
Citation: Du, X.; Wang, T.; Wang, L.;

Pan, W.; Chai, C.; Xu, X.; Jiang, B.;

Wang, J. CoreBug: Improving

Effort-Aware Bug Prediction in

Software Systems Using Generalized

k-Core Decomposition in Class

Dependency Networks. Axioms 2022,

11, 205. https://doi.org/10.3390/

axioms11050205

Academic Editors: Tatiana

Odzijewicz, Oscar Humberto Montiel

Ross and Darjan Karabaševic

Received: 3 March 2022

Accepted: 24 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

CoreBug: Improving Effort-Aware Bug Prediction in Software
Systems Using Generalized k-Core Decomposition in Class
Dependency Networks
Xin Du, Tian Wang, Liuhai Wang, Weifeng Pan * , Chunlai Chai, Xinxin Xu, Bo Jiang and Jiale Wang

School of Computer Science and Information Engineering, Zhejiang Gongshang University,
Hangzhou 310018, China; duxin971211@163.com (X.D.); wtaddiction@163.com (T.W.);
wangliuhai@aliyun.com (L.W.); ccl@zjgsu.edu.cn (C.C.); katyxu888@163.com (X.X.);
nancybjiang@zjgsu.edu.cn (B.J.); wjl8026@zjgsu.edu.cn (J.W.)
* Correspondence: wfpan@zjgsu.edu.cn

Abstract: Complex network theory has been successfully introduced into the field of software
engineering. Many works in the literature have built complex networks in software, usually called
software networks, to represent software structure. Such software networks and their related graph
algorithms have been proved effective in predicting software bugs. However, the software networks
used were unweighted and undirected, neglecting the strength and direction of the couplings.
Worse still, they ignored many important types of couplings between classes, such as local variable,
instantiates, and access. All of these greatly affect the accuracy of the software network in representing
the topological detail of software projects and ultimately affect the metrics derived from it. In this
work, an improved effort-aware bug prediction approach named CoreBug is proposed. First, CoreBug
uses a weighted directed class dependency network (WDCDN) to precisely describe classes and
their couplings, including nine coupling types and their different coupling strengths and directions.
Second, a generalized k-core decomposition is introduced to compute the coreness of each class in
the WDCDN. Third, CoreBug combines the coreness of each class with its relative risk, as returned
by the logistic regression, to quantify the risk of a given class being buggy. Empirical results on
eighteen Java projects show that CoreBug is superior to the state-of-the-art approaches according to
the average ranking of the Friedman test.

Keywords: bug prediction; complex network; k-core decomposition; class dependency network;
effort-aware bug prediction

MSC: 68N19; 68N30

1. Introduction

Software quality assurance (SQA) is of vital importance to the success of software
projects, consuming a significant amount of resources (e.g., developers, time, and money).
Unfortunately, software companies often have only limited resources for SQA activities.
To make these activities resource-effective, many bug prediction approaches have been
proposed to help prioritize the limited resources by identifying bug-prone software entities
(e.g., files, methods, and classes). That is, limited resources should be allocated to the most
bug-prone software entities first.

Bug prediction is often regarded as a binary classification problem with the aim of
classifying software entities as buggy or clean. Many existing bug prediction approaches
leverage machine learning techniques (e.g., logistic regression) to build classification models
using a set of software metric values and some labeled data sets [1]. The existing approaches
can be roughly categorized into two groups according to whether they consider the effort
needed to inspect the code, i.e., the traditional prediction approaches (TPA) [1] and the

Axioms 2022, 11, 205. https://doi.org/10.3390/axioms11050205 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11050205
https://doi.org/10.3390/axioms11050205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-6355-1385
https://doi.org/10.3390/axioms11050205
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11050205?type=check_update&version=4

Axioms 2022, 11, 205 2 of 14

effort-aware prediction approaches (EPA) [2]. In recent years, EPA has attracted a lot of
attention, and many effective prediction models have been proposed [2,3].

Bug prediction approaches often rely on a set of software metrics to build prediction
models. Thus, how to select a suitable set of metrics is a problem facing many researchers.
Among the existing metrics, network metrics derived from the topological structure of
software systems have attracted a lot of attention. Many researchers depict the software
topology as a network, called software network [4,5], where nodes are software entities
(e.g., files, methods, and classes), and edges (or links) are the couplings (e.g., inheritance,
method call, and implements) between entities. Then, they borrow some metrics (e.g., degree,
coreness, betweenness, and PageRank) from the field of network science to characterize the
topological structure of software networks. These metrics have been gradually utilized to
build prediction models [6–9].

Quite recently, Qu et al. [3] proposed an improved effort-aware bug prediction model,
called top-core, that combines the coreness and relative risk of a class to quantify its risk of
being buggy. The coreness values of the classes are derived from the software network
using k-core decomposition. However, there still exist some unresolved problems in their
work: (1) the software network they used was unweighted and undirected, neglecting the
strength and direction of the couplings; and (2) they ignored many important types of
couplings between classes, such as local variable, instantiates, and access. These two problems
greatly affect the accuracy of the software network in representing the topological detail of
software projects and ultimately affect the metrics (i.e., coreness) derived from it.

To tackle the above two problems in [3], we improved the work of Qu et al. in [10] by
considering more coupling types to build a more accurate software network. However, we
still did not consider the weights or direction of the edges, and the k-core decomposition
used to compute the coreness only applies to unweighted undirected networks. In fact, the
weights and direction correspond to the coupling strength and relationships between the
components in the software. These interactions are indispensable. In order to make up for
the shortcomings in the above two studies [3,10], an improved effort-aware bug prediction
approach, called CoreBug, is proposed in this work. First, CoreBug uses a weighted directed
class dependency network (WDCDN for short) to describe classes and their couplings,
including nine coupling types and their different coupling strengths and directions. Second,
a generalized k-core decomposition is introduced to compute the coreness of each class in
the WDCDN, which takes into account the weight and direction of links. Third, CoreBug
employs logistic regression to predict the relative risk of a class being buggy, which is further
combined with the coreness of the class to quantify the final risk of the class being buggy.
Empirical results on a set of eighteen Java projects show that CoreBug is superior to the
state-of-the-art approaches according to the average ranking of the Friedman test.

In summary, we make the following contributions:

• The work of Qu et al. [3] used unweighted undirected software networks to represent
software structure at the class level. Worse still, their software networks only consid-
ered five coupling types between classes, neglecting many important couplings such
as “instantiates”, “access”, and “method call”. It is a primitive representation that cannot
precisely capture the couplings between classes. In this work, we propose a WDCDN
that captures nine coupling types between classes, uses link weight to denote coupling
strength and uses link direction to denote the coupling direction. In this sense, our
WDCDN is a more accurate representation of the software structure when compared
with the software network used in [3].

• The work of Qu et al. [3] used k-core decomposition to compute the coreness of classes
in the software network. This k-core decomposition can only be used in unweighted
undirected networks. In this work, we apply a generalized k-core decomposition that
can be used in weighted directed networks.

• We perform a comprehensive set of experiments to validate the effectiveness
of CoreBug.

Axioms 2022, 11, 205 3 of 14

The rest of this paper is organized as follows. Section 2 briefly reviews related work.
Section 3 describes our CoreBug approach in detail, with a focus on the WDCDN that we
used to represent the software structure, the generalized k-core decomposition that we used
to compute the coreness of classes, the relative risk that we used to quantify the risk of a class
being buggy, and the algorithm depicting the main steps of CoreBug. Section 4 empirically
validates our CoreBug approach by comparing it with other state-of-the-art approaches.
Section 5 concludes the paper and summarizes the proposed directions of our future work.

2. Related Work

In the last decade, to help managers effectively allocate limited resources (e.g., time
and cost), many effective bug prediction models have been proposed. In this section, we
focus on the research work performed from the perspective of complex networks and using
complex network theory.

Zimmermann and Nagappan [11] used a set of network metrics computed on a
function-level dependency graph to predict post-release bugs. They found that network
metrics were correlated with the number of bugs in Windows Server 2003 and that these
network metrics could be used to improve prediction performance. Pinzger et al. [7]
proposed a developer-module network to represent developer contributions and applied
several network centrality metrics (e.g., degree, closeness, and betweenness) to measure the
fragmentation of developer contributions. They found that network centrality metrics
were useful indicators for predicting fault-prone binaries and thus could be used to im-
prove bug-prediction models. Meneely et al. [6] built a developer network derived from
code churn information and used it to predict bugs at the file level. In their developer
network, two developers were connected if they co-edited at least one file in a release.
Then, some network metrics computed on the network were used as features for building
prediction models. They reported that their model could reveal a large percentage of
failures by examining a small percentage of files. Tosun et al. [12] replicated the work
of [11] on five additional systems, and they revealed that, for large and complex systems,
network metrics are useful indicators for predicting bugs, while for small-scale systems
the effects of network metrics are not significant. Premraj and Herzig [13] replicated the
work of [11] on three Java systems. They confirmed the effectiveness of network metrics in
the scenario of post-release bug prediction, but they claimed that network metrics offered
no advantage over code metrics in the scenarios of forward-release or cross-project bug
prediction. Ma et al. [9] comprehensively evaluated the effectiveness of network metrics
in the scenario of effort-aware bug prediction. They found that, although many network
metrics are of practical value, their effects vary with different prediction settings and dif-
ferent systems. Chen et al. [8] evaluated network metrics in high severity fault-proneness
predictions. They discovered that network metrics are correlated with high severity faults
and have comparable predictive ability to code metrics. Qu et al. [14] applied node2vec
to automatically learn a low-dimensional representation of a class dependency network.
They revealed that this representation could be used to improve the performance of bug
prediction models. Qu et al. [3] proposed a top-core approach to predict bugs in an effort-
aware scenario. Their approach combined the coreness and relative risk of a class to quantify
the risk of a class being buggy. The coreness of the classes was derived from the software
network using k-core decomposition. They stated that their approach performed better
than other approaches, such as Ree. However, Qu et al. did not sufficiently consider the
coupling relationship or strength, and they constructed unweighted undirected networks.
Such a representation does not match the characteristics of actual software. Pan et al.
improved the work of [3] by considering more coupling relations. Guo et al. [15] proposed
a random over-sampling mechanism to deal with the class imbalance problem in software
defect prediction. Eken et al. [16] investigated the contribution of community smells on the
prediction of bug-prone classes.

In summary, the existing work confirmed that network metrics are good indicators for
predicting bugs and thus can be used to build prediction models. However, the existing

Axioms 2022, 11, 205 4 of 14

works usually built unweighted or undirected networks, which cannot accurately capture
the internal complexity of a software system. Our CoreBug approach is very similar to
the top-core approach [3]. The only differences are (i) we used an accurate network repre-
sentation that takes into account the link weight and link direction, and (ii) we applied
generalized k-core decomposition to compute the coreness of classes.

3. The CoreBug Approach

Figure 1 gives the framework of our CoreBug approach, and the main steps are
marked as (1)∼(3), that is, (1) building WDCDNs, (2) applying the generalized k-core
decomposition, and (3) computing the relative risk of classes. In the following subsections,
we describe these steps in detail.

Figure 1. The framework of CoreBug.

3.1. Weighted Directed Class Dependency Network

The first task of CoreBug is to represent the software structure as a WDCDN since
CoreBug needs the WDCDN to compute the coreness of each class. As mentioned in
Section 1, WDCDNs actually encode the classes and their couplings in a system. Thus, to
build the WDCDNs, CoreBug should extract the information regarding classes and their
couplings from the source code of a subject system. In this work, this task is implemented by
our own-developed software SNAP (Software Network Analysis Platform). Note that we
only focus on software systems written in Java simply because the work of Qu et al. [3] only
analyzed Java projects; consequently, our SNAP can currently only process Java projects.

Definition 1 (WDCDN). The WDCDN of a subject system is defined as WDCDN=(V,L,W),
where V is the node set with v ∈ V denoting a specific class or interface, L = {〈u, v〉|u, v ∈
V ∧ u 6= v ∧ w〈u, v〉 ≥ 1} is the link set with 〈u, v〉 ∈ L denoting a link from nodes u to v, and
W = {w〈u, v〉|〈u, v〉 ∈ L} is the weight set with w〈u, v〉 denoting the weight on the link 〈u, v〉.

A WDCDN uses links to denote the couplings between classes. In this work, nine
types of couplings between classes are captured, i.e., inheritance (INH) relation (one class
inherits from another class via the keyword extends), implements (IMP) relation (one class
realizes one interface via the keyword implements), parameter (PAR) relation (methods in one
class have at least one parameter with a type of another class), global variable (GVA) relation
(one class has at least one field with a type of another class), local variable (LVA) relation
(methods in one class have at least one local variable with a type of another class), return
type (RET) relation (one class has at least one method with a return type of another class),
instantiates (INS) relation (one class instantiates an object of another class), access (ACC)
relation (one class has at least one method accessing a field with the type of another class),
and method call (MEC) relation (one class has at least one method calling the method on one

Axioms 2022, 11, 205 5 of 14

object of another class).
The weight on the link 〈u, v〉, w〈u, v〉, is computed as

w〈u, v〉 = ∑
T∈TS

T〈u, v〉 × t, (1)

where TS = {LVA, GVA, INH, IMP, PAR, RET, INS, ACC, MEC} is the set of coupling
types, T〈u, v〉(T ∈ TS) denotes the frequency of coupling T between classes u and v,
and t ∈ {lva, gva, inh, imp, par, ret, ins, acc, nec} denotes the strength of the corresponding
coupling T.

Note that T〈u, v〉(T ∈ TS) can be resolved by tracing the occurrence of coupling type
T in the source code. To estimate the coupling strength t for the corresponding coupling
T, we apply the weighting mechanism proposed by Abreu et al. [17]. It is an objective
weighting mechanism based on the distribution of inter- and intra-package couplings in
the target Java project and can be computed by

t =

10 NT

intra 6= 0∧ NT
inter = 0

1 NT
intra = 0∧ NT

inter = 0

round(0.5 + 10× NT
intra

NT
intra+NT

inter
) otherwise,

(2)

where NT
intra and NT

inter denote the number of intra- and inter-package couplings of the
coupling type T, respectively. round(y) returns an integer whose value is nearest to y.

For illustration purposes, we give a simple example (see Figure 2) to explain the
coupling types that might exist between classes and show how to build a WDCDN from
a Java snippet, including the nodes and links in a WDCDN and the weight on each
link. In Figure 2, the left part is a simple Java code snippet, and the right part is its
corresponding WDCDN.

Figure 2. A simple Java code snippet (the left part) and its corresponding WDCDN (the right part).

In the WDCDN, we show the coupling types that each link denotes, the frequencies
of each coupling type, and the final weight beside each link. Obviously, this code snippet
contains four classes (i.e., TropicalFruit, Banana, Orchard, and Purchase), one interface (i.e.,
Fruit), and three packages (i.e., P1, P2, and P3). Fruit, TropicalFruit, and Banana are defined in

Axioms 2022, 11, 205 6 of 14

P1; Purchase is defined in P2; and Orchard is defined in P3. Thus, the final WDCDN contains
five nodes denoting the four classes and one interface. Furthermore, the four classes and
one interface are coupled with each other via ten couplings, which have been explicitly
annotated with comments /**/ in the code snippet. These comments locate the positions
where the couplings occur. For example, the code line class TropicalFruit implements Fruit
indicates that there is one instance of IMP coupling from class TropicalFruit to interface
Fruit. Thus, there is a link between the nodes denoting TropicalFruit and Fruit. Other links
in the WDCDN can be established in a similar way.

The weight on each link is computed by Equation (1). Take the weight on the link
〈Purchase, Adaptor〉 as an example. Since all three couplings, LVA, RET, and INS, occur only
once, the weight on the link is w〈Purchase, Adaptor〉 = 1× lva+ 1× ret+ 1× ins. The values
of lva, ret, and ins are computed using Equation (2). As mentioned above, the LVA coupling
occurs only once between Purchase and Banana, and Purchase and Banana are defined in
two separate packages P2 and P1, respectively. Thus, NLVA

intra = 0 and NLVA
inter = 1. Hence,

lva = round(0.5+ 10× 0
0+1) = 1. In a similar way, we obtain ret = round(0.5+ 10× 0

0+1) =

1 and ins = round(0.5 + 10× 0
0+1) = 1. Thus, w〈Purchase, Adaptor〉 = 1× lva + 1× ret +

1× ins = 1× 1 + 1× 1 + 1× 1 = 3. The weight on other links can be similarly computed.

3.2. Generalized k-Core Decomposition

CoreBug leverages generalized k-core decomposition (Gk−core for short) [18] to com-
pute the coreness of each class in the WDCDN. We briefly introduce Gk−core and some related
concepts herein. Interested readers can refer to our previous work [18] for
more details.

Gk−core is proposed for computing the coreness of nodes in weighted directed networks.
It is based on the generalized degree of node i, gi, which is defined as

gi =

bhic hi − bhic < 0.5

dhie otherwise,
(3)

subject to

hi =

√√√√√(kin
i + kout

i)(
kout

i

∑
j=1

w〈i, j〉+
kin

i

∑
l=1

w〈l, j〉), (4)

where hi is an intermediary to compute gi; kin
i and kout

i are the traditional in- and out-degree

of node i, respectively; and
kout

i
∑

j=1
w〈i, j〉 and

kin
i

∑
l=1

w〈l, i〉 are the weighted in- and out-degree of

node i, respectively.
For a weighted directed graph (or network) G = (V, E) with |V| = n nodes and

|E| = e links, some related concepts can be defined as follows.

Definition 2 (Generalized k-Core). A subgraph H = (C, E|C) induced by the set C ⊆ V
is a generalized k-core if and only if gv ≥ k (∀v ∈ C), and H is the maximum subgraph with
this property.

Gk−core applies a pruning routine to obtain the generalized k-core by recursively
removing all nodes whose gv < k (∀v ∈ C), until all nodes in the remaining graph (or
network) have generalized degree ≥ k.

Definition 3 (Generalized Coreness). If node i belongs to the generalized k-core but not to the
generalized (k+1)-core, then the generalized coreness of node i, corenessg(i), is k.

We illustrate the process of Gk−core using the WDCDN shown in Figure 2 when
it is divided into a generalized k-core structure (see Figure 3). As shown in Figure 3,

Axioms 2022, 11, 205 7 of 14

the left-most part is the WDCDN we built in Figure 2. First, we compute the gi (i ∈
{Fruit, TropicalFruit, Banana, Purchase, Orchard}) and remove from the network all nodes
whose gi < 1 to obtain the generalized 1-core. In the WDCDN, because gi ≥ 1 (i ∈
{Fruit, TropicalFruit, Banana, Purchase, Orchard}), no nodes should be removed to obtain
the generalized 1-core. Subsequently, we remove from the generalized 1-core all nodes
whose gi < 2 to obtain the generalized 2-core. In the WDCDN, because gi ≥ 2 (i ∈
{Fruit, TropicalFruit, Banana, Purchase, Orchard}), no nodes should be removed to obtain the
generalized 2-core. Again, we remove from the generalized 2-core all nodes whose gi < 3
to obtain the generalized 3-core. Because gOrchard < 3, node Orchard is removed from the
generalized 2-core. We recompute the gi (i ∈ {Fruit, TropicalFruit, Banana, Purchase}) and
repeat the remove-recompute procedure iteratively until only nodes whose gi ≥ 3 are left on
the network. Thus, we obtain the generalized 3-core. This routine is applied until there are
no nodes remaining in the network.

Figure 3. Illustration of the generalized k-core decomposition applied to the example WD-
CDN. Notes on the bottom of each sub-figure denote the generalized degree of the nodes in the
corresponding networks.

Based on the generalized k-core structure of the example WDCDN, we can obtain the
generalized coreness of each node. Specifically, the generalized coreness of both Purchase
and Orchard is 2, because they belong to the generalized 2-core but not to the generalized
3-core. Similarly, the generalized coreness of Fruit, TropicalFruit, and Banana is 3, because
they belong to the generalized 3-core but not to the generalized 4-core.

3.3. The Relative Risk of Classes

The relative risk is usually used to quantify the risk of a class of being buggy. In CoreBug,
the relative risk of class c, RCoreBug(c), is defined as

RCoreBug(c) =
p(c)× corenessg(c)

E(c)
, (5)

where p(c) is the probability of that class c being buggy, corenessg(c) is the generalized
coreness of class c, and E(c) is the effort that should be expended to inspect class c. E(c) is
estimated using line of code (LOC for short).

In this work, p(c) is predicted using the widely used machine learning technique,
logistic regression. The reasons we choose logistic regression are twofold: (i) compared
with other sophisticated approaches to building bug-prediction models, logistic regression
is simple yet competitive [19]; (ii) logistic regression is not significantly different from
other sophisticated approaches in terms of performance and thus is sufficient to build
prediction models [20]. In this work, logistic regression is implemented using the scikit-
learn framework (http://scikit-learn.org/stable/ (accessed on 3 January 2022)) and tuned
using the grid search function.

Note that for a specific Java project, our training set is composed of a set of classes, each

http://scikit-learn.org/stable/

Axioms 2022, 11, 205 8 of 14

of which contains a set of software metrics (e.g., CK metrics, MOOD metrics, and LK metrics)
and a label to signify whether it is buggy or clean. Then, the classes under analysis are
ranked according to their RCoreBug(c) (c is a specific class) in descending order. Obviously,
our model has the potential to rank the classes with high risk and less effort at the top of
the ranked list of suspicious classes. We use an effort threshold, effortt ∈ {20%, 30%, 40%},
to identify the real bugs; effortt =

LOCinspected
LOCtotal

, where LOCinspected is the inspected LOC, and
LOCtotal is the total LOC.

4. Empirical Evaluation

In this section, to validate the effectiveness of our CoreBug approach, we design and
conduct a series of experiments. The following subsections describe the research question
we focus on, the subject systems we analyze, the baseline approaches, the metrics we
use to compare different approaches, and the experiment results and analysis. All our
experiments are performed on a Windows PC with Intel (R) Core (TM) i5-10400F CPU @
2.90 GHz and 16 GB RAM.

4.1. Research Questions

In this work, we focus on the following research question (RQ):

RQ: Does CoreBug perform better than the baseline approaches? CoreBug improved on
top-core in two aspects, that is, a much more accurate representation of the software
structure (i.e., WDCDN) and the generalized k-core decomposition to compute the
coreness of classes in the WDCDN. Thus, we want to examine whether our CoreBug
approach performs better than the baseline approaches in Section 4.3.

4.2. Subject Systems

Our subject systems consist of eighteen open-source Java projects that are widely used
in the literature as benchmark systems (see Table 1). As mentioned above, our work relies
on the source code of a subject system to compute the generalized coreness of each class.
Thus, we collect the source code of these subject projects from their websites. To build the
models to predict p(c), our work relies on all classes in a target project, containing the name
of the classes, a set of software metric values for the classes, and a label to signify whether
the corresponding class is buggy. Such a data set is directly downloaded from publicly
available software bug repositories. Specifically, the data sets for the first eight subject
projects (i.e., Camel, Ivy, Log4j, Poi, Synapse, Tomcat, Velocity, and Xalan) are directly
downloaded from the PROMISE repository [21], the data sets for the next three subject
projects (i.e., Eclipse JDT Core, Equinox framework, and Lucene) are downloaded from
the bug prediction dataset provided by D’Ambros et al. [22], and the data sets for the last
seven subject projects (i.e., DrJava, GenoViz, HtmlUnit, Jmol, Jikes RVM, Jppf, and Jump)
are downloaded from Shippey et al.’s data set [23].

Table 1 shows the versions of the subject projects that we analyzed, LOC (lines of code)
of the software projects, #class (number of classes) in the corresponding WDCDNs, the
percentage of buggy classes, and the websites to download the source code of these projects.
Note that LOC is the practical lines of code, excluding comment lines and blank lines; #class
contains the number of classes, inner classes, interfaces, and enum types.

Axioms 2022, 11, 205 9 of 14

Table 1. Descriptions of the subject Java projects.

System Version LOC #Class pbug Website (Accessed on 16 January 2022)

Camel 1.6.0 98,125 2158 8.73% camel.apache.org
lvy 2 37,020 570 7.04% ant.apache.org/ivy

Log4j 1.1.3 12,407 210 17.70% logging.apache.org
Poi 3 138,585 1457 19.20% poi.apache.org

Synapse 1.2 45,674 554 15.37% synapse.apache.org
Tomcat 6.0.38 173,064 1583 4.85% tomcat.apache.org
Velocity 1.6.1 37,274 463 16.83% velocity.apache.org

Xalan 2.6.0 151,984 1081 36.30% xalan.apache.org
Eclipse JDT Core 3.4 264,271 1294 15.89% www.eclipse.org/jdt/core

Equinox framework 3.4 59,074 611 21.08% www.eclipse.org/jdt/core/equinox
Lucene 2.4.0 123,333 1295 4.02% lucene.apache.org
DrJava 20080106 65,274 1797 7.40% drjava.org

Genoviz 6.3 108,108 853 8.46% sourceforge.net/projects/genoviz
HtmlUnit 2.7 87,308 805 13.37% htmlunit.sourceforge.net

Jmol 6 31,576 1816 4.30% jmol.sourceforge.net
Jikes RVM 3.0.0 189,351 1657 7.48% www.jikesrvm.org

Jppf 5 78,668 1555 10.26% jppf.org
Jump 1.9.0 182,703 1966 3.68% openjump.org

4.3. Baseline Approaches

We choose two approaches in the field of effort-aware bug prediction, i.e., Ree [2] and
top-core [3], as baseline approaches. The two approaches can be differentiated by the relative
risk metrics that they use to quantify the risk of a class of being buggy.

In Ree, the relative risk of class c, RRee(c), is defined as

RRee(c) =
p(c)
E(c)

, (6)

whereas in top-core, the relative risk of class c, Rtop−core(c), is defined as

Rtop−core(c) =
p(c)× coreness

E(c)
, (7)

where p(c) and E(c) have the same meanings as in Equation (5), and coreness is the coreness
of class c computed by k-core decomposition.

Note that in the models of Ree and top-core, p(c) is also predicted using logistic regres-
sion. The reasons are discussed in Section 3.3.

4.4. Evaluation Metrics

To evaluate the performance of different approaches, Popt is used as the evaluation
metric. Popt is widely-used in effort-aware bug prediction and is defined as

Popt(m) = 1− Area(optimal)−Area(m)

Area(optimal)−Area(worst)
, (8)

where Area(optimal), Area(m), and Area(worst) are the areas under the LOC-based cumula-
tive lift charts corresponding to the optimal model, the prediction model m, and the worst
model, respectively. In the optimal model, classes are ranked in descending order according
to their bug density; in the worst model, classes are ranked in ascending order according to
their bug density. m denotes a specific effort-aware prediction approach (e.g., BugCore and
the baseline approaches).

camel.apache.org
ant.apache.org/ivy
logging.apache.org
poi.apache.org
synapse.apache.org
tomcat.apache.org
velocity.apache.org
xalan.apache.org
www.eclipse.org/jdt/core
www.eclipse.org/jdt/core/equinox
lucene.apache.org
drjava.org
sourceforge.net/projects/genoviz
htmlunit.sourceforge.net
jmol.sourceforge.net
www.jikesrvm.org
jppf.org
openjump.org

Axioms 2022, 11, 205 10 of 14

4.5. Experiment Results and Analysis

We perform the experiments in the cross-validation scenario and use threefold (3 × 3)
cross-validation. Note that Popt is computed at a specific threshold effortt. For a specific
software project, we repeat our experiments more than t times, and terminate the repe-

tition when (|Pt
opt − Pt−1

opt | < ε), where Pt
opt =

t
∑

i=1
Pi

opt

t , Pi
opt is the Popt obtained in the i-th

independent run, and ε is a small value, controlling the convergence level of the Popt. In
our experiments, ε = 0.0001.

In this section, we show the results obtained on the subject systems (see Tables 2–4).
In each of the following tables, we show the Pt

opt of different models (see columns Ree,
top-core, and CoreBug) when applied to different software projects at a specific effortt. The
largest Pt

opt value in each row is shown in bold. The last row in each table summarizes the
Win/Tie/Loss results of CoreBug when compared with Ree and top-core. For example, in
Table 2, CoreBug performs better than top-core on 11 subject projects (i.e., Win: 10), and
there are only 7 subject projects where CoreBug performs worse than top-core (i.e., Loss: 7).
There are no subject projects where CoreBug and Ree do not have significant differences
(i.e., Tie: 0).

On the whole, there are a total of 54 (18 (the number of software projects)×3 (the
number of thresholds)) experiments, and in 51.85% (10+9+9

54) of the experiments, CoreBug
is better than Ree, while CoreBug is inferior to Ree only in about 48.15% (8+9+9

54) of the
experiments. Furthermore, in about 57.41% (11 + 11 + 9

54) of the experiments, CoreBug is
better than top-core, while in 42.59% (7 + 7 + 9

54) of the experiments, CoreBug is inferior to
top-core.

Table 2. Pt
opt comparison of different approaches when using logistic regression to predict p(c)

(effortt = 20%).

System Ree Top-Core CoreBug

Camel 0.5252 0.5367 0.5411
Ivy 0.2084 0.1871 0.2137
Log4j 0.3824 0.5369 0.4801
Poi 0.7394 0.6565 0.7308
Synapse 0.4627 0.3949 0.4191
Tomcat 0.2401 0.2908 0.2925
Velocity 0.6461 0.6584 0.6137
Xalan 0.6898 0.5804 0.5844
Eclipse JDT Core 0.4586 0.4362 0.4283
Equinox framework 0.68 0.6308 0.6083
Lucene 0.4454 0.4763 0.4754
DrJava 0.3726 0.3087 0.2493
GenoViz 0.2677 0.2839 0.2883
HtmlUnit 0.3693 0.4068 0.4094
Jmol 0.3781 0.4831 0.4988
Jikes RVM 0.2079 0.3605 0.382
Jppf 0.2755 0.3307 0.361
Jump 0.1842 0.1985 0.1835

Win/Tie/Loss CoreBug vs. Ree 10/0/8
CoreBug vs. top-core 11/0/7

Axioms 2022, 11, 205 11 of 14

Table 3. Pt
opt comparison of different approaches when using logistic regression to predict p(c)

(effortt = 30%).

System Ree Top-Core CoreBug

Camel 0.5549 0.5747 0.578
Ivy 0.2644 0.2264 0.2494
Log4j 0.4539 0.5618 0.5346
Poi 0.7873 0.7071 0.7643
Synapse 0.4887 0.4421 0.4578
Tomcat 0.2975 0.3474 0.3423
Velocity 0.6935 0.692 0.6548
Xalan 0.73 0.6331 0.6379
Eclipse JDT Core 0.51 0.4892 0.4906
Equinox framework 0.7091 0.6652 0.645
Lucene 0.5109 0.5478 0.5415
DrJava 0.4373 0.3994 0.3091
GenoViz 0.3269 0.3591 0.3711
HtmlUnit 0.4213 0.4845 0.5002
Jmol 0.4697 0.5407 0.5556
Jikes RVM 0.292 0.4522 0.5041
Jppf 0.3434 0.4073 0.4184
Jump 0.2422 0.2441 0.2333

Win/Tie/Loss CoreBug vs. Ree 9/0/9
CoreBug vs. top-core 11/0/7

Table 4. Pt
opt comparison of different approaches when using logistic regression to predict p(c)

(effortt = 40%).

System Ree Top-Core CoreBug

Camel 0.592 0.6156 0.6217
Ivy 0.3228 0.2723 0.2938
Log4j 0.4955 0.5837 0.5689
Poi 0.817 0.7434 0.7887
Synapse 0.5212 0.4811 0.4985
Tomcat 0.3578 0.39 0.3869
Velocity 0.7309 0.7321 0.6934
Xalan 0.758 0.674 0.6689
Eclipse JDT Core 0.5579 0.5349 0.5383
Equinox framework 0.7344 0.6981 0.6825
Lucene 0.5778 0.61 0.6032
DrJava 0.4941 0.4779 0.3648
GenoViz 0.3859 0.4342 0.4413
HtmlUnit 0.4742 0.5404 0.5686
Jmol 0.5399 0.5877 0.605
Jikes RVM 0.373 0.5298 0.5939
Jppf 0.4024 0.4797 0.4701
Jump 0.2992 0.2978 0.2871

Win/Tie/Loss CoreBug vs. Ree 9/0/9
CoreBug vs. top-core 9/0/9

Obviously, our CoreBug approach does not perform best in all subject systems, which
compels us to examine the performance of different approaches (i.e., Ree, top-core, and
CoreBug) in the whole data set. To this end, the Friedman test [24] is used to compare
different approaches, and the results are shown in Table 5. We use Pt

opt as a metric for

Axioms 2022, 11, 205 12 of 14

comparing different approaches. It is a metric for which large values indicate a better
approach. For such a metric, the Friedman test returns a small ranking value for a better
approach. Thus, the three approaches can be sorted in the following order: CoreBug,
top-core, and Ree, that is, CoreBug performs best, and Ree performs worst.

Table 5. The average ranking of the three approaches.

Approach Ranking

CoreBug 1.9074074074074072
top-core 2.0
Ree 2.092592592592594

Answer to the RQ: Our results on a set of eighteen subject systems show that CoreBug is
superior to the state-of-the-art approaches (i.e., Ree and top-core) according to the average ranking
of the Friedman test.

4.6. Threats to Validity

There are several factors that may influence the validity of our conclusions. In this
section, we discuss these threats.

4.6.1. Threats to Internal Validity

One internal threat lies in the accuracy of the network that we built for the target
systems, which may affect the accuracy of the coreness for classes. We believe this threat
has been minimized, as the SNAP tool we use has been sufficiently tested, and it has
been used several times in our published papers [10]. To promote the replication of
our work, we provide an online replication package that is publicly available via https:
//github.com/duxin1211/CoreBug_Axioms, accessed on 3 January 2022.

4.6.2. Threats to External Validity

In the experiments, there are several factors that may influence our conclusions. The
first one is the threshold for the effort rate. In this work, we set the thresholds for effort to
20%, 30%, and 40%, which were determined by the distribution of defects [3,10]. However,
when the threshold becomes larger, more classes are checked, which leads to an increase in
the number of bugs detected by the approach. The consequence of this situation is that it
is difficult to find a performance gap between our approach and other approaches. The
second potentially limiting factor is that we used Java software systems as our subjects
in this work. Thus, the conclusions obtained in this work suffer from the risks of being
extended to systems developed in non-Java languages, such as C, C++, and Python. In
future work, we will extend our approach to non-Java software systems.

5. Conclusions and Future Work

In this work, we propose an improved effort-aware bug prediction model that is
based on a weighted directed software network (i.e., WDCDN) and generalized k-core
decomposition. Our approach addresses the limitations of the state-of-the-art approach
(i.e., top-core). Specifically, our approach takes into account more coupling types when
constructing the network, which enables us to describe the software structure more accu-
rately. Then, to better fit the two properties of weighted directed software networks, we
introduce a generalized k-core decomposition method that takes into account not only the
weights but also the directions of the links when calculating the coreness of class nodes
in the network. The empirical results of experiments conducted using logistic regression
on eighteen Java projects show that our approach is superior to the baseline approaches
according to the average ranking of the Friedman test. In the future, we will validate our
approach using a wide variety of non-Java or commercial software projects, and we will
apply our method to more subject systems.

https://github.com/duxin1211/CoreBug_Axioms
https://github.com/duxin1211/CoreBug_Axioms

Axioms 2022, 11, 205 13 of 14

Author Contributions: Conceptualization, X.X., and W.P.; methodology, W.P., and X.X.; software,
X.D., T.W., and X.X.; supervision, W.P., C.C., B.J., and J.W.; writing–original draft, X.D., T.W., and X.X.;
writing–review and editing, X.D., T.W., X.X., L.W., and W.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Zhejiang Province
(Grant No. LY22F020007), and the Key R&D Program of Zhejiang Province (Grant Nos. 2019C01004
and 2019C03123).

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: The authors gratefully acknowledge all the reviewers for their positive and
valuable comments and suggestions regarding our manuscript.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this paper.

References
1. He, P.; Li, B.; Liu, X.; Chen, J.; Ma, Y. An empirical study on software defect prediction with a simplified metric set. Inf. Softw.

Technol. 2015, 59, 170–190. [CrossRef]
2. Yang, Y.; Zhou, Y.; Lu, H.; Chen, L.; Chen, Z.; Xu, B.; Leung, H.K.N.; Zhang, Z. Are Slice-Based Cohesion Metrics Actually

Useful in Effort-Aware Post-Release Fault-Proneness Prediction? An Empirical Study. IEEE Trans. Softw. Eng. 2015, 41, 331–357.
[CrossRef]

3. Qu, Y.; Zheng, Q.; Chi, J.; Jin, Y.; He, A.; Cui, D.; Zhang, H.; Liu, T. Using K-core Decomposition on Class Dependency Networks
to Improve Bug Prediction Model’s Practical Performance. IEEE Trans. Softw. Eng. 2021, 47, 348–366. [CrossRef]

4. Pan, W.; Li, B.; Liu, J.; Ma, Y.; Hu, B. Analyzing the structure of Java software systems by weighted K-core decomposition. Future
Gener. Comput. Syst. 2018, 83, 431–444. [CrossRef]

5. Li, H.; Wang, T.; Pan, W.; Wang, M.; Chai, C.; Chen, P.; Wang, J.; Wang, J. Mining Key Classes in Java Projects by Examining a
Very Small Number of Classes: A Complex Network-Based Approach. IEEE Access 2021, 9, 28076–28088. [CrossRef]

6. Meneely, A.; Williams, L.A.; Snipes, W.; Osborne, J.A. Predicting failures with developer networks and social network analysis.
In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Atlanta, GA, USA,
9–14 November 2008; Harrold, M.J., Murphy, G.C., Eds.; pp. 13–23. [CrossRef]

7. Pinzger, M.; Nagappan, N.; Murphy, B. Can developer-module networks predict failures? In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, Atlanta, GA, USA, 9–14 November 2008; Harrold,
M.J., Murphy, G.C., Eds.; pp. 2–12. [CrossRef]

8. Chen, L.; Ma, W.; Zhou, Y.; Xu, L.; Wang, Z.; Chen, Z.; Xu, B. Empirical analysis of network measures for predicting high severity
software faults. Sci. China Inf. Sci. 2016, 59, 122901:1–122901:18. [CrossRef]

9. Ma, W.; Chen, L.; Yang, Y.; Zhou, Y.; Xu, B. Empirical analysis of network measures for effort-aware fault-proneness prediction.
Inf. Softw. Technol. 2016, 69, 50–70. [CrossRef]

10. Pan, W.; Ming, H.; Yang, Z.; Wang, T. Comments on “using k-core decomposition on class dependency networks to improve bug
prediction model’s practical performance”. IEEE Trans. Softw. Eng. 2022. [CrossRef]

11. Zimmermann, T.; Nagappan, N. Predicting defects using network analysis on dependency graphs. In Proceedings of the 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, 10–18 May 2008; Schäfer, W., Dwyer, M.B.,
Gruhn, V., Eds.; pp. 531–540. [CrossRef]

12. Tosun, A.; Turhan, B.; Bener, A.B. Validation of network measures as indicators of defective modules in software systems. In
Proceedings of the 5th International Workshop on Predictive Models in Software Engineering, PROMISE, Vancouver, BC, Canada,
18–19 May 2009; Ostrand, T.J., Ed.; ; p. 5. [CrossRef]

13. Premraj, R.; Herzig, K. Network Versus Code Metrics to Predict Defects: A Replication Study. In Proceedings of the 5th
International Symposium on Empirical Software Engineering and Measurement, ESEM, Banff, AB, Canada, 22–23 September
2011; pp. 215–224. [CrossRef]

14. Qu, Y.; Liu, T.; Chi, J.; Jin, Y.; Cui, D.; He, A.; Zheng, Q. node2defect: Using network embedding to improve software defect pre-
diction. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE, Montpellier,
France, 3–7 September 2018; Huchard, M.; Kästner, C., Fraser, G., Eds.; ;
pp. 844–849. [CrossRef]

15. Guo, S.; Dong, J.; Li, H.; Wang, J. Software defect prediction with imbalanced distribution by radius-synthetic minority
over-sampling technique. J. Softw. Evol. Process 2021, 33, e2362. [CrossRef]

16. Eken, B.; Palma, F.; Basar, A.; Tosun, A. An empirical study on the effect of community smells on bug prediction. Softw. Qual. J.
2021, 29, 159–194. [CrossRef]

http://doi.org/10.1016/j.infsof.2014.11.006
http://dx.doi.org/10.1109/TSE.2014.2370048
http://dx.doi.org/10.1109/TSE.2019.2892959
http://dx.doi.org/10.1016/j.future.2017.09.039
http://dx.doi.org/10.1109/ACCESS.2021.3058450
http://dx.doi.org/10.1145/1453101.1453106
http://dx.doi.org/10.1145/1453101.1453105
http://dx.doi.org/10.1007/s11432-015-5426-3
http://dx.doi.org/10.1016/j.infsof.2015.09.001
http://dx.doi.org/10.1109/TSE.2022.3140599
http://dx.doi.org/10.1145/1368088.1368161
http://dx.doi.org/10.1145/1540438.1540446
http://dx.doi.org/10.1109/ESEM.2011.30
http://dx.doi.org/10.1145/3238147.3240469
http://dx.doi.org/10.1002/smr.2362
http://dx.doi.org/10.1007/s11219-020-09538-7

Axioms 2022, 11, 205 14 of 14

17. Brito e Abreu, F.; Goulao, M. Coupling and cohesion as modularization drivers: Are we being over-persuaded? In Proceedings of
the Proceedings Fifth European Conference on Software Maintenance and Reengineering, Lisbon, Portugal, 14–16 March 2001;
pp. 47–57. [CrossRef]

18. Pan, W.; Song, B.; Li, K.; Zhang, K. Identifying key classes in object-oriented software using generalized k-core decomposition.
Future Gener. Comput. Syst. 2018, 81, 188–202. [CrossRef]

19. Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; Counsell, S. A Systematic Literature Review on Fault Prediction Performance in
Software Engineering. IEEE Trans. Softw. Eng. 2012, 38, 1276–1304. [CrossRef]

20. Lessmann, S.; Baesens, B.; Mues, C.; Pietsch, S. Benchmarking Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings. IEEE Trans. Softw. Eng. 2008, 34, 485–496. [CrossRef]

21. Menzies, T.; Caglayan, B.; Kocaguneli, E.; Krall, J.; Peters, F.; Turhan, B. The Promise Repository of Empirical Software Engineering
Data; West Virginia University, Department of Computer Science: Morgantown, West Virginia, 2012.

22. D’Ambros, M.; Lanza, M.; Robbes, R. An extensive comparison of bug prediction approaches. In Proceedings of the 7th
International Working Conference on Mining Software Repositories, MSR 2010 (Co-Located with ICSE), Cape Town, South Africa,
2–3 May 2010; Whitehead, J., Zimmermann, T., Eds.; pp. 31–41. [CrossRef]

23. Shippey, T.; Hall, T.; Counsell, S.; Bowes, D. So You Need More Method Level Datasets for Your Software Defect Prediction?:
Voilà! In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM, Ciudad Real, Spain, 8–9 September 2016; pp. 12:1–12:6. [CrossRef]

24. García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064.
[CrossRef]

http://dx.doi.org/10.1109/CSMR.2001.914968
http://dx.doi.org/10.1016/j.future.2017.10.006
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2008.35
http://dx.doi.org/10.1109/MSR.2010.5463279
http://dx.doi.org/10.1145/2961111.2962620
http://dx.doi.org/10.1016/j.ins.2009.12.010

	Introduction
	Related Work
	The CoreBug Approach
	Weighted Directed Class Dependency Network
	Generalized k-Core Decomposition
	The Relative Risk of Classes

	Empirical Evaluation
	Research Questions
	Subject Systems
	Baseline Approaches
	Evaluation Metrics
	Experiment Results and Analysis
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Conclusions and Future Work
	References

