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Abstract: The affine Hecke algebra of type A has two parameters (q, t) and acts on polynomials in N
variables. There are two important pairwise commuting sets of elements in the algebra: the Cherednik
operators and the Jucys–Murphy elements whose simultaneous eigenfunctions are the nonsymmetric
Macdonald polynomials, and basis vectors of irreducible modules of the Hecke algebra, respectively.
For certain parameter values, it is possible for special polynomials to be simultaneous eigenfunctions
with equal corresponding eigenvalues of both sets of operators. These are called singular polynomials.
The possible parameter values are of the form qm = t−n with 2 ≤ n ≤ N. For a fixed parameter, the
singular polynomials span an irreducible module of the Hecke algebra. Colmenarejo and the author
(SIGMA 16 (2020), 010) showed that there exist singular polynomials for each of these parameter
values, they coincide with specializations of nonsymmetric Macdonald polynomials, and the isotype
(a partition of N) of the Hecke algebra module is (dn− 1, n− 1, . . . , n− 1, r) for some d ≥ 1. In the
present paper, it is shown that there are no other singular polynomials.

Keywords: nonsymmetric Macdonald polynomials; the affine Hecke algebra of type A; Young
tableaux; Jucys–Murphy operators

MSC: 33D52; 20C08; 05E10

1. Introduction

Many structures arise from the action of the symmetric group on polynomials in N
variables. Among them are the Hecke algebra and the affine Hecke algebra of type A. This
paper concerns polynomials with noteworthy properties with respect to these algebras.
The symmetric group SN is generated by the simple reflections si, 1 ≤ i < N, where

xsi :=
(

x1, . . . ,
i

xi+1,
i+1
xi , . . . , xN

)
;

they satisfy the braid relations sisi+1si = si+1sisi+1 and sisj = sjsi for |i− j| ≥ 2. Let q, t be
parameters satisfying tn 6= 1 for 2 ≤ n ≤ N and q, t 6= 0. Define P =K[x1, . . . , xN ] where K
is a field containing Q(q, t). The Hecke algebraHN(t) is generated by Demazure operators
(with p ∈ P and 1 ≤ i < N)

Ti p(x) := (1− t)xi+1
p(x)− p(xsi)

xi − xi+1
+ tp(xsi);

they satisfy the same braid relations TiTi+1Ti = Ti+1TiTi+1 and TiTj = TjTi for |i− j| ≥ 2,
as well as the quadratic relations (Ti − t)(Ti + 1) = 0. The affine Hecke algebraHN(t; q) is
obtained by adjoining the q-shift

wp(x) := p(qxN , x1, x2, . . . , xN−1)
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and defining

T0 p(x) := wT1w−1 p(x) = (1− t)x1
p(x)− p(xs0)

qxN − x1
+ tp(xs0),

xs0 := (qxN , x2, . . . , xN−1, x1/q).

Then wTi+1 = Tiw where the indices are taken mod N. (That is, w2T1 = TN−1w2.) The
quadratic relations imply T−1

i = t−1(Ti + (1− t)). There are two commutative families of
operators inHN(t; q) (each indexed 1 ≤ i ≤ N): the Cherednik operators (see [1])

ξi := ti−1TiTi+1 · · · TN−1wT−1
1 T−1

2 · · · T
−1
i−1

and the Jucys–Murphy operators

ωi = ti−NTiTi+1 · · · TN−1TN−1TN−2 · · · Ti.

Note that ξi = t−1Tiξi+1Ti and ωi = t−1Tiωi+1Ti for i < N. The simultaneous eigen-
functions of the Cherednik operators are the nonsymmetric Macdonald polynomials and
the simultaneous eigenvectors of the Jucys–Murphy operators span irreducible represen-
tations of HN(t). Our concern is to determine all polynomials which are simultaneous
eigenfunctions of both sets of operators, more specifically, when q, t satisfy a relation of
the form qmtn = 1 to determine the homogeneous polynomials p such that ξi p = ωi p
for all i. These are called singular polynomials with singular parameter qm = t−n. In a
previous paper [2] Colmenarejo and the author found a large class of such polynomials
associated with tableaux of quasi-staircase shape. In this paper, we will show that there are
no other occurrences.

Affine Hecke algebras were used by Kirillov and Noumi [3] to derive important
results about the coefficients of Macdonald polynomials. Mimachi and Noumi [4] found
double sums for reproducing kernels for series in nonsymmetric Macdonald polynomials.
The paper [5] by Baker and Forrester is a source of some background for the present paper.

In Section 2, we collect the needed definitions and results about the Hecke algebra ac-
tion on polynomials, Cherednik operators, nonsymmetric Macdonald polynomials, and the
representation theory of Hecke algebra of type A. The definition of singular polynomials
and its consequences, that is, necessary conditions, are presented in Section 3. This section
also explains the known existence theorem. Section 4 concerns the method of restriction
to produce singular polynomials with a smaller number of variables and this leads into
Section 5 where our main nonexistence theorem is proved.

2. Preliminary Results

In this section, we present background information and computational results dealing
withHN(t) and the action on polynomials.

Lemma 1. If j > i + 1 or j < i then Tiωj = ωjTi, and Tiωi = (t− 1)ωi + ωi+1Ti,
Tiωi+1 = ωiTi − (t− 1)ωi.

Proof. If j > i + 1 then Ti commutes with each factor of ωi. Suppose j = i− 1 then by the
braid relations

Tiωi−1 = ti−1−NTiTi−1TiTi+1 · · · TiTi−1 = ti−1−NTi−1TiTi−1Ti+1 · · · TiTi−1

= ti−1−NTi−1Ti+1Ti+2 · · · Ti−1TiTi−1

= ti−1−NTi−1TiTi+1 · · · TiTi−1Ti = ωi−1Ti.



Axioms 2022, 11, 208 3 of 14

Suppose j < i − 1 then ωj = tj−i+1TjTj+1 · · · Ti−2ωi−1Ti−2 · · · Tj and Ti commutes with
each factor in this product. If j = i then

Tiωi = t−1T2
i ωi+1Ti = t−1{(t− 1)Ti + t}ωi+1Ti

= (t− 1)ωi + ωi+1Ti,

and similarly ωiTi = t−1Tiωi+1T2
i = (t− 1)ωi + Tiωi+1.

Lemma 2. If j > i + 1 or j < i then Tiξ j = ξ jTi, and Tiξi = (t− 1)ξi + ξi+1Ti,
Tiξi+1 = ξiTi − (t− 1)ξi.

Proof. Recall wTi+1 = Tiw, w2T1 = TN−1w2. Suppose j = i− 1 then

Tiξi−1 = ti−1−NTiTi−1TiTi+1 · · · TN−1wT−1
1 · · · T

−1
i−2

= ti−1−NTi−1TiTi−1Ti+1 · · · TN−1wT−1
1 · · · T

−1
i−2

= ti−1−NTi−1TiTi+1 · · · TN−1Ti−1wT−1
1 · · · T

−1
i−2

= ti−1−NTi−1TiTi+1 · · · TN−1wTiT−1
1 · · · T

−1
i−2 = ξi−1Ti.

The analogous argument as in the previous lemma shows Tiξ j = ξ jTi for j < i− 1. Suppose
j > i + 1 then

Tiξ j = tj−NTiTjTj+1 · · · TN−1wT−1
1 · · · T

−1
j−1 = tj−NTjTj+1 · · · TN−1TiwT−1

1 · · · T
−1
j−1

= tj−NTjTj+1 · · · TN−1wTi+1T−1
1 · · · T

−1
j−1

= tj−NTj · · · TN−1wT−1
1 · · · Ti−1T−1

i−2T−1
i−1 · · · T

−1
j−1.

The modified braid relations aba = bab ⇔ ab−1a−1 = b−1a−1b imply
Ti+1T−1

i T−1
i+1 = T−1

i T−1
i+1Ti and thus Tiξ j = ξ jTi. As before

Tiξi = t−1T2
i ξi+1Ti = t−1{(t− 1)Ti + t}ξi+1Ti = (t− 1)ξi + ξi+1Ti.

ξiTi = (t− 1)ξi + Tiξi+1.

Polynomials are spanned by monomials xα =
N
∏
i=1

xαi
i , α ∈ NN

0 . For α ∈ NN
0 set

siα =

(
α1, . . . ,

i
αi+1,

i+1
αi , . . .

)
for 1 ≤ i < N, and |α| = ∑N

j=1 αj (the degree of xα). Let

NN,+
0 =

{
α ∈ NN

0 : α1 ≥ α2 ≥ . . . ≥ αN
}

, the set of partitions of length ≤ N. Let α+ denote
the nonincreasing rearrangement of α (thus α+ ∈ NN,+

0 ). There is a partial order on NN
0

α ≺ β⇐⇒
i

∑
j=1

αj ≤
i

∑
j=1

β j, 1 ≤ i ≤ N, α 6= β,

α C β⇐⇒ (|α| = |β|) ∧
[(

α+ ≺ β+
)
∨
(
α+ = β+ ∧ α ≺ β

)]
,

and a rank function (1 ≤ i ≤ N)

rα(i) := #
{

j : αj > αi
}
+ #
{

j : 1 ≤ j ≤ i, αj = αi
}

.

Note αi = α+rα(i)
.
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2.1. Nonsymmetric Macdonald Polynomials

The key fact about the Cherednik operators is the triangular property (see [5])

ξixα = qαi tN−rα(i)xα + ∑
βCα

cα,β(q, t)xβ, (1)

where the coefficients cα,β(q, t) are polynomials in q, t. For generic (q, t) (this means qmtn 6= 1, 0
for m ≥ 0 and 1 ≤ n ≤ N) there is a basis of P , for α ∈ NN

0

Mα(x) = qb(α)te(α)xα + ∑
βCα

Aα,β(q, t)xβ

(where Aα,β(q, t) is a rational function of (q, t) with no poles when (q, t) is generic) and for
1 ≤ i ≤ N

ξi Mα = qαi tN−rα(i)Mα.

The exponents are b(α) = 1
2 ∑N

i=1 αi(αi − 1) and e(α) = ∑N
i=1 α+i (N − 2i + 1)− inv(α), with

inv(α) := #
{
(i, j) : 1 ≤ i < j ≤ N, αi < αj

}
; there is an equivalent formula:

e(α) =
1
2 ∑

1≤i<j≤N

(∣∣αi − αj
∣∣+ ∣∣αi − αj + 1

∣∣− 1
)
.

These powers arise from the Yang-Baxter graph method of constructing the Mα, and are not
actually needed here. The spectral vector of Mα is [ζα(i)]

N
i=1 with ζα(i) = qαi tN−rα(i). We will

need the formulas for the action of Ti on Mα. Suppose αi < αi+1 and
z = ζα(i + 1)/ζα(i) = qαi+1−αi trα(i)−rα(i+1) then

Ti Mα = Msiα −
1− t
1− z

Mα, (2)

Ti Msiα =
(1− zt)(t− z)

(1− z)2 Mα +
z(1− t)
(1− z)

Msiα. (3)

If αi = αi+1 then Ti Mα = tMα. The quadratic relation appears as(
Ti +

1− t
1− z

)(
Ti −

z(1− t)
1− z

)
=

(1− zt)(t− z)

(1− z)2 .

2.2. Action of Ti on Polynomials and B-Maximal Terms

The following are routine computations:

Lemma 3. Suppose γ ∈ NN
0 and 1 ≤ i < N . Set x′ = ∏j 6=i,i+1 xγj . Then

(1) γi > γi+1 + 1 implies Tixγ = (1− t)x′
γi−γi+1−1

∑
j=0

xγi−j−1
i xγi+1+j+1

i+1 + txsiγ;

(2) γi = γi+1 + 1 implies Tixγ = xsiγ;
(3) γi = γi+1 implies Tixγ = txγ;
(4) γi = γi+1 − 1 implies Tixγ = txsiγ + (t− 1)xγ;

(5) γi < γi+1 − 1 implies Tixγ = (t− 1)x′
γi+1−γi−1

∑
j=0

xγi+j
i xγi+1−j

i+1 + txsiγ.

Lemma 4. Suppose λ ∈ NN,+
0 , λi > λj + 1 (i > j) and 1 ≤ s < λi − λj, µ ∈ NN

0 such that
µk = λk for k 6= i, j, µi = λi − s, µj = λj + s then λ � µ+.

(The proof is left as an exercise.)
In (1) above let αk = γk for k 6= i, i + 1 and αi = γi − j− 1, αi+1 = γi+1 + j + 1 with

1 ≤ j + 1 < γi − γi+1 then the Lemma with λ = γ+ and µ+ = α+ shows γ+ � a+ (the
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other term in (1) is xsiγ and γ � siγ). Similarly in (5) let αi = γi + j, αi+1 = γi+1 − j with
1 ≤ j ≤ γi+1 − γi − 1, thus γ+ � a+ (the other term in (5) for j = 0 is xγ and siγ � γ.

Proposition 1. Suppose α is B-maximal in p = ∑δ cδxδ (a homogeneous polynomial, |δ| = |α|),
that is, cα 6= 0 and if some δ D α with cδ 6= 0 then δ = α. Furthermore suppose αi+1 > αi for
some i and xβ with β B siα appears in (Ti + c)p then β+ = α+ and β � siα.

Proof. Suppose xβ appears in Tixγ (with cγ 6= 0) in one of the five cases of Lemma 3 and
β+ � (siα)

+ = α+. Every term satisfies γ+ � β+ or γ+ = β+ but then γ+ � β+ � α+ and
γ B α, a contradiction. Suppose β+ = α+ then β B siα implies β � siα.

Corollary 1. If α is B-maximal in p = ∑δ cδxδ and xβ appears in (Ti + c)p with β D siα then
either β = siα or β+ = α+ and β � siα with β = siγ where xγ appears in p.

Proof. If β occurs in case (1) or case (5) of Lemma 3 and β 6= γ, siγ (for xγ appearing
in p) then γ+ � β+ � siα � α which violates the B-maximality of α, this leaves only
β = siγ.

Note β = siγ does not imply siβ � α, for example let β = (4, 1, 3, 2) and s1α =
(3, 2, 1, 4) then β � s1α but s1β = (1, 4, 3, 2) and α = (2, 3, 1, 4) are not B-comparable.

2.3. Irreducible Representations of the Hecke Algebra

Irreducible representations ofHN(t) are indexed by partitions of N (for background
see Dipper and James [6]). Given a partition τ ∈ NN,+

0 with |τ| = N there is a Ferrers
diagram: boxes at (i, j) with 1 ≤ i ≤ `(τ) = max

{
j : τj > 0

}
and 1 ≤ j ≤ τi. The module is

spanned by reverse standard Young tableaux (abbr. RSYT) of shape τ (denoted Yτ): the
numbers 1, . . . , N are inserted into the Ferrers diagram so that the entries in each row and
in each column are decreasing. The module spanK{Y : Y ∈ Yτ} is said to be of isotype τ.
If k is in cell (i, j) of RSYT Y (denoted Y[i, j] = k) then the content c(k, Y) := j− i; the content
vector [c(k, Y)]Nk=1 determines Y uniquely. The action ofHN(t) is specified by the formulas
for TiY:

• If c(i, Y)− c(i + 1, Y) = 1 then TiY = tY;
• If c(i, Y)− c(i + 1, Y) = −1 then TiY = −Y;
• If |c(i, Y)− c(i + 1, Y)| ≥ 2 then let Y(i) denote the RSYT obtained by interchanging i

and i + 1 in Y and set z = tc(i+1,Y)−c(i,Y): if c(i, Y)− c(i + 1, Y) ≥ 2, then

TiY = Y(i) − 1− t
1− z

Y;

if c(i, Y)− c(i + 1, Y) ≤ −2, then

TiY =
(1− zt)(t− z)

(1− z)2 Y(i) − 1− t
1− z

Y.

From these relations it follows that ωiY = tc(i,Y)Y for 1 ≤ i ≤ N. Call the vector[
tc(i,Y)

]N

i=1
the t-exponential content vector of Y, or the tC-vector for short. Note c(N, Y) = 0

always and ωN := 1.
So if one finds a simultaneous eigenfunction of {ωi} then the eigenvalues determine

an RSYT and the isotype (partition) of an irreducible representation.

2.4. Singular Parameters

For integers m and n such that m ≥ 1 and 2 ≤ n ≤ N we consider singular parameters
(q, t) satisfying qmtn = 1 with the property that if qatb = 1 then a = rm, b = rn for some
r ∈ Z.
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Definition 1. Let g = gcd(m, n) and let z = exp
(

2πik
m

)
with gcd(k, g) = 1, that is, zm/g is a

primitive gth root of unity. If g = 1 then set z = 1. Define v := (q, t) =
(

zu−n/g, um/g
)

where
u is not a root of unity and u 6= 0.

Lemma 5. If qatb|v = 1 for some integers a, b then a = rm, b = rn for some r ∈ Z.

Proof. By hypothesis zau−an/g+bm/g = 1 and, since u is not a root of unity, −a n
g + b m

g = 0.

From gcd
(

n
g , m

g

)
= 1, it follows that a = p′ mg and b = p′ ng , for some p′ ∈ Z. Thus,

1 = za = exp
(

2πik
m

mp′
g

)
= exp

(
2πik

g p′
)

. Moreover, since gcd(k, g) = 1, p′ = pg with p ∈ Z.
Hence a = pm and b = pn.

In fact, to describe all the possibilities for v, it suffices to let 1 ≤ k < g. To be precise,
v is not a single point but a variety in (C\{0})2.

3. Necessary Conditions for Singular Polynomials

By using the degree-lowering (q-Dunkl) operators defined by Baker and Forrester [5]
we find another characterization of singular polynomials.

Definition 2. Suppose p ∈ P then

DN p(x) :=
1

xN
(1− ξN)p(x),

Di p(x) :=
1
t

TiDi+1Ti p(x), i < N.

Proposition 2. A polynomial p is singular if and only if Di p = 0 for 1 ≤ i ≤ N.

Proof. The proof is by downward induction on i. Since ωN = 1, it follows that DN p = 0
iff ξN p = p = ωN p. Suppose that Di p = 0 iff ξi p = ωi p for all p and k ≤ i ≤ N.
Then Dk−1 p = 0 iff t−1Tk−1DkTk−1 p = 0 iff DkTk−1 p = 0 iff ξkTk−1 p = ωkTk−1 p iff
t−1Tk−1ξkTk−1 p = t−1Tk−1ωkTk−1 p.

First we show that any singular polynomial generates anHN(t)-module consisting of
singular polynomials. This allows the use of the representation theory ofHN(t).

Proposition 3. Suppose p is singular and 1 ≤ i < N, then Ti p is singular.

Proof. The commutation relations from Lemmas 1 and 2 are used. Suppose j < i or
j > i + 1 then ξ jTi p = Tiξ j p = Tiωj p = ωjTi p. Case j = i:

ξiTi p = {(t− 1)ξi + Tiξi+1}p = (t− 1)ωi p + Tiωi+1 p

= {(t− 1)ωi + Tiωi+1}p = ωiTi p.

Case j = i + 1

ξi+1Ti p = {Tiξi − (t− 1)ξi}p = Tiωi p− (t− 1)ωi p

= {Tiωi − (t− 1)ωi}p = ωi+1Ti p.

Proposition 4. Suppose p is singular thenM = HN(t)p is a linear space of singular polynomials,
and it is closed under the actions of ξi, ωi. for 1 ≤ i ≤ N, and w.
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Proof. By definition of ωi we see that f ∈ M implies ωi f ∈ M, and by definition
ξi f = ωi f ∈ M. Also

ξ1 p = T1T2 · · · TN−1wp

= ω1 p = t1−NT1T2 . . . · · · TN−1TN−1TN−2 · · · T1 p

thus wp = t1−NTN−1TN−2 · · · T1 p.

Note thatM is also a module of the affine Hecke algebra. By the representation theory
of HN(t) the module has a basis of {ωi}-simultaneous eigenfunctions and by definition
these are {ξi}-simultaneous eigenfunctions - note we are not claiming they are specializa-
tions of nonsymmetric Macdonald polynomials at v. Suppose f is such an eigenfunction
and let α be B-maximal in the expression f (x) = ∑β cβxβ. Then
ξi f = qαi tN−rα(i) f because by the triangularity property of ξi (see (1)) xα can only appear in
ξi f in the term ξixα. Furthermore ξi f = ωi f implies qαi tN−rα(i) = tc(i,Y) for some RSYT Y,
at v. As well we can conclude αi = mr, N − rα(i)− c(i, Y) = nr for some r ∈ N (Lemma 5).
The next step is to produce a simultaneous eigenfunction which has a B-maximal term xλ

with λ ∈ NN,+
0 .

Proposition 5. There exists f ∈ M which is a simultaneous {ωi}-eigenfunction and
f = cλxλ + ∑βCλ cβxβ + ∑γ cγxγ where γ is not B-comparable to λ, and λ ∈ NN,+

0 .

Proof. Suppose f = ∑ cαxα is an eigenfunction and there is a B-maximal α with xα (i.e.,
cα 6= 0) appearing in f , and αi < αi+1 then Ti f 6= f and the coefficient of xsiα is tcα; let
ωj f = µj f for 1 ≤ j ≤ N and µi+1 6= µi (because c(i, Y) 6= c(i + 1, Y) for any RSYT) so that

g := Ti f +
t− 1

µi+1/µi − 1
f

is a simultaneous eigenfunction with B-maximal β such that β+ = α+ and β � siα, (by
Proposition 1) and eigenvalues . . . µi+1, µi . . .In general this formula could produce a zero
function g but this does not happen here because the coefficient of xsiα in g is not zero.
Repeating these steps eventually produces a B-maximal term xλ with λ ∈ NN,+

0 (at most
inv(α) steps).

At this point we have shown if there is a singular polynomial then there is a partition
λ ∈ NN,+

0 and an RSYT Y such that qλi tN−i = tc(i,Y) at v, for 1 ≤ i ≤ N. Next we determine

necessary conditions on λ for the existence of Y, in other words, when
[
qλi tN−i]N

i=1 at v is
a valid tC-vector. The equations λi = mri, N − i− c(i, Y) = nri for 1 ≤ i ≤ N show that λ
can be replaced by 1

m λ and v by qtn = 1 (simply q = t−n), also nλi = N − i− c(i, Y).
The following is a restatement of the development in [2] with significant differ-

ences in notation. First there is an informal discussion of the beginning of the pro-
cess of building Y by placing N, N − 1, N − 2, . . . in possible locations and determining
λN , λN−1, λN−2, . . .accordingly. Abbreviate ci = c(i, Y).

Suppose λN−k is the last nonzero entry of λ (λi = 0 for i > N − k) then
k− cN−k = nλN−k (cN−j = j for 0 ≤ j < k implies Y[1, j] = N − j− 1); the entry N − k in
Y is at [1, k + 1] or [2, 1] thus cN−k = k, λN−k = 0 (contra) or cN−k = −1, nλN−k = k + 1.
Set λN−k = d1 and k = nd1 − 1.The entry N − k− 1 in Y is in one of [3, 1], [2, 2], [1, k + 1]
with contents −2, 0, k, respectively, yielding the equations nλN−k−1 = k + 1− cN−k−1 =
k − 1, k + 1, 1 = nd1 − 2, nd1, 1, respectively. If n > 2 then only [2, 2] is possible and
λN−k−1 = d1. If n = 2 then [3, 1], λN−k−1 = d1 + 1 and [2, 2], λN−k−1 = d1 are possible.

Theorem 1. There are numbers d1 ≥ d2 ≥ . . . ≥ dL ≥ 1 such that with γs := ∑s−1
i=1 di and

0 ≤ rL+1 < N − nγL+1 + L ≤ ndL − 1 the entries in row s of Y are Rs := {i : nγs − s + 1 ≤
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N − i ≤ nγs+1 − s − 1} for 1 ≤ s ≤ L, RL+1 = {i : nγL+1 − L ≤ N − i ≤ N − 1} and
λi = γs for i ∈ Rs. The isotype of Y is τ := (nd1 − 1, nd2 − 1, . . . , ndL − 1, rL+1).

Proof. By way of induction suppose there are numbers d1 ≥ d2 ≥ . . . ≥ dk−1 > 0 such
that the entries in row s of Y are Rs = {i : nγs − s + 1 ≤ N − i ≤ nγs+1 − s− 1} and
λi = γs for i ∈ Rs. Assume this has been proven for 1 ≤ s < k and for row k up to
nγk − k + 1 ≤ N − i ≤ nγk − k + ` with ` ≤ ndk−1 − 1 (the length #Rk−1 of row k − 1).
Consider the possible locations for the next entry p = N − (nγk − k + `+ 1). The possible
boxes are (1) [s, nds] (s < k and ds < ds−1 or s = 1), (2) [k, `+ 1], (3) [k + 1, 1] with contents
nds − s, `+ 1− k,−k, respectively. The equations

nλp = N − p− cp = nγk − k + `+ 1− cp

n
(
λp − γk

)
= −k + `+ 1− cp

must hold;
case (1): (note `+ 1 ≤ ndk−1)

n
(
λp − γk

)
= −k + `+ 1− nds + s

n
(
λp − γk + ds

)
= −k + s + 1 + ` ≤ −k + s + ndk−1

n
(
λp − γk + ds − dk−1

)
≤ s− k < 0

λp ≥ γk = λp+1 and ds ≥ dk−1 by inductive hypothesis, so the left side ≥ 0 and there is a
contradiction.
case (2):

n
(
λp − γk

)
= −k + `+ 1− (`+ 1− k) = 0

λp = γk

and the inductive hypothesis is proved for nγk − k + 1 ≤ N − i ≤ nγk − k + `+ 1, entries
in row k.
case (3)

n
(
λp − γk

)
= −k + `+ 1 + k = `+ 1

set ` = ndk − 1 and γk+1 = γk + dk, λp = γk+1. The inductive step has been proven for k
and for k + 1 with Y[k + 1, 1] = N − nγk+1 + k. By induction this uses up all the entries.
Let row L + 1 be the last row of Y and of length rL+1, then N = ∑L

i=1(ndi − 1) + rL+1 and
rL+1 ≤ ndL − 1.

Corollary 2. Suppose v = (q, t) as in Definition 1 and p is singular. Then HN(t)p contains a
{ωi, ξi} simultaneous eigenfunction f = cλxλ + ∑βCλ cβxβ + ∑γ cγxγ with γ not B-comparable
to λ so that λi = mγs if i ∈ Rs, in the notation of the Theorem.

We have shown if α is B-maximal in a simultaneous {ωi, ξi} eigenfunction then there
is an eigenfunction in which α+ is B-maximal. Now the eigenvalues are determined by Y
and it follows that α+ = λ as constructed above. Hence each term xγ in an eigenfunction
satisfies γ E λ. (Suppose at some stage γ is B-maximal then there is a simultaneous
eigenfunction with γ+ being B-maximal and the construction produces an RSYT of the
same isotype τ and the numbers N, N − 1, . . . are entered row-by-row forcing γ+ = λ.)

Theorem 2 ([2]). In the notation of Theorem 1 if di = 1 for i ≥ 2 then Mλ(x) specialized to
v has no poles and is singular. The module HN(t)Mλ is spanned by Mα(Y) where Y ∈ Yτ ,

τ =
(

nd1 − 1, (n− 1)L−1, rL+1

)
and α(Y)i = m(d1 + s− 2) if Y[s, k] = i for s ≥ 2 and some

k, otherwise (Y[1, k] = i) α(Y)i = 0.
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The Ferrers diagram of λ (from Theorem 1) is called a quasi-staircase, the shape
suggested when French notation with row 1 on the bottom is used.

We have reached the main purpose of this paper: to show there are no other singu-
lar polynomials.

4. Restrictions

In this section, we show that the desired nonexistence result can be reduced to the
simpler two-row situation.

Suppose α ∈ NN
0 and rα(1) = 1 (that is, αi ≤ α1 for all i). Let α′ = (α2, . . . , αN) and

Y′ = Y\{1} (the RSYT where the entry 1 is deleted) and f satisfies ξi f = qαi tN−rα(i) f ,
at v. First we will show that fα′ := coeff

(
xα1

1 , f
)

is an eigenfunction of ξ
′
i with eigenvalue

qαi tN−rα(i) for 2 ≤ i ≤ N where

w′p(x) := p(qxN , x2, x3, . . . , xN−1),

ξ ′i p(x) := ti−2TiTi+1 · · · TN−1w′T−1
2 · · · T

−1
i−1 p(x)

Lemma 6. Let f = xα1
1 xα2

2 p(x3, . . . , xN) with α1 ≥ α2 then

coeff
(

xα1
1 , wT−1

1 f
)
= t−1w′coeff

(
xα1

1 , f
)
.

Proof. By definition

T−1
1 f =

1− t
t

x1
f (x)− f (xs1)

x1 − x2
+ t−1 f (xs1)

=
1− t

t
x1+α2

1 xα2
2

xα1−α2
1 − xα1−α2

2
x1 − x2

p + t−1xα2
1 xα1

2 p(x3, . . . , xN)

=
1− t

t

α1−α2−1

∑
i=0

xα1−i
1 xα2+i

2 p + t−1xα2
1 xα1

2 p(x3, . . . , xN)

then

wT−1
1 f =

1− t
t

α1−α2−1

∑
i=0

(qxN)
α1−ixα2+i

1 p(x2, x3, . . . , xN−1)

+ xα1
1 (qxN)

α2 t−1 p(x2, x3, . . . , xN−1).

The highest power of x1 in the first term is α1 − 1 thus

coeff
(

xn
1 , wT−1

1 f
)
= (qxN)

α2 t−1 p(x2, x3, . . . , xN−1)

and the right hand side is t−1w′xα2
2 p(x3, . . . , xN).

Let πn f := coeff
(
xn

1 , f
)
.

Theorem 3. Suppose f = ∑α cαxα with maxi αi = n then πnξi f = ξ ′iπn f for 2 ≤ i ≤ N.
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Proof. Let i > 1 then

πnξi f = ti−1πnTiTi+1 · · · TN−1wT−1
1 T−1

2 · · · T
−1
i−1 f (x)

= ti−1TiTi+1 · · · TN−1πnwT−1
1 T−1

2 · · · T
−1
i−1 f (x)

= ti−2TiTi+1 · · · TN−1w′πnT−1
2 · · · T

−1
i−1 f (x)

= ti−2TiTi+1 · · · TN−1w′T−1
2 · · · T

−1
i−1πn f (x)

= ξ ′iπn f ;

this uses the Lemma and the fact that ξi f and T−1
2 · · · T

−1
i−1 f are sums of monomials xβ with

β j ≤ n for j ≥ 1 (properties of the order B and of T−1
j ). If i = 2 then the empty product

T−1
2 · · · T

−1
i−1 reduces to 1.

Suppose α, β ∈ NN−1
0 (indexed 2 ≤ i ≤ N) and |α| = |β|, set α′ = (n, α), β′ := (n, β)

(so that |α′| = |β′|).

Lemma 7. Suppose maxi αi ≤ n and maxi βi ≤ n then α′+ = (n, α+), β′+ = (n, β+) and
α′ � β′ iff α � β, α′ B β′ iff α B β.

Proof. By hypothesis (α′+)1 = n and α′+ = (n, α+), similarly β′+ = (n, β+). Furthermore

α′ � β′ ⇐⇒ n +
i

∑
j=2

αj ≥ n +
i

∑
j=2

β j ∀i ≥ 2

⇐⇒ α � β

Then

α B β⇐⇒
(
α+ � β+

)
∨
(
α+ = β+ ∧ α � β

)
α′ B β′ ⇐⇒

(
α′+ � β′+

)
∨
(
α′+ = β′+ ∧ α′ � β′

)
and α B β⇐⇒ α′ B β′.

Proposition 6. Let f be the {ωi, ξi} simultaneous eigenfunction from Corollary 2 with eigenvalues
qλi tN−i = tc(i,Y) at qmtn = 1 for 1 ≤ i ≤ N and λ2 > 0. Then πλ1 f is a nonzero

{
ωi, ξ ′i : i ≥ 2

}
simultaneous eigenfunction with the same eigenvalues as f for i ≥ 2 with c(i, Y) = c(i, Y\{1}).
Here Y\{1} is the RSYT obtained by removing the box containing 1 from Y.

Proof. We showed that each term xα appearing in f satisfies λ D α and α1 ≤ λ1 for all
i. Apply πλ1 to f then by Lemma 7 β E (λ2, λ3, . . . , λN) for each xβ appearing in πλ1 f .
For i ≥ 2 ωi commutes with πλ1 and by Theorem 3 πλ1 ξi f =ξ ′iπλ1 f . Thus ωiπλ1 f = ξ ′iπλ1 f
for i ≥ 2. Furthermore, (λ2, λ3, . . . , λN) ∈ NN−1,+

0 is B-maximal in πλ1 f .

The definition of RSYT has been slightly modified to allow filling with 2, 3, . . . , N.
The isotype of πλ1 f is τ′ := (nd1 − 1, nd2 − 1, . . . , ndL − 1, rL+1 − 1).

Theorem 4. In the notation of Theorem 1 if d2 ≥ 2 then there is a singular polynomial for the
parameter v in n(d1 + 1)− 1 variables with λ =

(
(md1)

n, 0nd1−1
)

, of isotype (nd1 − 1, n).

Proof. Apply Proposition 6 repeatedly, and by hypothesis nd2 − 1 ≥ 2n− 1 > n. The re-
maining RSYT is

Y′ =
[

N N − 1 . . . . . . . . . N − nd1 + 2
N − nd1 + 1 . . . N − nd1 − n + 2

]
,
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and has the tC-vector
[
tn−2, tn−3, . . . , 1, t−1, tnd1−2, tnd1−3, . . . , t, 1

]
.

5. Concluding Argument

Re-index the variables by replacing d1 ≥ 2 (implied by d2 ≥ 2) by d, N by
N = nd− 1 + n and

Y′′ =
[

nd− 1 + n nd− 2 + n . . . . . . . . . n + 1
n . . . 1

]
.

Proposition 7. Suppose λ =
(

dn, 0nd−1
)

and γ ∈ NK
0 for some K ≥ N satisfies |γ| = nd

and Ci : n(λi − γi) = rγ(i) − i for 1 ≤ i ≤ K (setting λi = 0 for i > N) then γ = λ or

γ = β :=
(

0n, 1nd
)

.

Proof. By condition Cn+1 we have (rγ(n + 1)− n− 1) = −nγn+1 so that γn+1 = 1 −
1
n (rγ(n + 1)− 1) ≤ 1 and thus γn+1 = 1 or γn+1 = 0. If γn+1 = 1 then rγ(n + 1) = 1,
which implies γi = 0 for 1 ≤ i ≤ n and γi ≤ 1 for i > n + 1. If j > n and γj = 0 then
by Cj rγ(j) = j = #{k <= j : γk ≥ 0} + #{k > j : γk > 0} so that k > j implies γk = 0.

Since |γ| = |λ| = nd we see that γn+1 = 1 implies γ+ =
(

1nd
)

and in fact γi = 1 for
n + 1 ≤ i ≤ n(d + 1), since γj = 0 and γj+1 = 1 is impossible for any j > n. If 1 ≤ j ≤ n
then rγ(j) = nd + j and n(λi − γi) = nd = rγ(j) − j, thus satisfying Cj. The other
conditions Ci are verified similarly. Thus, γ = β.

If γn+1 = 0 then rγ(n + 1) = n + 1 and `(γ) = n. Suppose 1 ≤ j ≤ n then Cj states
n
(
λj − γj

)
= rγ(j)− j and the bounds 1 ≤ j, rγ(j) ≤ n imply |rγ(j)− j| ≤ n− 1 and thus

γj = λj.

Corollary 3. Suppose λ =
(
(md)n, 0nd−1

)
∈ NN,+

0 . The coefficients of Mλ(x) have no poles at v.

Proof. Mλ(x) is a nonzero multiple of xλ + ∑βCλ Aλ,βxβ. For each β C λ there is at least

one index jβ such that ζλ

(
iβ

)
6= ζβ

(
iβ

)
at v or else qλi−βi trβ(i)−i = 1 for all i ≤ N. In this

case by Lemma 5 (λi − βi) = msi, rβ(i)− i = nsi for some si ∈ Z. Set λ′ = 1
m λ, β′ = 1

m β

then n
(
λ′i − β′i

)
= rβ(i)− i for all i and by the Proposition β′ = λ′ or β′ =

(
0n, 1nd

)
but

the latter is impossible because
(

0n, 1nd
)

/∈ NN
0 . Finally (this works because there is a

triangular expansion xλ = cMλ + ∑
βCλ

A′β,λ Mβ which holds for generic (q, t))

Mλ(x) = c ∏
βCλ

ξiβ
− ζβ

(
iβ

)
ζλ

(
iβ

)
− ζβ

(
iβ

) xλ.

This shows that the poles of Mλ are of the form qatb − 1 = 0 and v is not a pole.

Proposition 8. Suppose f is as in Theorem 4 then f (x) = cMλ(x) at v for some constant c 6= 0.

Proof. By matching coefficients of xλ find c so that coeff
(
xλ, f − cMλ

)
= 0. If

g := f − cMλ 6= 0 then there exists β such that xβ is B-maximal in g. By B-triangularity
ξig = qβi tN−rβ(i)g (at v) for all i. However, g has the same eigenvalues as Mλ, that is,
qβi tN−rβ(i) = qλi tN−i at v and the proof of the Corollary showed that β = λ , contradicting
g 6= 0.
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Recall the transformation Formula (3) for Mα for αi > αi+1 with z = ζα(i+1)
ζα(z)

Msiα =
(1− z)2

(1− zt)(t− z)

(
Ti +

1− t
1− z

)
Mα.

If Mα has no pole at v and z 6= 1, t, t−1 then Msiα has no pole at v. When α+ = λ

then αi > αi+1 implies αi = md and αi+1 = 0, z = q−mdtrα(i)−rα(i+1) = tnd+rα(i)−rα(i+1)

at v. In the substring (α1, . . . , αi, αi+1) there are rα(i) values md and i + 1− rα(i) zeros,
thus rα(i + 1) = n + i + 1− rα(i). Thus, z = tb with b = nd + 2rα(i)− n− i− 1. Suppose
rα(i) = n, thus i ≥ n and si can act on α without introducing a pole at v if nd+ n− i− 1 > 1,
that is i < nd + n − 2 = N − 1. The last permitted occurrence of md in α is i = N − 2.
Next move the second last occurrence of md in α as far as possible without a pole: set
rα(i) = n− 1 and require nd+ 2(n− 1)− n− i− 1 > 1, that is, i < nd+ n− 4 = N− 3, thus
i = N − 4 is the last permitted value. More generally let rα(i) = n− j (with 0 ≤ j ≤ n− 1)
then require nd + 2(n− j)− n− i− 1 > 1, that is, nd + n− 2j− 2 > i or i < N − 1− 2j;
the last permitted value is i = N − 2(j + 1).

Let

α =
(

0nd−n−1, md, 0, md, 0. . . . , md, 0
)

ζα =
[
tN−n−1, . . . , tn, qmdtN−1, tn−1, . . . , qmdtN−n, 1

]
.

We showed that Mα has no poles at v, and if Mλ at v is singular then so is Mα. The spectral
vector ζα at v coincides with the tC-vector of the RSYT

Y0 =

[
N N − 2 · · · N − 2n + 2 N − 2n · · · 1

N − 1 N − 3 · · · N − 2n + 1

]
,

and thus ωN−1Y0 = t−1Y0; by construction ζα(N − 1) = qmdtN−n = t−nd+N−n = t−1.
If Mα at v is singular then ωN−1Mα = ξN−1Mα = t−1Mα; this means

t−1TN−1TN−1Mα = t−1Mα

((t− 1)TN−1 + t)Mα = Mα

(t− 1)TN−1Mα = (1− t)Mα

(TN−1 + 1)Mα = 0.

For the next step we recall some standard definitions: the q-Pochhammer symbol is

(a; q)k =
k

∏
i=1

(
1− aqi−1) and the generalized (q, t)-Pochhammer symbol for λ ∈ NN,+

0 is

(v; q, t) =
N

∏
i=1

(
vt1−i; q

)
λi

.

In the context of the Ferrers diagram representation of a composition α ∈ NN
0 , {(i, j) :

1 ≤ i ≤ N, 1 ≤ j ≤ αi} (the rows with αi = 0 are empty) define the arm-length and
leg-length of a box in the diagram (λ ∈ NN,+

0 )

arm(i, j; λ) := λi − j,

arm(i, j; α) := αi − j,

leg(i, j; λ) := #{l : i < l ≤ N, j ≤ λl},

leg(i, j; α) := #{r : r > i, j ≤ αr ≤ αi}+ #{r : r < i, j ≤ αr + 1 ≤ αi}.
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The (q, t)-hook product is

hq,t(v; α) = ∏
(i,j)∈α

(
1− vqarm(i,j;α)tleg(i,j;α)

)
.

There is an evaluation at a special point (see [Cor. 7] [7]): let x(0) :=
(
1, t, t2, . . . , tN−1), then

for any β ∈ NN
0

Mβ

(
x(0)

)
= qb(β)te′(β+)

(
qtN ; q, t

)
β+

hq,t(qt; β)
,

where b(β) = ∑N
i=1 (

βi
2 ), e′(β+) = ∑N

i=1 β+
i (N − i).

Theorem 5. (TN−1 + 1)Mα 6= 0 at v and Mα is not singular.

Proof. For any polynomial p let x = x(0) in Ti p(x) = (1− t)xi+1
p(x)−p(xsi)

xi−xi+1
+ tp(xsi) then

Ti p
(

x(0)
)

= t
(

p
(

x(0)
)
− p

(
x(0)si

))
+ tp

(
x(0)si

)
= tp

(
x(0)

)
(since x(0)i+1 = tx(0)i ). Set

b0 = b(α) = n(md
2 ), e0 = e′(α+) = 1

2 mdn(2N − n− 1) then

TN−1Mα

(
x(0)

)
+ Mα

(
x(0)

)
= (t + 1)Mα

(
x(0)

)
= qb0 te0(t + 1)

(
qNt; q, t

)
α+

hq,t(qt; α)
.

The numerator is(
qNt; q, t

)
α+

=
n

∏
i=1

(
qtN−i+1; q

)
md

=
n

∏
i=1

dm

∏
j=1

(
1− qjtnd+n−i

)
,

where the only term vanishing at v is for i = n, j = dm (for suppose j = rm with
r ≤ d, nd + n − i = rn for some r ∈ N then n ≥ i = n(d− r + 1) and d − r + 1 ≤ 1,
that is, r ≥ d, hence r = d, i = n). For the hook product observe that if 1 ≤ j ≤ n then
leg(α; N − 2j + 1, 1) = nd− 2 because there are nd− 1− j zero values in

(
α1, . . . , αN−2j+1

)
and j− 1 values of md in

(
αN−2j+2, . . . , αN

)
. Since arm(α; N − 2j + 1, 1) = dm− 1 we find

that the boxes {[N − 2j + 1, 1] : 1 ≤ j ≤ n} contribute
(

1− qdmtnd−1
)n

to hq,t(qt; α). This

term becomes
(
1− t−1)n at v. The other boxes in the diagram of α are {[N − 2j + 1, k] :

1 ≤ j ≤ n, 2 ≤ k ≤ md} and leg(α; N − 2j + 1, k) = j− 1, arm(α; N − 2j + 1, k) = dm− k.
Thus

hq,t(qt; α) =
(

1− qdmtnd−1
)n n

∏
j=1

dm

∏
k=1

(
1− qdm−k+1tj

)
=
(

1− qdmtnd−1
)n n

∏
j=1

dm

∏
i=1

(
1− qitj

)
.

The only term in the product vanishing at v is for i = m, j = n. Thus, the term (1− qmtn)

cancels out in

(
qNt; q, t

)
α+

hq,t(qt; α)
and (TN−1 + 1)Mα

(
x(0)

)
6= 0.

Example 1. Let N = 5, n = 2, m = 1, d = 2 then α = (0, 2, 0, 2, 0) and v =
(
t−2, t

)
(that is,

qt2 = 1) The spectral vector of α is
[
t2, q2t4, t, q2t3, 1

]
which equals

[
t2, 1, t, t−1, 1

]
at q = t−2.
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The expression for Mα is too large to display here (32 monomials); the denominators of the coefficients
are factors of qt− 1,

(
q2t3 − 1

)2 and

Mα

(
1, t, t2, t3, t4

)
= q2t14

(
qt2 + 1

)(
qt4 − 1

)(
qt5 − 1

)(
q2t5 − 1

)
(q2t3 − 1)2

(qt− 1)

which does not vanish at q = t−2. However, the same polynomial is singular with n = 4, d = 1,
m = 2 and q = −t−2 (that is, q2t4 = 1 but qt2 6= 1). The singularity can be proven by direct
computation and the vanishing of Mα

(
1, . . . , t4) is only a necessary condition.

We have shown if there is a singular polynomial as described in Theorem 1 and d2 ≥ 2
then by using the restriction Proposition 6 repeatedly there is a singular polynomial of
isotype (nd1 − 1, n), which in turn implies that Mα is singular. This is impossible and we
conclude that d2 = 1 is necessary, and all singular polynomials have been determined.
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