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Abstract: This article demonstrates how the new Double Laplace–Sumudu transform (DLST) is
successfully implemented in combination with the iterative method to obtain the exact solutions of
nonlinear partial differential equations (NLPDEs) by considering specified conditions. The solutions
of nonlinear terms of these equations were determined by using the successive iterative procedure.
The proposed technique has the advantage of generating exact solutions, and it is easy to apply
analytically on the given problems. In addition, the theorems handling the mode properties of the
DLST have been proved. To prove the usability and effectiveness of this method, examples have been
given. The results show that the presented method holds promise for solving other types of NLPDEs.

Keywords: double Laplace–Sumudu transform; single Laplace transform; single Sumudu transform;
new iterative method; nonlinear partial differential equations
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1. Introduction

Many nonlinear phenomena are an essential part of applied science and engineering.
Nonlinear equations are observed in different types of physics-related problems: fluid
dynamics, plasma physics, solid mechanics, quantum field theory, wave propagation in
shallow water, and many others. The models are controlled in their range of validity by
partial differential equations. The widespread use of these equations is the main reason
why mathematicians have become aware of them. Nevertheless, it is neither numerically
nor theoretically easy to find a solution to these mathematical problems. In the latest
studies, much attention has been paid to obtaining exact or approximate solutions to these
types of equations.

It is, therefore, becoming familiar with all analytical and numerical methods and the
newly developed methods for solving nonlinear partial differential equations is increas-
ingly important: for example, the Adomian decomposition method [1–7], the variational
iteration method [8,9], the homotopy perturbation method [10], and the reduced differential
transform method [11–19] and others [19–22].

Recently, a new double integral transform called DLST has been successfully imple-
mented to solve some integral and partial differential equations [23–26]. Furthermore,
in [27–33] an attractive formula for the DLST of the Caputo fractional derivative was
obtained and used to construct a series for some families of linear fractional differen-
tial equations. Unfortunately, this transformation does not solve nonlinear problems or
many complex mathematical models like other integral transforms. As a result, some
researchers have combined these integral transforms with other methods such as the
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differential transform method, the homotopy perturbation method, the Adomian decom-
position method, and the variational iteration method [34–40] for solving many nonlinear
differential equations.

In the present study, we consider the general nonlinear partial differential equa-
tion, which covers the majority of the nonlinear partial differential equations solved
in [30,32,33,35,36], of the following form:

N

∑
n=0

cn
∂nψ(y, t)

∂tn +
M

∑
m=1

dm
∂mψ(y, t)

∂ym +N [ψ(y, t)] = g(y, t), (y, t) ∈ R2
+, (1)

with the initial conditions (ICs)

∂nψ(y, 0)
∂tn = fn(y), n = 0, 1, . . . , N − 1, y ∈ R+, (2)

and the conditions

∂mψ(0, t)
∂ym = hm(t), m = 0, 1, . . . , M− 1, t ∈ R+, (3)

where cn, 0 ≤ n ≤ N and dm, 1 ≤ m ≤ M are the given coefficients and N and M are
positive integers. N [ψ(y, t)] is nonlinear term, and g(x, t) is the source term in the following
form g(x, t) = g1(x, t) + g2(x, t).

The main aim of this study is to use the DLST method, including the new iterative
method (NIM) planned by Daftardar-Gejji and Jafari in [39], to seek out an exact solu-
tion of the nonlinear partial differential equations of type (1) subject to ICs (2) and the
conditions (3). The new iterative method (NIM) has been extensively employed by sev-
eral researchers for the treatment of linear and nonlinear ordinary and partial differential
equations of integer and fractional order (see [41–45]). The advantage of the DLST method
coupled with the iterative method is that, compared to other known methods (see [45,46]),
it provides fast convergence of the exact solution without any restrictive assumptions about
the solution. The aim of this study is to present a faster method to find the exact solution of
nonlinear PDE via DLST.

The following things will be discussed in the remaining parts of this paper: Section 2
includes basic definitions, properties, and theorems of the DLST. Section 3 of this paper pro-
vides the description of the model and the method for obtaining exact analytical solutions
of the given nonlinear PDEs using the DLST coupled with an iterative method. Section 4
shows the application of the proposed method to six illustrative examples in order to show
its liability, convergence, and efficiency. Finally, Section 5 contains concluding remarks.

2. Basic Definitions and Theorems

This section covers basic definitions of the DLST for some functions of two variables,
the existence and the uniqueness conditions for the DLST, and some properties of the DLST
for derivatives. For more details about DLST, see [24–26].

Definition 1. Let ψ(y, t) a piecewise function defined on a region [0, A]× [0, B], then the DLST
of ψ(y, t) is denoted by LySt [ψ(y, t)] = ψ̃(υ, ω) and is defined as follows:

LySt[ψ(y, t)] = ψ̃(υ, ω) =
1
ω

∞∫
0

∞∫
0

e−υy− t
ω ψ(y, t)dydt, (4)

where y, t ≥ 0, and v and ω are complex variables, provided that the integral exists.
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The relationship below clearly demonstrates the linearity of DLST:

LySt[λψ(y, t)+ µζ(y, t)] =
1
ω

∞∫
0

∞∫
0

e−υy− t
ω [λψ(y, t) + µζ(y, t)]dydt

=
1
ω

∞∫
0

∞∫
0

e−υy− t
ω λψ(y, t)dydt +

1
ω

∞∫
0

∞∫
0

e−υy− t
ω µζ(y, t)dydt

=
λ

ω

∞∫
0

∞∫
0

e−υy− t
ω ψ(y, t)dydt +

µ

ω

∞∫
0

∞∫
0

e−υy− t
ω ζ(y, t)dydt

= λLySt[ψ(y, t)] + µLySt[ζ(y, t)].

(5)

where λ and µ are nonzero constants.

Definition 2. The inverse DLST L−1
y S−1

t [
∼
ψ(υ, ω)] = ψ(y, t) is defined by the following.

L−1
y S−1

t
[
ψ̃(υ, ω)

]
= ψ(y, t) =

1
2πi

∫ γ+i∞

γ−i∞
eυydυ

1
2πi

∫ η+i∞

η−i∞

1
ω

e
t
ω ψ̃(υ, ω)dω. (6)

2.1. Fundamental Properties of the DLST

In Table 1, we introduce the DLST for some functions of two variables, which can be
found in [24,25].

Table 1. The DLST for some functions of two variables [24,25].

ψ(y, t) LySt[ψ(y, t)] = ψ̃(υ, ω)

1
1
υ

yctd, if c and d are positive integral
c!d!

υc+1 ωd

ecy+dt 1
(υ−c)(1−dω)

sin(cy + dt)
c+dυω

(υ2+c2)(1+d2ω2)

cos(cy + dt)
υ−cdω

(υ2+c2)(1+d2ω2)

sin h(cy + dt)
c+dυω

(υ2−c2)(1−d2ω2)

cos h(cy + dt)
υ+cdω

(υ2−c2)(1−d2ω2)

J0(c
√

yt), where J0(y) is the modified Bessel function of order zero
4

4υ+ωc2

f (y)g(t) Ly[ f (y)]St[g(t)]

2.2. Existence and Uniqueness Conditions for the DLST

If function ψ(y, t) is of exponential order c and d at y→ ∞ and t→ ∞ , then there
exist a nonnegative constant K such that ∀y > Y and t > T; we have the following:

|ψ(y, t)| ≤ Kecy+dt,

and we write the following:
ψ(y, t) = O(ecy+dt)

as y and t tend to infinity or the following is obtained.

lim
y→∞,t→∞

e−υy− t
ω |ψ(y, t)| = K lim

y→∞,t→∞
e−(υ−c)y−( 1

ω−d)t = 0, υ > c,
1
ω

> d.

Then, ψ is the exponential order as y and t tend to infinity.
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Theorem 1. (Existence). Let ψ(y, t) be defined on region (0, Y)× (0, T) of exponential order c
and d, then the DLST of ψ(y, t) defined for all υ and 1

ω supplied Re[υ] > c and Re
[

1
ω

]
> d.

Proof of Theorem 1. We find, from definition 1, the following.

∣∣ψ̃(υ, ω)
∣∣ =

∣∣∣∣∣∣ 1
ω

∞∫
0

∞∫
0

e−υy− t
ω ψ(y, t)dydt

∣∣∣∣∣∣ ≤ K
∞∫

0

e−(υ−c)ydy
∞∫

0

1
ω e−(

1
ω−d)tdt

= K
(υ−c)(1−dω)

, Re[υ] > c, Re
[

1
ω

]
> d.

(7)

Thus, from Equation (7), we obtain the following.

lim
y→∞,t→∞

∣∣ψ̃(υ, ω)
∣∣ = 0, or lim

y→∞,t→∞
ψ̃(υ, ω) = 0.

�

Theorem 2. (Uniqueness). Let φ̃1(υ, ω) and φ̃2(υ, ω) be the DLST of the continuous func-
tions φ1(y, t) and φ2(y, t) defined for y, t ≥ 0, respectively. If φ̃1(υ, ω) = φ̃2(υ, ω), then
φ1(y, t) = φ2(y, t) .

In the following arguments, we present some properties of the DLST for derivatives.

2.3. Properties of Derivatives

Let ψ̃(υ, ω) = LySt[ψ(y, t)], then the following is the case.

LySt

[
∂ψ(y, t)

∂y

]
= υψ̃(υ, ω)− S[ψ(0, t)]. (8)

LySt

[
∂ψ(y, t)

∂t

]
=

1
ω

ψ̃(υ, ω)− 1
ω

L(ψ(y, 0)) (9)

LySt

[
∂2ψ(y, t)

∂y2

]
= υ2ψ̃(υ, ω)− υS(ψ(0, t))− S

(
ψy(0, t)

)
(10)

LySt

[
∂2ψ(y, t)

∂t2

]
=

1
ω2 ψ̃(υ, ω)− 1

ω2 L(ψ(y, 0))− 1
ω

L(ψt(y, 0)). (11)

Proof. In order to prove Equation (8), consider the following.

LySt

[
∂ψ(y, t)

∂y

]
=

1
ω

∞∫
0

∞∫
0

e−υy− t
ω

∂ψ(y, t)
∂y

dydt =
1
ω

∞∫
0

e−
t
ω dt


∞∫

0

e−υy ∂ψ(y, t)
∂y

dy

.

Let u = e−υy, dv = ∂ψ(y,t)
∂y dy; thus, we have the following.

LySt

[
∂ψ(y, t)

∂y

]
=

1
ω

∞∫
0

e−
t
ω dt

−ψ(0, t) + υ

∞∫
0

e−υyψ(y, t)dy

 = υψ̃(υ, ω)− S(ψ(0, t)).

For Equation (9), we obtain the following.

LySt

[
∂ψ(y, t)

∂t

]
=

1
ω

∞∫
0

∞∫
0

e−υy− t
ω

∂ψ(y, t)
∂t

dydt =
1
ω

∞∫
0

e−υydy


∞∫

0

e−
t
ω

∂ψ(y, t)
∂t

dt

.



Axioms 2022, 11, 247 5 of 16

Let u = e−
t
ω , dv = ∂ψ(y,t)

∂t dt, then

LySt

[
∂ψ(y, t)

∂t

]
=

1
ω

∞∫
0

e−υydy

−ψ(y, 0) +
1
ω

∞∫
0

e−
t
ω ψ(y, t)dt

 =
1
ω

ψ̃(υ, ω)− 1
ω

L(ψ(y, 0)).

It is simple to demonstrate Equations (10) and (11).
In general, the above results can be extended as follows, and the proof can be shown

by mathematical induction.

LySt

[
∂nψ(y, t)

∂tn

]
= ω−nψ̃(υ, ω)−

n−1

∑
j=0

ω−n+jLy

[
∂jψ(y, 0)

∂tj

]
. (12)

LySt

[
∂mψ(y, t)

∂ym

]
= υmψ̃(υ, ω)−

m−1

∑
k=0

υm−1−kSt

[
∂kψ(0, t)

∂yk

]
. (13)

�

The following results are some properties of the DLST and that can be found in [14–16].

Property 1. (Changing of scale property). If ψ̃(υ, ω) = LySt[ψ(y, t)], then we have the following.

LySt[ψ(cy, dt)] =
1
cd

ψ̃
(υ

c
,

ω

d

)
. (14)

Proof. According to definition 1, the following is the case.

LySt[ψ(cy, dt)] =
1
ω

∫ ∞

0

∫ ∞

0
e−υy− t

ω ψ(cy, dt)dydt. (15)

Suppose x = cy and z = dt in Equation (15), we obtain the following.

LySt[ψ(cy, dt)] =
1
cd

∫ ∞

0

∫ ∞

0

1
ω

e−υ x
c−

z
dω ψ(x, z)dxdz =

1
cd

ψ̃
(υ

c
,

ω

d

)
.

�

Property 2. (First shifting property). If ψ̃(υ, ω) = LySt[ψ(y, t)], then the following is obtained.

LySt

[
ecy+dtψ(y, t)

]
=

1
1− dω

ψ̃

(
υ− c,

ω

1− dω

)
. (16)

For proof, see [24].

Property 3. (Second shifting property). If ψ̃(υ, ω) = LySt[ψ(y, t)], then the following is obtained.

LySt[ψ(y− δ, t− ε)H(y− δ, t− ε)] = e−υδ− ε
ω ψ̃(υ, ω), (17)

H(y− δ, t− ε) =

{
1, y > δ, t > ε
0, otherwise

}
. (18)

For the proof, see [24,25].

Property 4. (Convolution).
If LySt[φ(y, t)] = φ̃(υ, ω) and LySt[ψ(y, t)] = ψ̃(υ, ω), then the following is the case:

LySt[(φ∗∗ψ)(y, t)] = ωφ̃(υ, ω)ψ̃(υ, ω). (19)
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where the following is obtained.

(φ∗∗ψ)(y, t) =

y∫
0

t∫
0

φ(y− δ, t− ε)ψ(δ, ε)dδdε. (20)

For the proof, see [14,15,17].

3. Principle of the DLST-Iterative (DLST-I) Method

In this section, we introduce a new approach for solving PDEs, which is the DLST-I
method. The main idea of this technique is to apply DLST on the given PDE to obtain the
equation in a new space. Then, we use the iterative method to decompose nonlinear terms
and solve the equation.

Finally, we apply the inverse DLAT to obtain the solution of the target equation in the
original space.

Applying DLST on Equation (1), we obtain the following.

N

∑
n=0

cn

[
ω−nψ̃(υ, ω) −

n−1

∑
j=0

ω−n+jLy

[
∂jψ(y,0)

∂tj

]+ M

∑
m=1

dm

υmψ̃(υ, ω)−
m−1

∑
k=0

υm−1−kSt

[
∂kψ(0,t)

∂yk

]
+LySt[Nψ(y, t)] = g̃1(υ, ω) + LySt[g2(y, t)].

(21)

Using the single (LT) for ICs (2) and the single (ST) for the conditions in Equation (3),
we obtain the following.

Ly

[
∂nψ(y, 0)

∂tn

]
= fn(υ), n = 0, 1, . . . , N − 1, St

[
∂mψ(0, t)

∂ym

]
= hm(ω),

m = 0, 1, . . . , M− 1.
(22)

By substituting Equation (22) in Equation (21), we have the following.

N

∑
n=0

cn

[
ω−nψ̃(υ, ω) −

n−1

∑
j=0

ω−n+j f j(υ)


+

M

∑
m=1

dm

υmψ̃(υ, ω)−
m−1

∑
k=0

υm−1−khk(ω)


= g̃1(υ, ω) + LySt[g2(y, t)−N [ψ(y, t)]].

(23)

Simplifying Equation (23), we obtain the following.

ψ̃(υ, ω) =

 N

∑
n=0

cnω−n +
M

∑
m=1

dmυm

−1 N
∑

n=0
cn

n−1

∑
j=0

σ−n+j f j(υ)


+

M

∑
m=1

dm

(
m−1
∑

k=0
υm−1−khk(ω)

)
+ g̃1(υ, ω)


+

 N

∑
n=0

cnω−n +
M

∑
m=1

dmυm

−1

LySt[g2(y, t)−N [ψ(y, t)]].

(24)
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Taking the inverse LSTD Ly
−1St

−1[ψ̃(υ, ω)
]

of Equation (24), we obtain the following.

ψ(y, t) = Ly
−1St

−1


 N

∑
n=0

cnω−n +

M

∑
m=1

dmυm

−1


N

∑
n=0

cn

n−1

∑
j=0

σ−n+j f j(υ)


+

M

∑
m=1

dm

m−1

∑
k=0

υm−1−khk(ω)

+ g̃1(υ, ω)




+Ly
−1St

−1


 N

∑
n=0

cnω−n +

M

∑
m=1

dmυm

−1

LySt[g2(y, t)−N [ψ(y, t)] ]

.

(25)

Now, use the iterative approach by assuming the following.

ψ(y, t) =
∞

∑
i=0

ψi(y, t). (26)

Substituting Equation (26) in Equation (25), we obtain the following.

∞

∑
i=0

ψi(y, t) = Ly
−1St

−1


 N

∑
n=0

cnω−n +

M

∑
m=1

dmυm

−1


N

∑
n=0

cn

n−1

∑
j=0

σ−n+j f j(υ)


+

M

∑
m=1

dm

m−1

∑
k=0

υm−1−khk(ω)

+ g̃1(υ, ω)


]

+Ly
−1St

−1


 N

∑
n=0

cnω−n +

M

∑
m=1

dmυm

−1

LySt[g2(y, t)−N [ψ(y, t)] ]

.

(27)

N [ψ(y, t)] is a nonlinear term that can be decomposed into the following.

N
[

∞

∑
i=0

ψi(y, t)

]
= N [ψ0(y, t)] +

∞

∑
i=1

(
N
[

i

∑
k=0

ψk(y, t)

]
−N

[
i−1

∑
k=0

ψk(y, t)

])
. (28)

Substituting Equation (28) in Equation (27), we obtain the following.

∞

∑
i=0

ψi(y, t) = Ly
−1St

−1


 N

∑
n=0

cnω−n +

M

∑
m=1

dmυm

−1


N

∑
n=0

cn

n−1

∑
j=0

σ−n+j f j(υ)


+

M

∑
m=1

dm

m−1

∑
k=0

υm−1−khk(ω)

+ g̃1(υ, ω)


]

+Ly
−1St

−1


 N

∑
n=0

cnω−n +

M

∑
m=1

dmυm

−1

LySt[g2(y, t)−N (φ0(y, t))]


−Ly

−1St
−1

 N

∑
n=0

cnω−n

+

M

∑
m=1

dmυm

−1

LySt

 ∞

∑
i=0

N

 i

∑
k=0

ψk(y, t)

−N
 i−1

∑
k=0

ψk(y, t)


.

(29)

Following that, we obtain the recurrence relations as follows.

ψ0(y, t) = Ly
−1St

−1

[ N

∑
n=0

cnω−n +
M

∑
m=1

dmυm

]−1{ N

∑
n=0

cn

(
n−1

∑
j=0

σ−n+j f j(υ)

)

+
M

∑
m=1

dm

(
m−1

∑
k=0

υm−1−khk(ω)

)
+ g̃1(υ, ω)

}]
,

(30)
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ψ1(y, t) = Ly
−1St

−1

[ N

∑
n=0

cnω−n +
M

∑
m=1

dmυm

]−1

LySt[g2(y, t) −N (φ0(y, t))]

]
, (31)

φr+1(x, t) = −Ly
−1St

−1

[[
N

∑
n=0

cnω−n

+
M

∑
m=1

dmυm

]−1

LySt

[
∞

∑
i=0

[
N
(

i

∑
k=0

ψk(y, t)

)

−N
( i−1

∑
k=0

ψk(y, t)
)]]]

, r ≥ 1.

(32)

As a result, we have the series solution of Equation (1), which is stated as follows.

ψ(y, t) = ψ0(y, t) + ψ1(y, t) + ψ2(y, t) + · · · . (33)

4. Elucidative Examples

In this section, six interesting examples of nonlinear partial differential equations are
solved to demonstrate the performance and efficiency of the DLST-I method.

Example 1. Consider the nonlinear Dissipative wave equation [1]:

∂2ψ

∂t2 −
∂2ψ

∂y2 +
∂

∂t
(
ψψy

)
= 2e−t sin y− 2e−2t sin y cos y, (34)

with ICs
ψ(y, 0) = sin y, ψt(y, 0) = − sin y, (35)

and the following conditions.
ψ(0, t) = 0, ψy(0, t) = e−t. (36)

Solution. Applying the DLST on Equation (34) and the single (LT) on Equation (35) and
the single (ST) on Equation (36), we obtain the following.

ψ̃(υ, ω) =
1

(υ2 + 1)(1 + ω)
− ω2

1− υ2ω2 LySt

[
2e−2t sin y cos y +

∂

∂t
(
ψψy

)]
. (37)

Taking the inverse DLST Ly
−1St

−1[ψ̃(υ, ω)
]

on Equation (37), we obtain the following.

ψ(y, t) = e−t sin y− Ly
−1St

−1
[

ω2

1− υ2ω2 LySt

[
2e−2t sin y cos y +

∂

∂t
(
ψψy

)]]
. (38)

Now, using the iterative approach, substitute Equation (26) in Equation (38) and use
the formulas in Equations (30)–(32); we obtain the following solution components.

ψ0(y, t) = e−t sin y, (39)

ψ1(y, t) = −Ly
−1St

−1
[

ω2

1− υ2ω2 LySt

[
2e−2t sin y cos y +

∂

∂t

[
(ψ0)(ψ0)y

]]]
= 0, (40)

ψ2(y, t) = −Ly
−1St

−1
[

ω2

1− υ2ω2 LySt

[
∂

∂t

[
(ψ0 + ψ1)(ψ0 + ψ1)y −

∂

∂t

[
(ψ0)(ψ0)y

]]]]
= 0. (41)

As a result, we have the solution of Equation (34) as follows.

ψ(y, t) = e−t sin y. (42)
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Figure 1 below, shows the solution of the initial value problem (34) and (35). �
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Figure 1. Exact solution ψ(y, t) of Example 1.

Example 2. Consider the following nonhomogeneous KdV equation [5]:

∂ψ

∂t
− ψ

∂ψ

∂y
+

∂3ψ

∂y3 = −ey(t + 1) + tey(−tey + 1), (43)

with IC
ψ(y, 0) = 1. (44)

and the following conditions.

ψ(0, t) = 1− t, ψy(0, t) = ψyy(0, t) = −t. (45)

Solution. Running the DLST on Equation (43) and the single (LT) on Equation (44) and the
single (ST) on Equation (45), we obtain the following.

ψ̃(υ, ω) =
1
υ
− ω

(υ− 1)
+

ω

(1 + ωυ3)
LySt

[
tey(−tey + 1) + ψ

∂ψ

∂y

]
. (46)

Taking the inverse DLST Ly
−1St

−1[ψ̃(υ, ω)
]

on Equation (46), we obtain the following.

ψ(y, t) = 1− tey + Ly
−1St

−1
[

ω

(1 + ωυ3)
LySt

[
tey(−tey + 1) + ψ

∂ψ

∂y

]]
. (47)

Using the iterative approach, substitute Equation (26) in Equation (47) and use
Formulas (30)–(32); we obtain the following solution components.

ψ0(y, t) = 1− tey, (48)

ψ1(y, t) = Ly
−1St

−1
[

ω

(1 + ωυ3)
LySt

[
tey(−tey + 1) + ψ0

∂ψ0

∂y

]]
= 0, (49)

ψ2(y, t) = Ly
−1St

−1
[

ω

(1 + ωυ3)
LySt

[
(ψ0 + ψ1)

∂(ψ0 + ψ1)

∂y
− ψ0

∂ψ0

∂y

]]
= 0, (50)

As a result, we have the solution of Equation (43) as follows.

ψ(y, t) = 1− tey. (51)
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Figure 2 below, shows the solution of initial value problem (43) and (44). �
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Figure 2. Exact solution ψ(y, t) of Example 2.

Example 3. Consider the non-homogeneous advection problem [35]:

∂ψ

∂t
+ ψ

∂ψ

∂y
= 2t + y + t3 + yt2, (52)

with IC.
ψ(y, 0) = 0. (53)

Solution. Taking the DLST on Equation (52) and the single (LT) on Equation (53), we obtain
the following.

ψ̃(υ, ω) =
2ω2

υ
+

ω

υ2 + ωLySt

[
t3 + yt2 − ψ

∂ψ

∂y

]
. (54)

Taking the inverse DLST Ly
−1St

−1[ψ̃(υ, ω)
]

on Equation (54), we obtain the following.

ψ(y, t) = t2 + yt + Ly
−1St

−1
[

ωLySt

[
t3 + yt2 − ψ

∂ψ

∂y

]]
. (55)

Now, using the iterative approach, substitute Equation (26) in Equation (55) and use
Formulas (30)–(32); we obtain the following solution components.

ψ0(y, t) = t2 + yt, (56)

ψ1(y, t) = Ly
−1St

−1
[

ωLySt

[
t3 + yt2 − ψ0

∂ψ0

∂y

]]
= 0. (57)

ψ2(y, t) = Ly
−1St

−1
[

ωLySt

[
(ψ0 + ψ1)

∂(ψ0 + ψ1)

∂y
− ψ0

∂ψ0

∂y

]]
= 0. (58)

As a result, we have the solution of Equation (52) as follows.

ψ(y, t) = t2 + yt. (59)

Figure 3 below, shows the solution of initial value problem (52) and (53). �
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Figure 3. Exact solution ψ(y, t) of Example 3.

Example 4. Consider the nonlinear Klein–Gordon equation [46]:

∂2ψ

∂t2 −
∂2ψ

∂y2 + ψ2 = 2y2 − 2t2 + y4t4, (60)

with the ICs
ψ(y, 0) = 0, ψt(y, 0) = 0, (61)

and the conditions.
ψ(0, t) = 0, ψy(0, t) = 0. (62)

Solution. Running DLST on Equation (60) and the single (LT) on Equation (61) and the
single (ST) on Equation (62), we obtain the following.

ψ̃(υ, ω) =
4ω2

υ3 +
ω2

1− υ2ω2 LySt

[
y4t4 − ψ2

]
. (63)

Taking the inverse DLST Ly
−1St

−1[ψ̃(υ, ω)
]

on Equation (63), we obtain the following.

ψ(y, t) = y2t2 + Ly
−1St

−1
[

ω2

1− υ2ω2 LySt

[
y4t4 − ψ2

]]
. (64)

Using the iterative approach, substitute Equation (26) in Equation (64) and use
Formulas (30)–(32); we obtain the following solution components.

ψ0(y, t) = y2t2, (65)

ψ1(y, t) = Ly
−1St

−1
[

ω2

1− υ2ω2 LySt

[
y4t4 − (ψ0)

2
]]

= 0, (66)

ψ2(y, t) = Ly
−1St

−1
[

ω2

1− υ2ω2 LySt

[
(ψ0 + ψ1)

2 − (ψ0)
2
]]

= 0. (67)

As a result, we have the solution of Equation (60) as follows.

ψ(y, t) = y2t2. (68)

Figure 4 below, shows the solution of initial value problem (60) and (61). �
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Example 5. Consider the nonhomogeneous fifth order KdV equation [6]:

∂ψ

∂t
− ψ

∂ψ

∂y
+

∂3ψ

∂y3 −
∂5ψ

∂y5 = cos y + 2t sin y +
t2

2
sin 2y, (69)

with the IC
ψ(y, 0) = 0 . (70)

and the conditions.

ψ(0, t) = t, ψy(0, t) = 0, ψyy(0, t) = −t, ψyyy(0, t) = 0, ψyyyy(0, t) = t. (71)

Solution. Running the DLST on Equation (69) and the single (LT) on Equation (70) and the
single (ST) on Equation (71), we obtain the following.

ψ̃(υ, ω) =
ωυ

(υ2 + 1)
+

ω

1 + ωυ3 −ωυ5 LySt

[
t2

2
sin 2y + ψ

∂ψ

∂y

]
. (72)

Taking the inverse DLST Ly
−1St

−1[ψ̃(υ, ω)
]

on Equation (72), we obtain the following.

ψ(y, t) = t cos y + Ly
−1St

−1
[

ω

1 + ωυ3 −ωυ5 LySt

[
t2

2
sin 2y + ψ

∂ψ

∂y

]]
. (73)

Using the iterative approach, substitute Equation (26) in Equation (73) and use
Formulas (30)–(32), we obtain the following solution components.

ψ0(y, t) = t cos y, (74)

ψ1(y, t) = Ly
−1St

−1
[

ω

1 + ωυ3 −ωυ5 LySt

[
t2

2
sin 2y + ψ0

∂ψ0

∂y

]]
= 0, (75)

ψ2(y, t) = Ly
−1St

−1
[

ω

1 + ωυ3 −ωυ5 LySt

[
(ψ0 + ψ1)

∂(ψ0 + ψ1)

∂y
− ψ0

∂ψ0

∂y

]]
= 0. (76)

As a result, we have the solution of Equation (69) as follows

ψ(y, t) = t cos y (77)

Figure 5 below, shows the solution of initial value problem (69) and (70). �



Axioms 2022, 11, 247 13 of 16

Axioms 2022, 11, x FOR PEER REVIEW 13 of 16 
 

𝜓(𝑦, 𝑡) = 𝑡 cos 𝑦 (77) 

Figure 5 below, shows the solution of initial value problem (69) and (70). 

 

Figure 5. Exact solution 𝜓(𝑦, 𝑡) of Example 5. 

□ 

Example 6: Consider the following non-linear telegraph equation [45]: 

𝜕2𝜓

𝜕𝑦2
=

𝜕2𝜓
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+ 2

𝜕𝜓

𝜕𝑡
+ 𝜓2 + 𝑒𝑦−2𝑡 − 𝑒2𝑦−4𝑡, (78) 

with the ICs 

𝜓(𝑦, 0) = 𝑒𝑦, 𝜓𝑡(𝑦, 0) = −2𝑒𝑦, (79) 

and the conditions. 

𝜓(0, 𝑡) = 𝜓𝑦(0, 𝑡) = 𝑒−2𝑡. (80) 
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�̃�(𝜐, 𝜔) =
1

(𝜐 − 1)(1 + 2𝜔)
+

𝜔2

(𝜔2𝜐2 − 2𝜔 − 1)
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Taking the inverse DLST 𝐿𝑦
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following. 

𝜓(𝑦, 𝑡) = 𝑒𝑦−2𝑡 + 𝐿𝑦
−1𝑆𝑡

−1 [
𝜔2

(𝜔2𝜐2 − 2𝜔 − 1)
𝐿𝑦𝑆𝑡[𝜓2 − 𝑒2𝑦−4𝑡]]. (82) 
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)
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Figure 5. Exact solution ψ(y, t) of Example 5.

Example 6. Consider the following non-linear telegraph equation [45]:

∂2ψ

∂y2 =
∂2ψ

∂t2 + 2
∂ψ

∂t
+ ψ2 + ey−2t − e2y−4t, (78)

with the ICs
ψ(y, 0) = ey, ψt(y, 0) = −2ey, (79)

and the conditions.
ψ(0, t) = ψy(0, t) = e−2t. (80)

Solution. Applying the DLST on Equation (78) and the single (LT) on Equation (79) and
the single (ST) on Equation (80), we obtain the following.

ψ̃(υ, ω) =
1

(υ− 1)(1 + 2ω)
+

ω2

(ω2υ2 − 2ω− 1)
LySt

[
ψ2 − e2y−4t

]
. (81)

Taking the inverse DLST Ly
−1St

−1[ψ̃(υ, ω)
]

on Equation (81), we obtain the following.

ψ(y, t) = ey−2t + Ly
−1St

−1
[

ω2

(ω2υ2 − 2ω− 1)
LySt[ψ

2 − e2y−4t]

]
. (82)

Using the iterative approach substitute Equation (26) in Equation (82) and Formulas (30)–(32),
we obtain the following solution components.

ψ0(y, t) = ey−2t, (83)

ψ1(y, t) = Ly
−1St

−1
[

ω2

(ω2υ2 − 2ω− 1)
LySt

[
(ψ0)

2 − e2y−4t
]]

= 0, (84)

ψ2(y, t) = Ly
−1St

−1
[

ω2

(ω2υ2 − 2ω− 1)
LySt

[
(ψ0 + ψ1)

2 − (ψ0)
2
]]

= 0. (85)

As a result, we have the solution of Equation (78) as follows.

ψ(y, t) = ey−2t. (86)

Figure 6 below, shows the solution of initial value problem (78) and (79). �
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5. Conclusions

In this paper, we presented a new method—that is, a combination of the double
Laplace–Sumudu transform and a numerical method, which is known as an iterative
method, to obtain the exact solutions of the nonlinear partial differential equations with
initial conditions, which are widely used in mathematical physics. Six examples are given to
demonstrate the applicability of the method under consideration. The suggested method’s
answers to Examples 1, 2, 3, 4, 5, and 6 are in good agreement with the same problem
examined in [40,42,45,46], and nontrivial problems treated using earlier approaches become
trivial in the sense that the following decomposition:

ψ(y, t) = ψ0(y, t) + ψ1(y, t) + ψ2(y, t) + . . . + ψr(y, t).

consists of a single term, i.e., ψ(y, t) = ψ0(y, t). We concluded from our research that using
the double Laplace–Sumudu transform in combination with the iterative method yields
very practical analytical findings with less computational work.
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