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Abstract: The paper considers the specifics of nonlinear differential equations that have applications
in different areas. Earlier, the authors proved the existence and uniqueness theorem for a solution to a
class of non-linear differential equations in a neighborhood of a moving singular point. In this paper,
we consider the first problem of studying a third-order nonlinear differential equation in the domain
of analyticity. An analytical approximate solution is built, taking into account the solution search area.
A priori estimates of the analytical approximate solution are obtained, and the technology of their
optimization using a posteriori ones is illustrated. The result of a numerical experiment is presented.
The presented results allow to expand the class of nonlinear differential equations for describing
various phenomena and processes.

Keywords: nonlinear differential equations; wave processes; analytical approximate solution; Cauchy
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1. Introduction

Recently, much attention has been paid to nonlinear differential equations for applica-
tions in various fields. In particular, a mathematical model based on a nonlinear differential
equation [1,2] with moving singular points is used to study cantilever structures. To study
wave processes in elastic beams, in [3], a third-order differential equation is considered in
an implicit form. The paper [4] considers wave processes in beams based on the general-
ized Korteweg–de Vries–Burgers equation. During the transition to a stationary process,
the equation is reduced to an ordinary differential equation. By varying the parameters
of the equation, it is possible to ensure that this equation passes to the class of differential
equations we are considering. One of the main points to unite these papers consists on the
authors not taking into account the features of nonlinear differential equations. In [5], this
study was continued, a solution was proposed to a class of nonlinear differential equations,
where the presence of moving singular points was proved. At the same time, the authors
demonstrate the practical application of series with fractional negative powers that do not
currently have a generally accepted terminology. If in the paper [5] a study was carried out
with regard to a neighborhood of a moving singular point, then in this paper the study is
continued in the domain of analyticity. An analytical approximate solution is constructed,
with a guarantee that there are no moving singular points in the area under consideration.
Taking into account the specifics of the equations, we can conclude that the solution search
area is divided into two parts: the analyticity area and the neighborhood of the moving
singular point. A technique for optimizing a priori estimates of an analytical approxi-
mate solution using a posteriori estimates is shown. We pay attention to the results of
publications [6–12], which present the development of the theory of nonlinear differential
equations for other classes of equations.
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2. Research Methods

Let us consider the following differential equation:

y′′′ = a7(x)y7 + a6(x)y6 + a5(x)y5 + a4(x)y4 + a3(x)y3 + a2(x)y2 + a1(x)y + a0(x). (1)

Based on the replacement proposed in paper [5]

y(x) = u(x) · z(x) + v(x), (2)

we bring Equation (1) to the normal form

z′′′ = z7(x) + r(x). (3)

Let us consider the Cauchy problem

y′′′ = y7(x) + r(x), (4)
y(x0) = y0,
y′(x0) = y1,
y′′(x0) = y2.

(5)

Theorem 1. We require the fulfillment of two conditions:

1. r(x) ∈ C∞ in the domain|x− x0| < ρ1 where 0 < ρ1 = const;

2. ∃Mn : |r
(n)(x0)|

n! ≤ Mn, Mn = const, then there is a unique solution to the Cauchy problem
(4)–(5) that can be represented as a regular series

y(x) =
∞

∑
0

Cn(x− x0)
n, (6)

in the domain |x− x0| < ρ2, where

ρ2 = min

{
ρ1,

1

(M + 1)2

}
, M = max

|y0|, |y1|, |y2|, sup
n


∣∣∣r(n)(x0)

∣∣∣
n!


, n = 0, 1, 2, ...

Proof. We build a solution to the problem (4)–(5) for the domain of analyticity in the form
of a regular series (6), where C0 6= 0. By the condition of the theorem, the function can also
be represented by a regular series:

r(x) =
∞

∑
0

An(x− x0)
n. (7)

Let us place (6) and (7) into the Equation (4) and we obtain

∞

∑
0

Cn(x− x0)
n−3n(n− 1)(n− 2) =

∞

∑
0

C∗∗∗∗n(x− x0)
n +

∞

∑
0

An(x− x0)
n,

The equality of the series in the latter implies the equality of the coefficients at the
corresponding powers of the left and right sides. This procedure leads to the following
recurrence relation:

n(n− 1)(n− 2)Cn = C∗∗∗n−3 + An−3,

where C∗∗∗∗n =
n
∑

i=0
CiC∗∗∗j , C∗∗∗n =

n
∑

i=0
C∗i C∗∗j , C∗∗n =

n
∑

i=0
C∗i C∗j , C∗n =

n
∑

i=0
CiCn−i.

The uniqueness of the coefficients implies the uniqueness of solution (6).
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Let us prove the validity of the following estimates for the coefficients of the desired
series (6):

|C3k| ≤
(M+1)6k+1

3k(3k−1)(3k−2) = E3k,

|C3k+1| ≤
(M+1)6k+1

3k(3k−1)(3k+1) = E3k+1,

|C3k+2| ≤
(M+1)6k+1

3k(3k+1)(3k+2) = E3k+2,

(8)

where

M = max

|y0|, |y1|, |y2|, sup
n


∣∣∣r(n)(x0)

∣∣∣
n!


, n = 0, 1, 2, ...

We limit ourselves to the variant of estimating the coefficient C3k+3. In this case, taking
into account estimates (8) and decomposition C∗∗∗∗n , we have:

|C3k+3| =
∣∣∣∣ 1
(3k + 2)3k(3k + 1)

(
C∗∗∗∗3k−2 + A3k−2

)∣∣∣∣ =
=

∣∣∣∣∣ 1
(3k + 2)3k(3k + 1)

3k

∑
i=0

Ci

(
3k−i

∑
j=0

Cj

(
3k−i−j

∑
l=0

Cl

(
3k−i−j−l

∑
m=0

CmC3k−i−j−l−m

)))
+ A3k−2

∣∣∣∣∣ ≤
≤ 1

(3k + 2)3k(3k + 1)

∣∣∣∣∣ k

∑
i−0

(M + 1)6i+1

(3i + 2)3i∗(3i + 1)

(
k−i

∑
j−0

(M + 1)6j+1

(3j + 2)3j∗(3j + 1)
×

×
(

k−i−j

∑
l−0

(M + 1)6l+1

(3l + 2)3l∗(3l + 1)

(
k−i−j−l

∑
m−0

(M + 1)6m+1

(3m + 2)3m∗(3m + 1)
×

× (M + 1)6(k−i−j−l−m)+1

(3(k− i− j− l −m) + 2)3(k− i− j− l −m)∗(3(k− i− j− l −m) + 1)

)))
+ M

∣∣∣∣∣ =
(M + 1)6k+5

(3k + 2)3k(3k + 1)

k

∑
i−0

1
(3i + 2)3i∗(3i + 1)

(
k−i

∑
j−0

1
(3j + 2)3j∗(3j + 1)

×

×
(

k−i−j

∑
l−0

1
(3l + 2)3l∗(3l + 1)

(
k−i−j−l

∑
m−0

1
(3m + 2)3m∗(3m + 1)

×

× 1
(3(k− i− j− l −m) + 2)3(k− i− j− l −m)∗(3(k− i− j− l −m) + 1)

)))
+ M ≤

≤ (M + 1)6k+5

(6k + 5)(6k + 3)(6k + 1)
+ M ≤ (M + 1)6k+7

(6k + 5)(6k + 3)(6k + 1)
,

where

i∗ =
{

1, i f i = 0
i, i f i 6= 0

, j∗ =
{

1, i f j = 0
j, i f j 6= 0

, l∗ =
{

1, i f l = 0
l, i f l 6= 0

, m∗ =
{

1, i f m = 0
m, i f m 6= 0

,

(k− i− j− l −m)∗ =

{
1, i f m = k− i− j− l,

(k− i− j− l −m), i f m 6= k− i− j− l.
.

Thus, we are convinced of the estimate of the coefficient C3k+3. The subsequent
estimates in (6) are proved by analogy.

We introduce the next series

∞

∑
0

En(x− x0)
n, (9)
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which is major for the formal series

∞

∑
0

Cn(x− x0)
n. (10)

Based on the regularity of estimates (8), we represent the series (9) in the
following form:

∞

∑
0

En(x− x0)
n =

∞

∑
0

E3k(x− x0)
3k +

∞

∑
0

E3k+1(x− x0)
3k+1 +

∞

∑
0

E3k+2(x− x0)
3k+2.

Further, for each of the three series on the right-hand side, taking into account estimates
(8), we obtain the convergence domain according to d’Alembert:

|x− x0| <
(

1
(M + 1)6

) 1
3
=

1
(M + 1)2 .

Assuming that ρ2 = min
{

ρ1, 1
(M+1)2

}
, we are convinced of the convergence of series

(10) in the region under consideration.
The proved theorem allows constructing an analytical approximate solution in the

way as follows:

yN(x) =
N

∑
0

Cn(x− x0)
n. (11)

Theorem 2. We require conditions 1 and 2 of theorem 1 to be satisfied. Then, for an analytical
approximate solution (11) of the Cauchy problem (4)–(5) in the domain

|x− x0| < ρ2 (12)

the error estimate is fair
∆yN(x) = |y(x)− yN(x)| ≤ ∆,

where

∆ =
(M + 1)2N+3

1− (M + 1)6|x− x0|3
|x− x0|N−1×

×
(

1
N(N − 1)(N − 2)

+
|x− x0|

N(N − 1)(N + 1)
+

|x− x0|2

N(N + 1)(N + 2)

)
in case N + 1 = 3k,

∆ =
(M + 1)2N+1

1− (M + 1)6|x− x0|3
|x− x0|N×

×
(

1
N(N − 1)(N − 2)

+
|x− x0|

N(N − 1)(N + 1)
+

|x− x0|2

N(N + 1)(N + 2)

)
two variants N + 1 = 3k + 1, and

∆ =
(M + 1)2N−1

1− (M + 1)6|x− x0|3
|x− x0|N+1×

×
(

1
N(N − 1)(N − 2)

+
|x− x0|

N(N − 1)(N + 1)
+

|x− x0|2

N(N + 1)(N + 2)

)
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with N + 1 = 3k + 2, where ρ2 = min
{

ρ1, 1
(M+1)4

}
,

M = max
{
|y0|, |y1|, |y2|, sup

n

{
|r(n)(x0)|

n!

}}
, n = 0, 1, 2, ... . N ≥ 3.

Proof. We limit ourselves to prove the case for N + 1 = 3k. Let us express∆yN(x) as:

∆yN(x) = |y(x)− yN(x)| =
∣∣∣∣∣ ∞

∑
0

Cn(x− x0)
n−

N

∑
0

Cn(x− x0)
n

∣∣∣∣∣ =
∣∣∣∣∣ ∞

∑
N+1

Cn(x− x0)
n

∣∣∣∣∣
Taking into account the regularity of the coefficients Cn from Theorem 1, we obtain:

∆yN(x) =

∣∣∣∣∣ ∞

∑
N+1

Cn(x− x0)
n

∣∣∣∣∣ ≤ ∞

∑
N+1
|Cn| × |x− x0|n ≤

∞

∑
N+1

E3k|x− x0|3k+

+
∞

∑
N+1

E3k+1|x− x0|3k+1 +
∞

∑
N+1

E3k+2|x− x0|3k+2 =
∞

∑
N+1

(M + 1)6k+1

3k(3k− 1)(3k− 2)
|x− x0|3k+

∞

∑
N+1

(M + 1)6k+1

3k(3k− 1)(3k + 1)
|x− x0|3k+1 +

∞

∑
N+1

(M + 1)6k+1

3k(3k + 1)(3k + 2)
|x− x0|3k+2 ≤

≤ (M + 1)6k+1

1− (M + 1)6|x− x0|3
|x− x0|3k

(
1

3k(3k− 1)(3k− 2)
+

|x− x0|
3k(3k− 1)(3k + 1)

+

+
|x− x0|2

3k(3k + 1)(3k + 2)

)
≤ (M + 1)2N+3

1− (M + 1)6|x− x0|3
|x− x0|N−1

(
1

N(N − 1)(N − 2)
+

+
|x− x0|

N(N − 1)(N + 1)
+

|x− x0|2

N(N + 1)(N + 2)

)
.

Similarly, we obtain estimates for the approximate solution (11) in case N + 1 = 3k + 1
and N + 1 = 3k + 2, which is also valid in the domain |x− x0| < ρ2.

3. The Discussion of the Results Numerical Experiment

Let us consider the Cauchy problem (5) and (6), where r(x) = 0, y(0) = 1
4 , y′(0) = 3

10 ,
y′′(0) = 1. The Cauchy problem (4) and (5) under given conditions is not solvable in
quadratures. The calculation results are presented in Table 1.

Table 1. Numerical characteristics of an analytically approximate solution.

x1 y9(x1) ∆1 ∆2

0.12 0, 2932 0, 007 0, 0005

where x1 is the value of the argument, falls within the scope of Theorem 2, (12); y9(x) is
an analytically approximate solution (11); ∆1—a priori estimate; ∆2—a posteriori estimate.
For ∆2 = 0, 0005 by Theorem 2, we determine N = 14. The summands from 10 to 14 in
the total sum do not exceed the required accuracy of ε = 0, 0005, therefore, for N = 9 we
obtain a value y9(x1) with an accuracy of ε = 0, 0005.

4. Conclusions

In this paper, we present a study of the considered class of nonlinear equations in
the domain of analyticity, and prove the theorem of the existence and uniqueness of the
solution. A formula is obtained for determining the area of analyticity of the solution.
A priori estimates of the error of the analytical approximate solution are obtained, and a
numerical experiment is carried out, confirming the adequacy of the obtained theoretical
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positions with the experimental calculations. A technique for optimizing a priori estimates
by using a posteriori ones is given.
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