low), then (∆P is positive).
2. If (∆P 1 is high) and (∆P2 is medium), then (∆P is negative small).
3. If (∆P1 is high) and (∆P2 is high), then (∆P is negative large).
4. If (∆P 1 is medium) and (∆P 2 is low), then (∆P is positive).
5. If (∆P1 is medium) and (∆P2 is medium), then (∆P is negative small).
6. If (∆P1 is medium) and (∆P2 is high), then (∆P is negative large).
7. If (∆P1 is low) and (∆P2 is low), then (∆P is positive).
8. If (∆P1 is low) and (∆P2 is medium), then (∆P is negative small).
9. If (∆P1 is low) and (∆P2 is high), then (∆P is negative large).

The design of the fuzzy rules is based on general knowledge of training neural net-
works with time series data. It is known that when two different time series are related,
their prediction can be improved by taking into account their interrelations. The fuzzy
rules are established based on this general knowledge, so that they reflect that when the
time series number two increases, this makes the time series one decrease and the vice
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versa. This general knowledge was used in proposing the fuzzy rules. The interval type-3
system (seen in Figure 3) has as input the increment in the prediction values of each neural
network, P1 and P2, respectively. After the defuzzification, the type-3 system has as output
the corresponding increment in the time series number 1. The proposed approach is tested
using two time series that are supposed to be related; if we combine their information, the
prediction can be improved. In particular, we consider the Dow Jones index as the first time
series, and the time series of COVID-19 cases as the second one; considering their relation,
the prediction of the Dow Jones can be improved.
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We note that although the previous explanation and description of the applies to two
time series, this approach could be generalized or extended to any number of related time
series. Of course, the number of neural modules and the number of fuzzy rules will increase
accordingly. In this situation, a metaheuristic could be utilized to automate the process of
generating the structure and rules for particular situations.

In Table 1, we show the specific parameters of the MFs, which were found by trial
and error, and could be optimized in the future with metaheuristics to achieve even better
results. Basically, Table 1 shows the centers and standard deviations of the Gaussian MFs.

Regarding the lower scale (λ) and lower lag (`) parameters, after experimentation to
achieve better results, they were found to be 0.9 and 0.2 for the inputs, respectively. On the
other hand, for the outputs, they were found to be 0.8 and 0.2, respectively. These values
could be optimized with a metaheuristic to further improve the results.

In Figures 4 and 5, we show the input MFs for both errors, respectively. In Figure 6,
we illustrate the output MFs, respectively. The actual IT3 MFs are three dimensional, but in
these figures, a view on the plane is shown for simplicity.
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Table 1. Parameter values for the Gaussian MFs used in the linguistic values (center and standard deviations).

Variable Membership Function σ m

Input 1 small 0.127 0.00
Input 1 medium 0.13 0.50
Input 1 high 0.25 1.00
Input 2 small 0.20 0.00
Input 2 medium 0.15 0.50
Input 2 high 0.30 1.00

Output 1 low 0.15 −1.00
Output 1 medium 0.18 −0.50
Output 1 high 0.25 1.00
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In Figure 8, we illustrate the inference for a particular value of one of the inputs,
and in Figure 9, the type-reduction and defuzzification are shown. We implemented the
operations corresponding with type-3 to achieve these results using the computer programs
in Matlab.
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Figure 9. Type reduction and defuzzification for a particular x value.

4. Simulation Results

The experiments were performed with a dataset from the Humanitarian Data Exchange
(HDX) [18], which includes COVID-19 data from countries of cases that occurred from
January of 2020 to May, 2021 In addition, the Dow Jones time series for the same period
of time was collected for use in the experiments [34]. Three different periods of 15 days
were used for the testing stage. The first period is from 4 July to 18 July of 2021, the
second period is 25 September to 9 October of 2021, and the third one is from 13 January to
27 January of 2022. The main idea is that the Dow Jones forecast can be improved by taking
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into account the influence of the COVID-19 time series for the USA, as the pandemic affected
the economies of countries. The fuzzy aggregator is used to combine the information of the
prediction of both time series to obtain a revised and improved prediction of the Dow Jones.

The two modules of the neural network were trained with the COVID-19 time series and
Dow Jones data from January of 2020 to May, 2021, respectively. Recurrent neural networks
were used, with 3 delays, 300 epochs of training, and backpropagation with momentum
learning and an adaptive learning rate. Three layers were used in each of the networks.

Table 2 shows the forecasts of the two neural networks (Dow Jones NN and COVID
NN), and the obtained increments of both time series (Inc Dow Jones and Inc COVID),
which are the inputs to the type-3 fuzzy system. Finally, the forecast obtained with the
type-3 fuzzy aggregator is shown (Dow Jones IT3) and the real value of the Dow Jones for
comparison. In Figure 10, we illustrate the prediction with the interval type-3 and neural
networks compared with the real data of the Dow Jones for this first testing period from
4 to 18 July 2021. Table 3 shows the forecasts, in the same way, for the second period from
25 September to 9 October of 2021, and Figure 11 illustrates a comparison of the prediction
compared and the real values. Finally, Table 4 shows the Dow Jones forecast for the third
period from 13 January to 27 January of 2022 and Figure 12 illustrates the prediction.

Table 2. Forecasts of the neural networks and aggregation by the interval type-3 fuzzy system for the
period of 4 July to 18 July of 2021.

Dow Jones NN Inc Dow Jones COVID NN Inc COVID Dow Jones IT3 Dow Jones Real

34,349.25 0.0664 33,849,760 0.0007 34,948.49 34,421.93
34,137.63 0.2917 33,861,363 0.0973 35,536.12 34,870.16
34,477.83 0.4690 33,895,756 0.2887 35,113.13 34,996.18
34,665.86 0.2592 33,921,173 0.2133 34,697.25 34,888.79
34,598.99 0.0921 33,946,079 0.2090 35,257.75 34,933.23
34,614.08 0.0208 34,015,922 0.5863 34,894.75 34,987.02
34,664.91 0.0700 34,015,183 0.0062 34,247.86 34,687.85
34,422.15 0.3347 34,023,764 0.0720 33,628.03 33,962.04
33,696.86 1.0000 34,068,368 0.3744 33,999.74 34,511.99
34,055.52 0.4945 34,101,607 0.2790 34,436.44 34,798.00
34,419.24 0.5014 34,141,916 0.3383 34,820.19 34,823.35
34,494.41 0.1036 34,182,819 0.3433 34,439.27 35,061.55
34,695.49 0.2772 34,301,941 1.0000 34,862.25 35,144.31
34,803.33 0.1486 34,297,819 0.0346 35,488.40 35,058.52
34,748.02 0.0762 34,317,020 0.1611 34,927.89 34,930.93

Table 3. Forecasts of the neural networks and aggregation by the interval type-3 fuzzy system for the
period of 25 September to 9 October of 2021.

Dow Jones NN Inc Dow Jones COVID NN Inc COVID Dow Jones IT3 Dow Jones Real

35,846.72 0.3971 42,945,142 0.9286 35,759.14 36,053.09
35,937.04 0.5319 42,956,944 0.0585 35,911.26 36,157.02
36,012.04 0.4416 42,963,958 0.0347 36,063.11 36,124.66
36,010.28 0.0103 43,165,597 1.0000 36,045.81 36,329.07
36,106.41 0.5661 43,282,333 0.5789 35,960.82 36,431.39
36,182.72 0.4494 43,384,050 0.5044 35,875.72 36,320.50
36,144.14 0.2272 43,485,767 0.5044 35,790.21 36,079.54
36,007.92 0.8022 43,648,660 0.8078 35,712.82 35,921.24
35,884.66 0.7259 43,652,130 0.0172 35,851.73 36,100.37
35,954.61 0.4119 43,655,554 0.0169 36,002.58 36,087.98
35,975.10 0.1206 43,841,478 0.9220 35,980.98 36,144.13
36,001.28 0.1541 43,938,298 0.4801 35,895.52 35,931.52
35,896.29 0.6183 44,035,711 0.4831 35,743.67 35,871.34
35,826.56 0.4106 44,129,867 0.4669 35,658.40 35,602.18
35,656.76 1.0000 44,263,637 0.6634 35,573.42 35,619.26
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Figure 11. Forecast of Dow Jones for the second period.

Table 4. Forecasts of the neural networks and aggregation by the interval type-3 fuzzy system for the
period of 13 January to 27 January of 2022.

Dow Jones NN Inc Dow Jones COVID NN Inc COVID Dow Jones IT3 Dow Jones Real

35,708.46 1.0000 61,193,732 0.4173 35,951.24 36,231.53
35,680.58 0.0568 61,859,887 0.6109 35,705.81 36,067.75
35,578.43 0.2083 62,512,122 0.5981 35,459.80 36,251.7
35,666.52 0.1796 62,608,798 0.0886 35,868.95 36,290.71
35,714.28 0.0973 62,857,485 0.2280 36,225.59 36,114.94
35,612.50 0.2075 63,468,896 0.5607 35,979.53 35,911.28
35,455.57 0.3200 64,559,291 1.0000 35,903.62 35,369.39
35,040.59 0.8462 65,381,414 0.7539 35,670.02 35,029.17
34,671.35 0.7530 65,738,705 0.3276 35,394.68 34,714.14
34,333.13 0.6897 66,300,125 0.5148 35,147.79 34,265.50
33,853.37 0.9784 66,301,034 0.0008 34,707.74 34,366.67
33,844.16 0.0187 66,423,477 0.1122 34,273.53 34,296.74
33,799.14 0.0918 67,335,050 0.8360 34,519.54 34,166.84
33,656.33 0.2912 67,698,546 0.3333 34,241.95 34,160.51
33,617.53 0.0791 68,105,464 0.3731 34,598.59 34,396.39
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Figure 12. Forecast of Dow Jones for the third period.

Additionally, we consider another simulation set up by changing the lower scale (λ)
and lower lag (`) parameter values in all MFs, which are now considered to be 0.8 and
0.3, respectively. In Table 5, a comparison of the prediction results for the 15 days with the
previous parameter values (0.9 and 0.2) shown in Tables 2–4, and the new results with the
new parameters (0.8 and 0.3) for the three periods are shown. It can be appreciated that the
results only show slight changes, showing the robustness of the proposed method.

Table 5. Comparison of the results for the three periods with different parameter values.

Period 1 Period 2 Period 3

Day
Forecast
λ = 0.9
` = 0.2

Forecast
λ = 0.8
` = 0.3

Real
Values of
Period 1

Forecast
λ = 0.9
` = 0.2

Forecast
λ = 0.8
` = 0.3

Real
Values of
Period 2

Forecast
λ = 0.9
` = 0.2

Forecast
λ = 0.8
` = 0.3

Real
Values of
Period 3

1 34,948.49 34,951.46 34,421.93 35,759.14 35,759.92 36,053.09 35,951.24 35,951.78 36,231.53
2 35,536.12 35,537.21 34,870.16 35,911.26 35,912.87 36,157.02 35,705.81 35,706.35 36,067.75
3 35,113.13 35,113.78 34,996.18 36,063.11 36,065.49 36,124.66 35,459.80 35,460.24 36,251.70
4 34,697.25 34,698.92 34,888.79 36,045.81 36,048.92 36,329.07 35,868.95 35,872.34 36,290.71
5 35,257.75 35,275.60 34,933.23 35,960.82 35,963.95 36,431.39 36,225.59 36,238.39 36,114.94
6 34,894.75 34,912.66 34,987.02 35,875.72 35,878.85 36,320.50 35,979.53 35,992.23 35,911.28
7 34,247.86 34,262.80 34,687.85 35,790.21 35,793.29 36,079.54 35,903.62 35,918.28 35,369.39
8 33,628.03 33,640.26 33,962.04 35,712.82 35,716.08 35,921.24 35,670.02 35,684.29 35,029.17
9 33,999.74 34,010.26 34,511.99 35,851.73 35,854.36 36,100.37 35,394.68 35,409.05 34,714.14

10 34,436.44 34,449.64 34,798.00 36,002.58 36,005.85 36,087.98 35,147.79 35,161.91 34,265.50
11 34,820.19 34,831.28 34,823.35 35,980.98 35,985.07 36,144.13 34,707.74 34,719.66 34,366.67
12 34,439.27 34,452.54 35,061.55 35,895.52 35,899.73 35,931.52 34,273.53 34,282.26 34,296.74
13 34,862.25 34,875.96 35,144.31 35,743.67 35,747.12 35,871.34 34,519.54 34,528.37 34,166.84
14 35,488.40 35,504.43 35,058.52 35,658.40 35,661.95 35,602.18 34,241.95 34,251.03 34,160.51
15 34,927.89 34,927.75 34,930.93 35,573.42 35,576.98 35,619.26 34,598.59 34,617.08 34,396.39

From the previous tables, we can conclude that the prediction with the interval type-3
fuzzy approach for the aggregation of neural networks is a good alternative in the prediction
of complex time series, such as COVID-19 and the Dow Jones. In particular, for the third
period, the prediction error of the Dow Jones is less than 1% on most days of the period,
with some days with errors in the range of 0.3 to 0.6%. We note that previous studies
with type-2 and type-1 fuzzy or even stand-alone neural networks could not achieve these
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values. The proposed approach can be extended to problems with multiple time series by
using more neural networks and utilizing a fuzzy aggregator with more fuzzy rules.

5. Conclusions

In this work a new approach for type-3 fuzzy aggregation of neural networks was
outlined. The main idea is to combine the predictions of related time series to improve the
final predictions. In our approach, a fuzzy system is utilized to consider the predictions of
neural networks as the inputs in the combination process to obtain a revised and improved
prediction. The uncertainty in the process of aggregation is modeled with the interval
type-3 fuzzy system as, theoretically, it should handle this better than the type-2 and type-1
fuzzy systems. The simulation results of the Dow Jones and COVID-19 time series showed
the potential of the approach to outperform other methods. As future work, we plan to use
our approach in other applications, such as the ones discussed in [35,36]. Moreover, we
plan to optimize the type-3 system using metaheuristics to improve the results. In addition,
we will formulate a general method to consider the problems of multiple time series (more
than two), where we could automate the generation of the optimal fuzzy system (rules and
parameters). Finally, we plan to combine type-3 with other intelligent techniques to build
strong hybrid models and consider other time series prediction problems.
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