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Abstract: The affine Hecke algebra of type A has two parameters (g, t) and acts on polynomials in N
variables. There are two important pairwise commuting sets of elements in the algebra: the Cherednik
operators and the Jucys-Murphy elements whose simultaneous eigenfunctions are the nonsymmetric
Macdonald polynomials, and basis vectors of irreducible modules of the Hecke algebra, respectively.
For certain parameter values, it is possible for special polynomials to be simultaneous eigenfunctions
with equal corresponding eigenvalues of both sets of operators. These are called singular polynomials.
The possible parameter values are of the form g™ = t=" with 2 < n < N. For a fixed parameter, the
singular polynomials span an irreducible module of the Hecke algebra. Colmenarejo and the author
(SIGMA 16 (2020), 010) showed that there exist singular polynomials for each of these parameter
values, they coincide with specializations of nonsymmetric Macdonald polynomials, and the isotype
(a partition of N) of the Hecke algebra moduleis (dn —1,n —1,...,n —1,r) for some d > 1. In the
present paper, it is shown that there are no other singular polynomials.

Keywords: nonsymmetric Macdonald polynomials; the affine Hecke algebra of type A; Young
tableaux; Jucys—-Murphy operators

MSC: 33D52; 20C08; 05E10

1. Introduction

Many structures arise from the action of the symmetric group on polynomials in N
variables. Among them are the Hecke algebra and the affine Hecke algebra of type A. This
paper concerns polynomials with noteworthy properties with respect to these algebras.
The symmetric group Sy is generated by the simple reflections s;,1 < i < N, where

i i+l
Xsi =\ X1,---, Xi41, Xi,---, XN |

they satisfy the braid relations s;s;15; = s;115;5;+1 and s;s; = s;s; for li —j| > 2. Letg,tbe
parameters satisfying t"* # 1 for2 <n < N and gq,t # 0. Define P =K[x, ..., xy] where K
is a field containing Q(g,t). The Hecke algebra Hy(f) is generated by Demazure operators
(withpe Pand1 <i < N)

p(x) — p(xsi)

—+ tp(xs;);
Xi — Xit1 plsi)

Tp(x) = (1 - iy
they satisfy the same braid relations T;T; 1 T; = T; 11 T;T;y1 and T;T; = T;T; for |i — j| > 2,
as well as the quadratic relations (T; — t)(T; + 1) = 0. The affine Hecke algebra Hy/(¢; q) is
obtained by adjoining the g-shift

wp(x) := p(gxN, X1, X2, ..., XN—1)
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and defining

p(x) — p(xso)

— -1 — (1 —
Top(x) :=wTiw p(x) = (1 —1t)x; pravp—

+ tp(xso),
xsp := (XN, X2, ..., XN—-1,%1/9).

Then wT;,; = T;w where the indices are taken mod N. (That is, w?T; = Ty_1w?.) The
quadratic relations imply T;1 = t~1(T; + (1 — t)). There are two commutative families of
operators in Hy(t;q) (each indexed 1 < i < N): the Cherednik operators (see [1])

Ci = tiilTiTi_;'_l ce TN,1WTflT£l ce Till

i
and the Jucys-Murphy operators
wj =t NTTiyq - Ty Ty T2 Ti

Note that ¢; = t’lTi(jiH T; and w; = t ' Tjw; 1 T; for i < N. The simultaneous eigen-
functions of the Cherednik operators are the nonsymmetric Macdonald polynomials and
the simultaneous eigenvectors of the Jucys-Murphy operators span irreducible represen-
tations of Hn(t). Our concern is to determine all polynomials which are simultaneous
eigenfunctions of both sets of operators, more specifically, when g, t satisfy a relation of
the form q"t" = 1 to determine the homogeneous polynomials p such that ¢;p = w;p
for all i. These are called singular polynomials with singular parameter 4 = t7". Ina
previous paper [2] Colmenarejo and the author found a large class of such polynomials
associated with tableaux of quasi-staircase shape. In this paper, we will show that there are
no other occurrences.

Affine Hecke algebras were used by Kirillov and Noumi [3] to derive important
results about the coefficients of Macdonald polynomials. Mimachi and Noumi [4] found
double sums for reproducing kernels for series in nonsymmetric Macdonald polynomials.
The paper [5] by Baker and Forrester is a source of some background for the present paper.

In Section 2, we collect the needed definitions and results about the Hecke algebra ac-
tion on polynomials, Cherednik operators, nonsymmetric Macdonald polynomials, and the
representation theory of Hecke algebra of type A. The definition of singular polynomials
and its consequences, that is, necessary conditions, are presented in Section 3. This section
also explains the known existence theorem. Section 4 concerns the method of restriction
to produce singular polynomials with a smaller number of variables and this leads into
Section 5 where our main nonexistence theorem is proved.

2. Preliminary Results

In this section, we present background information and computational results dealing
with H () and the action on polynomials.

Lemma 1. If j > i+ 1orj < ithen Tiw; = wiTy, and Tiw; = (t—1)w; + w1 T,
Tiwiy1 = w;Ty — (t = 1)w;.

Proof. If j > i + 1 then T; commutes with each factor of w;. Suppose j = i — 1 then by the
braid relations
Tiwiy =t NTT AT iy - TiTi = £ N T T - TiTig
=t N T T - Tia T T
=t VN TiTiy -+ TTia Ty = wia T
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Suppose j < i—1 then w; = tj’”l]"ﬂ}ﬂ ~+Tpwi 1T+ Tj and T; commutes with
each factor in this product. If j = i then
T,w; = i’ilTizwi_;'_lTi = i’il{(i’ — 1)T1 + t}wi+1Ti
= (t—Dwi+ w1 T,

and similarly w;T; = t ' Tjw; 1 TZ-2 = (t—1Nw;+ Tjw;y. O

Lemma 2. If j > i+1orj < i then Tl‘(;r]' = ngi/ and T;&; = (t—1)& + ¢ T,
Tiiv1 = GiTi — (t = 1)G:

Proof. Recall wT; 4 = Tjw, w?Ty = Ty_1w>. Suppose j =i — 1 then

Tigi—l = tiiliNTiTl‘,lTiTiJrl cee TN_lefl T

1—

1
2
=t N T4 Ty - "TN717JUT1_1 TS
1
2

= tiiliNTiflTl‘TH,l tet TN 1Ti 1WT Tl
=N Ty - Ty T T T = &4 T

1

The analogous argument as in the previous lemma shows T;¢; = ¢;T; for j < i — 1. Suppose
j > i+1then

Ti&; = tf_NT'T'T»H o TyoqwTy e T = 0N T Ty T T T]—_l1
NTTi - TyawTi Ty Tjill
:tJ*NTj..-TN_lefl ST T5 Ty - T

The modified braid relations aba = bab < ab la! = b lalb imply

Tia T, ' T = T 1T T; and thus T = &;T;. As before

TG =t TR T =t {(t— )T+ )& Ty = (t = 1)& + & T
GiTi = (t = 1)& + TiGiy1-

O

z

Polynomials are spanned by monomials x* = Hlx?" ,a € NY. For a € NY set
=

i it
six = (al,...,aiil,lai,..) forl1 <i < N, and |a] = ] 1ch (the degree of x*). Let

NN+ {a € NO ny >y > ... > aN}, the set of partitions of length < N. Let a™ denote
the nonincreasing rearrangement of «a (thus a™ € N(I)\] *). There is a partial order on Ny

i i
a</3<:>2aj§2ﬁj,1§i§N,a7é[3,

j=1 j=1

a<dp = (la| =B A [(a" <pT)V (a" =BT Na < B)],
and a rank function (1 < i < N)
ra(i) =#{ja; >0} +#{j: 1 <j < i) = a;}.

ot
Note a; = L
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2.1. Nonsymmetric Macdonald Polynomials
The key fact about the Cherednik operators is the triangular property (see [5])

gixtx _ quth—Ya(i)xlX 4 Z C/x,ﬁ(qr t)xﬁ, (1)

B<

where the coefficients ¢, (g, t) are polynomials in g, t. For generic (g, ) (this means g™t" # 1,0
form > 0and 1 < n < N) there is a basis of P, for a € N(I)\]

MIX(-X) = qb(lx)te(a)xa + Z Azx,ﬁ(q/ t)xﬂ

B<a

(where A, g(q,t) is a rational function of (g, t) with no poles when (g, t) is generic) and for
1<i<N |
&M, = q”‘ftN’r“(l)M,X.

The exponents are b(a) = 3 YN | a;(a; — 1) and e(a) = TN | a (N — 2i + 1) — inv(a), with
inv(a) :=#{(i,j) : 1 <i<j<N,a; <uaj} ; there is an equivalent formula:

2 (|(x,-—rx]-| + ’DCi—DCj+1| —1).
1<i<j<N

N —

e(a) =

These powers arise from the Yang-Baxter graph method of constructing the M,, and are not
actually needed here. The spectral vector of My is [{a (i), with £y (i) = g%tV 7=, We will
need the formulas for the action of T; on M,. Suppose «; < a;11 and
z=Co(i+1)/84(i) = girr—%ipra(D)=rali+1) then

1t
TiMy = Ms,-zx - EMDU (2)
‘ (1 —=zt)(t —2) z(1—1t)
TZMSitX - (1 . Z)z sz + (1 — Z) MSZ'D(- (3)

If o; = ajyq then T; M, = tM,. The quadratic relation appears as

(4120 (n- =0y L 0=ste )

1-z 1-z (1—2)?

2.2. Action of T; on Polynomials and >-Maximal Terms

The following are routine computations:

Lemma 3. Suppose y € N(I)‘] and1 <i< N.Setx' = [Tjziit1 x"i. Then

Yi=Yigr—l . o
(1) y; > viy1 + Limplies Tix" = (1 —t)x’ Y x?l J 1x7j:11+]+1 + £x5iY;
j=0

(2) vi = Yiz1 + Limplies Tx" = x5i7;
(3) Yi = Yi+1 Zmplles Tixry = tx7;
(4) vi = vis1 — Limplies TixV = tx%7 + (t — 1)x7;

Yier—vi—1 .o .
(5) vi < viy1 — Limplies Tix7 = (t—1)x" ¥ xylﬂxkrl] T pxsi,
j=0

Lemma 4. Suppose A € Né\]’Jr,Ai >A+1@G>jandl <s < Aj—Aj € NY such that
i = A fork #i,j, i = Aj—s, 4 = Aj+sthen A = put.

(The proof is left as an exercise.)
In (1) above let oy =y fork #i,i+1landa; = ;i —j—1,a;11 = ¥i11 +j+ 1 with
1 <j+1 < 9;— 7+ then the Lemma with A = 4" and u™ = a" shows 4" > at (the
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other term in (1) is x%7 and v > s;7). Similarly in (5) let a; = ¥; + j, aj41 = Yiy1 — j with
1<j<9i1—7 —1,thusy" = at (the other term in (5) for j = 0is x7 and s;7y > 7.

Proposition 1. Suppose a is >-maximal in p = Y5 csx° (a homogeneous polynomial, |6| = |a|),
that is, ¢y # 0 and if some § > « with ¢; # O then § = w. Furthermore suppose w; 1 > «; for
some i and xP with B > s;n appears in (T; + c)p then BT = o™+ and p = s;a.

Proof. Suppose xP appears in T;x” (with c, # 0) in one of the five cases of Lemma 3 and
Bt = (six)" = aT. Every term satisfies = = B or v = BT but then 4+ = g+ = a* and
v > «, a contradiction. Suppose B = a™ then B > s;a implies B >~ s;a. O

Corollary 1. If a is >-maximal in p = Y5 csx° and xP appears in (T; + ¢)p with B > s;u then
either p = s;w or Bt = o and B = s;a with B = s;y where x7 appears in p.

Proof. If B occurs in case (1) or case (5) of Lemma 3 and B # v, s;y (for x7 appearing
in p) then v > B* > s;a > a which violates the >-maximality of a, this leaves only
p=siv. O

Note B = s;y does not imply s;8 > «a, for example let B = (4,1,3,2) and s;a =
(3,2,1,4) then B > sja but s = (1,4,3,2) and a = (2,3,1,4) are not >-comparable.

2.3. Irreducible Representations of the Hecke Algebra

Irreducible representations of H () are indexed by partitions of N (for background
see Dipper and James [6]). Given a partition T € NSI'+ with |T| = N there is a Ferrers
diagram: boxes at (i, j) with 1 < i < () = max{j: 7 > 0} and 1 < j < 7. The module is
spanned by reverse standard Young tableaux (abbr. RSYT) of shape 7 (denoted Yr): the
numbers 1,..., N are inserted into the Ferrers diagram so that the entries in each row and
in each column are decreasing. The module spang{Y : Y € )} is said to be of isotype 7.
If kisincell (i,j) of RSYT Y (denoted Y[i, j] = k) then the content c(k,Y) := j — i; the content
vector [c(k,Y)] ,Z(\Izl determines Y uniquely. The action of Hy(t) is specified by the formulas
for T;Y:

o Ifc(i,Y)—c(i+1,Y) =1then T;Y = tY;

e Ifc(i,Y)—c(i+1,Y) = —1then T}Y = -Y;

o If|c(i,Y) —c(i+1,Y)| > 2 thenlet Y(!) denote the RSYT obtained by interchanging i
and i+ 1in Y and set z = t<0+1Y)=¢iY): if ¢(4,Y) — c(i +1,Y) > 2, then

1—t

v — vyl _ .
LY = Y0 - —;
ifc(i,Y)—c(i+1,Y) < =2, then
ry- 1220 =2)yp 1=t
(1—2z)? 1-z

From these relations it follows that w;Y = Y)Y for 1 < i < N. Call the vector

. N
[tc(lfy)] - the t-exponential content vector of Y, or the t“-vector for short. Note ¢(N,Y) = 0
1=
always and wy := 1.
So if one finds a simultaneous eigenfunction of {w;} then the eigenvalues determine

an RSYT and the isotype (partition) of an irreducible representation.

2.4. Singular Parameters

For integers m and n such that m > 1 and 2 < n < N we consider singular parameters
(g,t) satisfying q"t" = 1 with the property that if g¢t’ = 1 then a = rm, b = rn for some
reZ.
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Definition 1. Let ¢ = ged(m, n) and let z = exp(zmk) with ged(k,g) = 1, that is, z2"/8 is a

m
primitive g™ root of unity. If g = 1 then set z = 1. Define @ := (q,t) = (zu’”/g, um/g) where
u is not a root of unity and u # 0.

Lemma 5. If g°t?| o = 1 for some integers a, b then a = rm,b = rn for some r € Z.

Proof. By hypothesis zu~%"/8+t"/8 — 1 and, since u is not a root of unity, —ag + b% =0.

From gcd(g,%) =1, it follows that a = p’% and b = p’g, for some p’ € Z. Thus,
1=2"= exp(%%) = exp(zg—ikp/). Moreover, since ged(k,g) =1, p’ = pg with p € Z.
Hencea = pmand b = pn. O

In fact, to describe all the possibilities for @, it suffices to let 1 < k < g. To be precise,
@ is not a single point but a variety in ((C\{O})z.
3. Necessary Conditions for Singular Polynomials

By using the degree-lowering (3-Dunkl) operators defined by Baker and Forrester [5]
we find another characterization of singular polynomials.

Definition 2. Suppose p € P then

L - ap),

XN

Dnp(x) :
1 .

D,-p(x) = ?TiDi+1Tl‘p(X), 1 < N.
Proposition 2. A polynomial p is singular if and only if D;jp = 0 for 1 <i < N.
Proof. The proof is by downward induction on i. Since wy = 1, it follows that Dyp = 0
iff yp = p = wnp. Suppose that D;p = 0iff ¢;p = w;p for all pand k < i < N.
Then Dy_ip = 0 iff t 1Ty _1DT_1p = 0 iff DyT_1p = 0 iff &GT_1p = wTi_1p iff
t T 18 Teoap = £ Ty Toap. O

First we show that any singular polynomial generates an # y (¢)-module consisting of
singular polynomials. This allows the use of the representation theory of Hy (f).

Proposition 3. Suppose p is singular and 1 <i < N, then T;p is singular.

Proof. The commutation relations from Lemmas 1 and 2 are used. Suppose j < i or
j>i+1then {f]T,p = Ti(;‘,’]'p = Tia}jp = ijip. Casej=1:

GiTip ={(t =1)¢; + Tigiy1}p = (t = Vwip + Tjwiy1p
= {(t - Dw; + Twi1}p = w;Tip.

Casej=i+1

SimiTip = {Tig; — (t —1)¢i}p = Tiwip — (t — 1)w;p
= {Tia),‘ - (i’ - 1)wl}p = wi+1Tip.

O

Proposition 4. Suppose p is singular then M = H (t)p is a linear space of singular polynomials,
and it is closed under the actions of ;, w;. for 1 <i < N, and w.
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Proof. By definition of w; we see that f € M implies w;f € M, and by definition
‘:if = wif € M. Also

Gp=TT - Ty 1wp
=wp=t"NTT... - Ty Tn_1Tn—2 - Tip

thus wp = tliNTNflTN,Z --Tip. O

Note that M is also a module of the affine Hecke algebra. By the representation theory
of Hx(t) the module has a basis of {w; }-simultaneous eigenfunctions and by definition
these are {¢; }-simultaneous eigenfunctions - note we are not claiming they are specializa-
tions of nonsymmetric Macdonald polynomials at @. Suppose f is such an eigenfunction
and let o be D>-maximal in the expression f(x) = Zlg c ﬁxﬁ. Then
&f = q%tN~"x(0) f because by the triangularity property of & (see (1)) x* can only appear in
¢if in the term ¢;x*. Furthermore ¢;f = w;f implies q"‘itN_ra(i) = ¢0Y) for some RSYT Y,
at @. As well we can conclude a; = mr, N — r,(i) — c(i,Y) = nr for some r € N (Lemma 5).
The next step is to produce a simultaneous eigenfunction which has a >-maximal term x*
with A € N)'*.

Proposition 5. There exists f € M which is a simultaneous {w;}-eigenfunction and
f= x4+ Lpar cﬁxﬁ + Y, ¢y X7 where 7y is not >-comparable to A, and A € Né\”+.

Proof. Suppose f = ) c,x" is an eigenfunction and there is a >-maximal &« with x* (i.e.,
ca 7# 0) appearing in f, and «; < a;4q then T;f # f and the coefficient of x%i* is tc,; let
wif = pjf for 1 <j < Nand p;q # p; (because c(i,Y) # c(i+1,Y) for any RSYT) so that

t—1

=Tif 4+ —7
g f Piva/pi—1

is a simultaneous eigenfunction with >-maximal § such that * = a* and B > s;a, (by
Proposition 1) and eigenvalues ... y; 1, }4; . . .In general this formula could produce a zero
function g but this does not happen here because the coefficient of x** in g is not zero.
Repeating these steps eventually produces a [>-maximal term x* with A € Né\] "+ (at most
inv(a) steps). O

At this point we have shown if there is a singular polynomial then there is a partition
AE Né\’ T and an RSYT Y such that q)‘itN —i = ¢¢(iY) at @, for 1 < i < N. Next we determine

necessary conditions on A for the existence of Y, in other words, when [tV ~] 11'11 at @ is
a valid t€-vector. The equations A; = mr;, N —i—c(i,Y) = nr; for 1 <i < N show that A
can be replaced by 1A and @ by gt" = 1 (simply g = "), also nA; = N —i — (i, Y).

The following is a restatement of the development in [2] with significant differ-
ences in notation. First there is an informal discussion of the beginning of the pro-
cess of building Y by placing N,N —1,N — 2, ... in possible locations and determining
AN, AN—1,AN—2,...accordingly. Abbreviate c; = ¢(i,Y).

Suppose An_i is the last nonzero entry of A (A; = 0 for i > N — k) then
k—cn_k =nAn_k (cny—j=jfor0 < j < kimplies Y[1,j] = N — j — 1); the entry N — k in
Yisat[1,k+ 1] or [2,1] thuscy ¢ = k,Ax_x = 0 (contra) or cyy_ = —1,nAy_ = k+ 1.
Set ANy_x = dj and k = nd; — 1.The entry N —k — 1 in Y is in one of [3,1],[2,2], [1,k + 1]
with contents —2, 0, k, respectively, yielding the equations nAx_x_1 =k+1—cy_j_1 =
k—1,k+1,1 = ndy —2,ndy, 1, respectively. If n > 2 then only [2,2] is possible and
AN_k—1=d1.If n=2then [3,1],Ay_,_1 =dy +1and [2,2],AN_,_1 = dj are possible.

Theorem 1. There are numbers di > dy > ... > dp > 1 such that with v, := le;ll d; and
0<rp+1 < N—nyry1+L < ndp —1 the entries in row s of Y are Rg := {i : nys —s+1 <
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N—i<nyy1—s—1}for1 <s <L Rpy1 = {i:nyp;1—L<N—-i<N-1}and
Ai = s fori € Rs. Theisotype of Y is T := (ndy — 1,ndy — 1,...,ndp — 1,71 41).

Proof. By way of induction suppose there are numbers d; > dy > ... > dy_1 > 0 such
that the entries in row s of Y are Ry = {i:nys—s+1<N—-i<nys1 —s—1} and
Ai = 7s for i € Rs;. Assume this has been proven for 1 < s < k and for row k up to
nyy—k+1 < N—i<ny—k+ ¢ with £ < ndi_1 —1 (the length #R_1 of row k — 1).
Consider the possible locations for the next entry p = N — (ny, — k+ £+ 1). The possible
boxes are (1) [s, nds| (s < kand ds < ds_1 ors = 1), (2) [k, £ + 1], (3) [k + 1, 1] with contents
nds —s, £ +1 — k, —k, respectively. The equations

mA\p=N—p—cy=ny—k+L+1-cp
n(Ap—vx) = —k+0+1—cp

must hold;
case (1): (note £ + 1 < ndy_q)

n(Ap —y) = —k+L+1—nds+s
n(Ap— v +ds) = —k+s+1+4 < —k+s+ndg_;
n(Ap —ye+ds —di_q) <s—k<0

Ap 27k = Apa and ds; > di_1 by inductive hypothesis, so the left side > 0 and there is a
contradiction.
case (2):

n(Ap—m) =—k+0+1—-({+1-k)=0
)\p:'Yk

and the inductive hypothesis is proved for nyy —k+1 < N —i < ny, — k+ £ + 1, entries
in row k.
case (3)

nAp =) = —k+L4+1+k=0+1

set £ = ndy — 1 and Y1 = Yk +di, Ap = Yk+1- The inductive step has been proven for k
and for k +1 with Y[k +1,1] = N — n7y.1 + k. By induction this uses up all the entries.
Let row L + 1 be the last row of Y and of length r; 1, then N = Ef‘zl (nd; — 1)+ rpy1 and
TL+1 S VldL —1. O

Corollary 2. Suppose @ = (q,t) as in Definition 1 and p is singular. Then Hy (t)p contains a
{w;, &} simultaneous eigenfunction f = cyx* + Ypar cﬁx/5 + Y., €y X7 with «y not t>-comparable
to A so that A; = mys if i € R, in the notation of the Theorem.

We have shown if « is >-maximal in a simultaneous {wj, {; } eigenfunction then there
is an eigenfunction in which a* is >-maximal. Now the eigenvalues are determined by Y
and it follows that a™ = A as constructed above. Hence each term x7 in an eigenfunction
satisfies v < A. (Suppose at some stage <y is I>-maximal then there is a simultaneous
eigenfunction with 7" being >-maximal and the construction produces an RSYT of the
same isotype T and the numbers N, N —1,.. .. are entered row-by-row forcing 7™ = A.)

Theorem 2 ([2]). In the notation of Theorem 1 if d; = 1 for i > 2 then M, (x) specialized to
@ has no poles and is singular. The module Hy (t)M, is spanned by M,y where Y € Yz,
T= (nd1 -1,(n— 1)L_1,rL+1) and a(Y); = m(dy +s —2) if Y[s, k] =i for s > 2 and some
k, otherwise (Y[1,k] = i) a(Y); = 0.
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The Ferrers diagram of A (from Theorem 1) is called a quasi-staircase, the shape
suggested when French notation with row 1 on the bottom is used.

We have reached the main purpose of this paper: to show there are no other singu-
lar polynomials.

4. Restrictions

In this section, we show that the desired nonexistence result can be reduced to the
simpler two-row situation.

Suppose « € N} and r,(1) = 1 (thatis, a; < aq for all i). Leta’ = (ap,...,ay) and
Y’ = Y\{1} (the RSYT where the entry 1 is deleted) and f satisfies &;f = g%tN-"=()f,
at . First we will show that f,s := coeff(x}?, f) is an eigenfunction of (;‘; with eigenvalue
q”‘itN’r“(i) for 2 < i < N where

w'p(x) == p(gxN, X2, X3, .., XN_1),
Eip(x) =TTy - Tyaw'Ty - T p(x)

Lemma 6. Let f = x{'x32p(x3, ..., xN) with ay > ay then
coeff(x’fl,le_lf> = t 1w/ coeff(x{", f).

Proof. By definition

1=t f(x) = f(xs1) |,
T-1f _ t
D= —x e f(xs1)
1—t x]1T2 — x5
7x1+0¢2x042 1 2 p + tilx;‘zxglp(x::,, ey XN)

ot 1 2 X1 — X2
1 _ t 0(170(271

K1 —1_ar+i 1.0y &
= Yoo xR p 4t 2 p(xs, . xN)

i=0
then
-1 1t mE! qul' o +i
le f = T 2 (I]XN) X4 p(xz,x3,...,xN,1)
=0
+x7' (gxn)2t 1 p(x0, %3, ., XN_1).

The highest power of x; in the first term is &y — 1 thus
coeff(x?,le_lf) = (qxn)" 2t tp(x0, x3,. .., ¥N_1)

and the right hand side is t 'w/x)?p(x3, ..., xn). O
Let 71, f := coeff(x], f).

Theorem 3. Suppose f = Y, cax* with max; a; = n then 1,8 f = &, f for2 <i < N.
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Proof. Leti > 1 then

nlif =t Ty - TyoawTy ' Ty T2 f(x)
= ti_lTiTi-s-l e TN—]7Tn7VUT1_1T2_1 o Ti_jlf(x)
=TT - Ty m Ty T f(x)
= Ty - Ty W' Ty - T f (%)
= &lmnf;

this uses the Lemma and the fact that & f and T, ' - - - Ti__l1 f are sums of monomials xf with
B;j < nforj > 1 (properties of the order > and of Tj_l). If i = 2 then the empty product

T{l e T;ll reducesto 1. [

Suppose a, B € N 7! (indexed 2 < i < N)and |a| = ||, seta’ = (n,a),p := (n,p)
(so that |a/| = |B]).

Lemma 7. Suppose max; a; < n and max; B; < n then o't = (n,a™),p'" = (n, ) and

o = Bliffa= B, o’ > Biffar> B

Proof. By hypothesis (a'*); = nand «’t = (n,a™), similarly /" = (n, ). Furthermore

i i
a’%ﬁ’(z)n—l—Zoan—i—Z[@ViEZ
j=2 j=2
= a>p

Then

wi = (= BV (@ =Bt e p)
W B e (W BV (@ = B AL - )

anda > p<=ada'>p. O

Proposition 6. Let f be the {w;, {; } simultaneous eigenfunction from Corollary 2 with eigenvalues
ghitN= = 1e0Y) gt g =1 for 1 < i < Nand Ay > 0. Then 7y, f is a nonzero {w;, &} 1 i > 2}
simultaneous eigenfunction with the same eigenvalues as f for i > 2 with c¢(i,Y) = c(i, Y\{1}).
Here Y\{1} is the RSYT obtained by removing the box containing 1 from Y.

Proof. We showed that each term x* appearing in f satisfies A > « and a7 < A; for all
i. Apply 7y, to f then by Lemma 7 B < (Az, A, ..., Ay) for each xP appearing in 7, f.
For i > 2 w; commutes with 71y, and by Theorem 3 71, &; f =Gy, f . Thus w;my, f = &imy, f
for i > 2. Furthermore, (A3, A3, ...,AN) € Né\]_l’Jr is >-maximal in 77y, f. O

The definition of RSYT has been slightly modified to allow filling with 2,3,..., N.
The isotype of 7y, f is 7' := (ndy —1,ndy —1,...,nd;, — 1,7 41 —1).

Theorem 4. In the notation of Theorem 1 if dy > 2 then there is a singular polynomial for the
parameter @ in n(dy + 1) — 1 variables with A = ((mdl)”,O”dlfl), of isotype (ndy —1,n).

Proof. Apply Proposition 6 repeatedly, and by hypothesis ndy —1 > 2n — 1 > n. The re-
maining RSYT is

Y =

7

N N-—-1 eee .. N—ndy{+2
N —nd; +1 ... N-ndi—n+2



Axioms 2022, 11, 208

11 0f 14

and has the t“-vector [t"’z, =3 1,47 =2 yndi =3y 1] . O

5. Concluding Argument

Re-index the variables by replacing d; > 2 (implied by d» > 2) by d, N by
N =nd —1+nand

Y,,[nd1+n nd—2+n ... ... ... n+1]
- n 1 '

Proposition 7. Suppose A = (d”,O”dfl) and v € NX for some K > N satisfies |y| = nd
and C; : n(A; — ;) = ro(i) —ifor 1 < i < K (setting A; = 0 fori > N) then v = A or
7 =pg:=(07,11).

Proof. By condition C, ;1 we have (r(n+1) —n—1) = —nvy,q so that v, = 1 —
L,(n+1)—1) < 1and thus 7,41 = L or 41 = 0. If 4,41 = 1 thenry(n+1) = 1,
which implies 7; = Ofor1 <i <mnand y; < 1fori >n+1.1fj > nand v; = 0 then
by Ciry(j) = j = #H{k<=j:9 >0} +#{k > j: 9 > 0} so that k > j implies 74 = 0.
Since |y| = |A| = nd we see that 7,1 = 1 implies y" = (1"d> and in fact y; = 1 for
n+1<i<n(d+1),since 7j = 0and 7,1 = 1is impossible forany j > n. If 1 < j <n
then r,(j) = nd +j and n(A; — ;) = nd = ry(j) — j, thus satistying C;. The other
conditions C; are verified similarly. Thus, ¥ = B.

If ypy1 = 0thenry(n+1) =n+1and £(y) = n. Suppose 1 < j < n then C; states
n(Aj—7j) = ry(j) — j and the bounds 1 < j, 7 (j) < nimply |r,(j) — j| < n —1and thus
’)/]‘ = )\] O

Corollary 3. Suppose A = ((md)”, O"d_l) eN é\] "+ The coefficients of M (x) have no poles at @.

Proof. M), (x) is a nonzero multiple of x* + Ypar A ,\,ﬁxﬁ . For each B < A there is at least
one index jg such that {, (ig) # {p(ig) at @ or else g iPit' )1 — 1 foralli < N. In this
case by Lemma 5 (A; — B;) = ms;, rg(i) —i = ns; for somes; € Z. Set \' = LA, B = LB
then n (A} — B}) = rg(i) — i for all i and by the Proposition g’ = A’ or g’ = (0”, 1”d) but

the latter is impossible because (0”, 1”d) ¢ Né\] . Finally (this works because there is a
triangular expansion x* = cM, + ¥ A% 1M which holds for generic (g, t))
g<r

giﬁ —Gp (iﬁ) A

M) = Cﬁ<1/\ 0 ip) — s (ip)

This shows that the poles of M, are of the form g*t’ — 1 = 0 and @ is not a pole. [
Proposition 8. Suppose f is as in Theorem 4 then f(x) = cM, (x) at @ for some constant ¢ # 0.

Proof. By matching coefficients of x* find ¢ so that coeff(x}, f —cM,) = 0. If
g := f —cM, # 0 then there exists f such that xP is >-maximal in g. By >-triangularity

&g = qPitN (D) g (at @) for all i. However, g has the same eigenvalues as M, that is,
gPitN (i) = 7"1tN=" at @ and the proof of the Corollary showed that 8 = A , contradicting
g#0. O
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Recall the transformation Formula (3) for M, for a; > a; 11 withz = g"églié)l)
(1—2z)? 1—t
M.y = T; M
S ey o G g S
If My has no pole at @ and z # 1,¢, t~1 then M, has no pole at @. When at A

then &; > a;,1 implies a; = md and a;11 = 0,z = q’m”’t’“(i)’r“(”l) = prdtra(i)=ra(i+1)
at @. In the substring (ay,...,a;,a; 1) there are r,(i) values md and i + 1 — r,(i) zeros,
thus 7, (i +1) = n+i+1—r,(i). Thus, z = t¥ with b = nd + 2r,(i) —n — i — 1. Suppose
to(i) = n,thusi > nand s; can act on & without introducing a poleat @ if nd +n—i—1>1,
thatisi < nd +n —2 = N — 1. The last permitted occurrence of md in a isi = N — 2.
Next move the second last occurrence of md in « as far as possible without a pole: set
ro(i) = n—1landrequirend +2(n —1) —n—i—1> 1, thatis,i < nd+n—4 = N —3, thus
i = N — 4 is the last permitted value. More generally let 7, (i) = n — j (with0 <j <n —1)
then require nd +2(n—j) —n—i—1> 1, thatis, nd + n —2j—2 >iori < N—1—-2j;
the last permitted valueisi = N —2(j + 1).
Let

x = (O”dfnfl,md, 0,md,0....,md, 0)

gzx — [thnfl’ o, tn’ qmdthl’ tnfll o ’qmdthn, 1} .

We showed that M, has no poles at @, and if M, at @ is singular then so is M. The spectral
vector {, at @ coincides with the tC-vector of the RSYT

vir [ N N-2 .. N-21+2 N-2n - 1
0= IN-1 N-3 .-~ N-2n+1 ’

and thus wy_1Yy = t~1Yp; by construction (N — 1) = g"¥N-" = p=nd+N-n — =1

If M, at @ is singular then wn_1My = {N_1 My = t~1 M,; this means

P TN 1 TN Me = M,
((t - 1)TN—l + t)MlX = M,
(t —=1)Tn_1My = (1 — £) M,
(Ty_1+1)M, =0.

For the next step we recall some standard definitions: the g-Pochhammer symbol is
k .

(;9); = I1 (1 —ag'~1) and the generalized (g, t)-Pochhammer symbol for A € N)"" is
i=1

i
N
(0;4,1) g(tl’ ),-

In the context of the Ferrers diagram representation of a composition a € NY, {(i,j) :
1 <i < N,1 < j < a} (the rows with a; = 0 are empty) define the arm-length and
leg-length of a box in the diagram (A € Né\] ™y

arm(i, j;A) == A; — j,
arm(i, j;a) == a; — j,
leg(i,j;A) :=#{l:1 <] <N,j <A},

leg(i,jja) :=#{r:r>i,j<a, <aj}+#{r:r<i,j<ar+1<a;}.
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The (g, t)-hook product is
hq,t(v; 06) _ H (1 _ Uqarm(i,j;oc)tleg(i,j;ac)>.
(ij)ex

There is an evaluation at a special point (see [Cor. 7] [7]): let x(O) := (1,,#2,...,tN=1), then
for any g € NY

sy (@Y 9,1) o
Ma(x©) = 0B (ﬁ*)iﬁ,
(x7) = By (08:)

where b(B) = LY, (5),¢/(B7) = LN, BF(N —i).

Theorem 5. (Tn_1 + 1)M, # 0 at @ and M, is not singular.

Proof. For any polynomial p let x = x(©) in Typ(x) = (1 — t)xiﬂ%z(fi) + tp(xs;) then

Tip(x(o)) = t(p(x(0)> _p(x(o)si)> —b—tp(x(o)si) = tp(x(o)) (since xfi)l = txfo)). Set
by = b(a) = n("), ep = ¢ («) = Lmdn(2N — n — 1) then

) 4 () =51, )

= qPoro(t+1 (CACLDPES
grE(t+1) s (g5
The numerator is
n n_ dm
Ny, _ N—i+1. _ _ jgnd+n—i
(¢¥5a1) . =TT1(""5a), = TTTT( -0 ),
i=1 i=1j=1
where the only term vanishing at @ is for i = n,j = dm (for suppose j = rm with

r<dnd+n—i=rnforsomer € Nthenn >i=n(d-r+1)andd—r+1 < 1,
thatis, r > d, hence r = d,i = n). For the hook product observe thatif 1 < j < n then
leg(a; N — 2j41,1) = nd — 2 because there are nd — 1 — j zero values in (a1, ..., aN_2j41)
and j — 1 values of md in (ay_2j4o,...,an). Since arm(a; N — 2j 4 1,1) = dm — 1 we find

that the boxes {[N —2j+1,1] : 1 < j < n} contribute (1 - qdmt"d_l)n to hg(qt; «). This
term becomes (1 —t1)" at @. The other boxes in the diagram of « are {[N —2j +1,k] :
1<j<n2<k<md}andleg(a;N—2j+1,k) =j—1,arm(a;N —2j+1,k) = dm — k.
Thus

=
3

n

hgr(qt;a) = (1 - qdmtnd_l>n (1 _ qdm—k+lt]'>

1
(1 —qitj).

The only term in the product vanishing at @ is for i = m, j = n. Thus, the term (1 — g"t")
(9t )y
hqt(qt; )

=
—_

-
B
o

3

_ (1 . qdmtndfl>n

1

-
Il
Il
MR

cancels out in and (Ty_1 +1)M, (x(0)> #0. O

Example 1. Let N =5n=2,m=1,d =2thena = (0,2,0,2,0) and @ = (t~2,t) (that is,
qt> = 1) The spectral vector of a is [2,q*t*,t,q*t3, 1] which equals [?,1,t,t71,1] at g = t72.
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The expression for M, is too large to display here (32 monomials); the denominators of the coefficients
are factors of gt — 1, (4°£> — 1)2 and

2pa (02 41) (gt = 1) (g = 1) (4P — 1)
(1 =1)"(gt = 1)
which does not vanish at g = t~2. However, the same polynomial is singular withn = 4,d = 1,

m = 2and g = —t=2 (that is, g?t* = 1 but qt> # 1). The singularity can be proven by direct
computation and the vanishing of My (1,...,t*) is only a necessary condition.

M (1, b2 83, t4) =q

We have shown if there is a singular polynomial as described in Theorem 1 and dp > 2
then by using the restriction Proposition 6 repeatedly there is a singular polynomial of
isotype (ndy — 1,n), which in turn implies that M, is singular. This is impossible and we
conclude that d, = 1 is necessary, and all singular polynomials have been determined.
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