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Abstract: Given an integer k ≥ 2, a k-path is a path on k vertices. A set of vertices in a graph G is
called a k-path vertex cover if it includes at least one vertex of every k-path of G. A minimum k-path
vertex cover in G is a k-path vertex cover having the smallest possible number of vertices and its
cardinality is called the k-path vertex cover number of G. In the k-path vertex cover problem, the goal is
to find a minimum k-path vertex cover in a given graph. In this paper, we present a brief survey
of the current state of the art in the study of the k-path vertex cover problem and the k-path vertex
cover number.
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1. Introduction

We consider only simple undirected graphs. We will use standard graph theory
notations, for notations not defined here, we refer the reader to [1]. The number of vertices
and edges in a graph G are called the order and size, respectively, of G. In what follows n
and m will always be the order and size, respectively, of the given graph.

Given an integer k ≥ 2, a k-path, denoted by Pk, is a path of order k. A set of vertices
in a graph G is called a k-path vertex cover (for short, VCPk) if it includes at least one vertex
of every k-path of G. A minimum VCPk is a VCPk having the smallest possible number of
vertices and its cardinality, denoted by ψk(G), is called the k-path vertex cover number of G.
In the k-path vertex cover problem (for short, MinVCPk), the goal is to find a minimum VCPk
in a given graph. In the literature, a VCPk is also called a vertex cover Pk [2,3], or a vertex
k-path cover [4], or a k-observer [5,6], or a k-path transversal [7], or a Pk-hitting set [8].

Clearly, MinVCP2 is exactly the classic vertex cover problem in which the goal is to find
a set of vertices with minimum cardinality in a graph that intersects every edge of the graph.
Thus, MinVCPk is a natural generalization of MinVCP2 that has been intensively studied.

In addition, MinVCPk also belongs to the vertex deletion problem [9–11]. If a graph
property is closed under removal of vertices, it is said to be hereditary. If a graph property
holds for some graphs and does not include all graphs, it is said to be non-trival. Given a
hereditary and non-trivial graph property Π, the objective of the Π-vertex deletion problem
is to find a set of vertices with minimum cardinality whose deletion results in a graph
satisfying Π. Many classic optimization problems such as the feedback vertex set problem
(Π means “containing no cycle”), the vertex bipartization problem (Π means “containing
no odd cycle”), and the d-bounded-degree vertex deletion problem (for short, d-BDD)
(Π means “having maximum degree at most d”) are examples of vertex deletion problems.
MinVCPk corresponds to the case that Π means “containing no k-path”.

Note that a graph that contains no 3-path has vertex degree at most one. Thus,
MinVCP2 and MinVCP3 are equivalent to 0-BDD and 1-BDD, respectively. Let G be a
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graph. A dissociation set in G is a set of vertices inducing a subgraph with vertex degree at
most one. A maximum dissociation set in G is a dissociation set having the largest possible
number of vertices and its cardinality, denoted by diss(G), is called the dissociation number
of G. It is worth mentioning that a set of vertices of G is a dissociation set if and only if its
complement V(G) \ S is a VCP3 of G. It follows that diss(G) = |V(G)| − ψ3(G). Finding a
maximum dissociation set in a given graph G is called the maximum dissociation set problem
and is the dual problem of MinVCP3. The problem was introduced by Yannakakis [11]
in 1981 and generalizes both the maximum independent set problem and the maximum
induced matching problem. It has been demonstrated that the problem remains NP-hard
even in bipartite graphs [11].

The study of MinVCPk is motivated by the two real world problems that are related to
the design of security protocols of wireless sensor networks (for short, WSNs) [12,13] and
to installation of traffic cameras [2], respectively.

Nowadays, WSNs have been widely used in industry and everyday life. A WSN can
be described by a graph in which vertices represent sensor devices and edges represent
communication channels between pairs of sensor devices. In order to ensure some security
properties of WSNs, one needs to design specific security protocols for WSNs. The k-
generalized Canvas scheme generalizes the Canvas scheme designed by Vogt [14] and
can ensure data integrity if at least one node of every k-path is a protected node. Since a
protected node is very costly, the problem of minimizing the number of protected nodes
naturally arises and is exactly MinVCPk.

Another motivation for studying MinVCPk is related to the installation of traffic cam-
eras. The increasing number of cars and buses lead to an increase in road traffic accidents,
hence it is necessary to install cameras at traffic intersections. A road network can be
described by a graph composed of vertices and edges denoting, respectively, traffic inter-
sections and connections between pairs of traffic intersections. If every traffic intersection
is installed with some cameras, it would cost enormous sums of money. For a given integer
k, we aim to choose as few traffic intersections as possible to install cameras so that an
offending vehicle should be captured at least once when it passes k traffic intersections.
The corresponding optimization problem can be formulated as MinVCPk.

MinVCPk also finds applications in monitoring message flows in WSNs. As requested,
for any message that continuously passes k nodes, it should be monitored at least once.
The corresponding optimization problem is also MinVCPk.

Based on the real world problems mentioned above, three variants of MinVCPk have
also been raised and studied.

• The weighted version of MinVCPk (for short,W-MinVCPk). A graph G = (V, E) with
a weight function w : V → R+ is given, and our goal is to find a minimum weight
VCPk of G.

• The connected version of MinVCPk (for short, C-MinVCPk). A connected graph G is
given, and our goal is to find a VCPk S of G with minimum cardinality so that G[S]
is connected.

• The weighted version of C-MinVCPk (for short, WC-MinVCPk). A connected graph
G = (V, E) with a weight function w : V → R+ is given, and our goal is to find a
VCPk S of G with minimum weight so that G[S] is connected.

Due to their importance in theory and application, MinVCPk,W-MinVCPk andWC-
MinVCPk have been widely studied. In particular, a large number of results on exact
algorithms, approximation algorithms, and parameterized algorithms for these problems
have been reported. In this paper, we aim to provide a brief survey of the current state of
the art in the study of MinVCPk and its variants, and ψk(G). We mainly focus on the cases
with k ≥ 3.

2. Computational Complexity

The decision version of MinVCPk is stated as follows:
INPUT: A graph G and a positive integer t.
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OUTPUT: Is there a k-path vertex cover F in G of size at most t?
We abuse notation and let MinVCPk refer to the k-path vertex cover problem and its

decision version.

Theorem 1 ([5,12]). For any k ≥ 2, MinVCPk is NP-complete.

The 2-subdivision of a graph G is obtained from G by replacing every edge e = uv by
a 4-path uxyv. Poljak [15] showed that MinVCP2 is NP-complete in 2-subdivision graphs.
By Poljak’s result and the fact that for any integer 3 ≤ t ≤ 8, 2-subdivision graphs are
Ct-free, we have

Theorem 2 ([16]). For any k ≥ 2, MinVCPk is NP-complete in graphs that contains no cycle of
size t for integer 3 ≤ t ≤ 8.

The NP-completeness of MinVCP3 has been studied intensively. Yannakakis [11]
proved that MinVCP3 is NP-complete even in bipartite graphs. The author and Yang [17]
studied the NP-completeness of MinVCP3 in cubic planar graphs. The girth of a graph
is the size of one of its (if any) shortest cycles. The girth of acyclic graphs is thought to
be infinite.

Theorem 3 ([17]). MinVCP3 is NP-complete in cubic planar graphs with girth 3.

If P 6=NP is assumed, NP-hard problems cannot be solved efficiently in polynomial
time, it follows that approximation algorithms have been developed to solve a lot of NP-
hard problems. For an NP-hard problem Π, an approximation algorithm, given an instance
I of Π, returns a feasible solution of I within a factor α, called the approximation factor,
of the optimal one and runs in time polynomial in |I|. A polynomial time approximation
scheme (PTAS) for a minimization problem Π is an algorithm so that, given an instance
I of Π and a parameter ε > 0, it is an (1 + ε)-approximation algorithm and runs in time
polynomial in |I| when ε is fixed. A problem that allows a constant-factor approximation
algorithm is said to be in the class APX. Furthermore, if there is a PTAS reduction from
every problem in APX to it, it is said to be APX-hard. A problem is said to be APX-complete
if it is APX-hard and also in APX. If P 6=NP is assumed, there does not exist a PTAS for any
APX-hard problem.

Theorem 4 ([18]). MinVCP3 is APX-complete in bipartite graphs.

Theorem 5 ([19]). MinVCP4 is NP-complete in cubic planar graphs, and APX-complete in cubic
bipartite graphs as well as K1,4-free graphs.

3. Exact Algorithms

MinVCPk in trees was firstly investigated by Brešar et al. [12].

Theorem 6 ([12]). MinVCPk in trees is solvable in linear time.

We write G1�G2 to denote the Cartesian product of two disjoint graphs G1 and G2.
The Cartesian product of two disjoint paths is called a grid graph.

Theorem 7 ([5]). MinVCPk in grid graphs is solvable in linear time.

A connected graph is called a cactus if every edge of the graph belongs to at most one
cycle, that is, any two cycles in such a connected graph have at most one vertex in common.
The author [20] studied MinVCPk in cacti.

Theorem 8 ([20]). Computing ψk(G) of a cactus G is solvable in O(n2) time.
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Brešar et al. [21] studiedW-MinVCPk in three special classes of graphs.

Theorem 9 ([21]). W-MinVCPk in complete graphs Kn, cycles Cn and trees of order n are solvable
with time complexity O(n · k), O(n · k2) and O(n · k), respectively.

Li et al. [22] consideredWC-MinVCPk.

Theorem 10 ([22]). WC-MinVCPk in a tree is solvable in O(n) time, andWC-MinVCPk in a
unicyclic graph which contains a cycle of size r is solvable in O(r · n) time.

There have been a lot of works on exact algorithms for MinVCP2 and MinVCP3.
Throughout this paper, the O∗() notation will always suppress all factors that are poly-
nomial in the size of the input size. MinVCP2 is solvable in O∗(1.1996n) time [23]. Since
the maximum dissociation set problem is the dual problem of MinVCP3, in terms of
exact algorithms, there is no need to distinguish these two problems. The exact algo-
rithm for MinVCP3 and the maximum dissociation problem have been improved several
times [24–26]. Xiao and Kou [27] reduced the time complexity at the cost of an exponential
space complexity.

Theorem 11 ([27]). MinVCP3 is solvable in O∗(1.3659n) time and space.

On the other hand, MinVCP3 is solvable in polynomial time in many special classes
of graphs, such as chordal graphs, AT-free graphs, (chair, bull)-free graphs, (claw, bull)-
free graphs, (Pk, K1,n)-free graphs, `K2-free graphs, P5-free graphs and so on [28–32]. In
particular, for P4-tidy graphs as well as line graphs of graphs that contain a Hamiltonian
path, MinVCP3 is solvable in linear time [16,32].

Let U be a universe set of n elements and let C be a family of subsets of U each of
which contains at most k elements. In the k-hitting set problem (for short, k-Hit), the goal is
to find a subset U0 ⊆ U with the smallest possible number of elements so that for every
subset of C, at least one element of it is in the subset. It is easy to see that MinVCPk also
belongs to k-Hit. By the results on k-Hit due to Fomin et al. [33] and Fernau [34], one can
obtain the following two results.

Theorem 12 ([33]). MinVCP4 is solvable in O∗(1.8704n) time.

Theorem 13 ([34]). W-MinVCP4 is solvable in O∗(1.97n) time.

4. Approximation Algorithms

A trivial k-approximation algorithm for MinVCPk is easily obtained. One way to
compute a VCPk of a given graph G is to repeat the following process: seek a k-path, put
its vertices into solution S, and remove every edge incident to any vertex in S from G.
As any VCPk of G must contain at least one vertex of each k-path that was considered in
the process, the solution produced, therefore, is within a factor k of the optimal one.

Brešar et al. [12] proved that for any c > 1, a c-approximation algorithm for MinVCPk,
with polynomial running time, yields directly a c-approximation for MinVCP2. MinVCP2
is APX-complete even in cubic graphs [35]. Furthermore, MinVCP2 does not admit c-
approximation for any constant c < 2 if the unique games conjecture holds [36]. Thus,
we have

Theorem 14. [12,36] For any k ≥ 3, MinVCPk does not admit a c-approximation for any constant
c < 2 if the unique games conjecture holds.

Ries et al. [6] proposed a 3-approximation algorithm for MinVCPk in d-regular graphs
for k ≤ d+2

2 . Their algorithm is the first one with a factor less than k for general k.
Zhang et al. [37] improved Ries et al.’s result.
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Theorem 15 ([37]). When 1 ≤ k− 2 < d, MinVCPk in d-regular graphs admits a bd/2c(2d−k+2)
(bd/2c+1)(d−k+2) -

approximation that runs in time O(d2 · n).

Note that when k ≤ d+2
2 , bd/2c(2d−k+2)

(bd/2c+1)(d−k+2) < 3. Lee [7] studied MinVCPk in gen-
eral graphs.

Theorem 16 ([7]). MinVCPk admits an O(log k)-approximation that runs in time 2O(k3 log k)

n2 log n + nO(1).

Note that if k is fixed, the runtime of Lee’s algorithm is polynomial. Since finding a
k-path is NP-hard, the runtime of any approximation algorithm for MinVCPk cannot be
polynomial in k.

Very recently, Brüstle et al. [8] investigated a wider problem called the H-hitting set
problem (for short, H-Hit). Let H be a fixed graph of order k. In H-Hit, the goal is to find
a set of vertices of a given graph G with minimum cardinality so that the set includes
at least one vertex of every subgraph of G isomorphism to H. Clearly, the Pk-hitting set
problem is exactly MinVCPk. Brüstle et al. [8] proved that T-Hit for a k-vertex tree T admits
a (k− 1

2 )-approximation. Thus, we have

Theorem 17 ([8]). MinVCPk admits a (k− 1
2 )-approximation.

A d-dimensional ball graph is a graph composed of vertices and edges denoting,
respectively, balls in Rd and nonempty intersections between pairs of balls. Denote by rmax
the largest radius of those balls, and by rmin the smallest radius of those balls. A disk graph
is a 2-dimensional ball graph, and if its all disks have the same radii, it is called a unit
disk graph. Zhang et al. [38] proposed a PTAS for MinVCPk in a ball graph with the ratio
rmax/rmin ≤ c for a constant c.

Liu et al. [39] ] presented a PTAS for C-MinVCPk in unit disk graphs. A simpler
PTAS given by Chen et al. [40] not only simplifies Liu et al.’s algorithm, but also reduces
the time-complexity.

Li et al. [22] showed that C-MinVCPk in graphs of girth of at least k can be approximable
within k. Later, Fujito [41] extended Li et al.’s result to all graphs.

Theorem 18. C-MinVCPk admits a k-approximation.

Fujito [41] also studiedWC-MinVCPk.

Theorem 19 ([41]). For any fixed integer k ≥ 2,WC-MinVCPk is at least as hard as the weighted
set cover problem.

In the last decade, there have been a lot of works on the study of approximation
algorithms for MinVCP3, MinVCP4 and their variants. Kardoš et al. [26] gave a randomized
algorithm for MinVCP3 with an expected approximation ratio of 23

11 . The author and Zhou
presented two 2-approximation algorithms for W-MinVCP3 utilizing the primal–dual
method [2] and the local ratio method [3], respectively.

Theorem 20 ([2,3]). Utilizing primal–dual method and local ratio method, one can obtain two
2-approximation algorithms forW-MinVCP3 with runtime O(m · n).

In recent years, researchers also developed approximation algorithms for NP-hard
problems that have better approximation factors but run in super-polynomial time. One such
algorthm for MinVCP3 was given by Chang et al. [25].

Theorem 21 ([25]). MinVCP3 admits a 4
3 -approximation that runs in time O∗(1.4159n).
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Camby et al. [42] proposed a 3-approximation algorithm for MinVCP4. On the other
hand, there are a lot of works on approximation algorithms for MinVCP3 and MinVCP4 in
some special classes of graphs [6,17,19,37,43], see Table 1.

Table 1. The best approximation ratios for MinVCP3 and MinVCP4.

MinVCPk
General
Graphs

Bipartite
Graphs

Cubic
Graphs

4-Regular
Graphs

Bipartite
d-Regular

Graphs

d-Regular
Graphs (d ≥ 5)

K1,4-
Free

Graphs

k = 3 2 [2,3] 1.25 [37] 14
9 [37] 2d−1

2d−2 [6] b d
2 c(2d−1)

(b d
2 c+1)(d−1)

[37]

k = 4 3 [42] 2 [18]

15
8 + ε for

any
ε > 0 [37]

1.852 [37] d2

d2−d+1 [37]

(3d−2)(2d−2)
(3d+4)(d−2)
(when d is
even) [37]

3 [19]

An efficient PTAS (for short, EPTAS) for an NP-hard problem Q is a PTAS so that, given
an instance I of Q and a parameter ε > 0, its runtime is bounded by O( f (ε)|I|c), for an
arbitrary function f and a constant c. The author and Shi [44] presented an EPTAS for
MinVCP3 in planar graphs.

For C-MinVCP3, we have

Theorem 22 ([22,41]). C-MinVCP3 admits a 3-approximation.

Liu et al. [45] showed that if MinVCP3 admits an α-approximation, then C-MinVCP3
admits a (2α + 1/2)-approximation. For those classes of graphs in which MinVCP3 can be
approximable within α < 5/4, their algorithm is a kind of improvement.

ForWC-MinVCP3, we have

Theorem 23 ([46]). WC-MinVCP3 admits a (ln ∆(G) + 4 + ln 2)-approximation.

Wang et al. [47] proved that WC-MinVCP3 is NP-hard even in unit disk graphs. If it is
assumed that the problem is c-local, they also presented a PTAS for WC-MinVCP3 in unit
disk graphs with a minimum degree of at least two. If it is assumed that the weight of the
vertices is weak c-local and smooth, Wang et al. [48] gave a PTAS forWC-MinVCP3 in unit
ball graphs.

5. Parameterized Algorithms

In classical complexity theory, the runtime of algorithms is expressed as a function of
the input size only, while in parameterized algorithmics the runtime is analyzed in greater
detail by taking into account some parameters of the problem.

In parameterized algorithmics, the parameter may be the size of the solution sought
after, or an index describing the structure of the input instance. For a parameterized
problem Π with a parameter p, a fixed-parameter algorithm (parameterized algorithm, or FPT
algorithm) is an exact algorithm which, for an input instance (I, p) of Π, runs in time
f (p) · |I|c, where c is a constant independent of both |I| and p. If a parameterized problem
allows an FPT algorithm, it is said to be fixed parameter tractable.

In what follows, t will always be the size of the solution sought after. There exists
a trivial FPT algorithm for MinVCPk with runtime O∗(kt) [49]. With the results on k-Hit
from Fomin et al. [33], we have

Theorem 24 ([33]). MinVCPk admits an O∗((k− 0.9245)t)-time FPT algorithm.

For MinVCP2, the best FPT algorithm known to date is an O∗(1.2738t)-algorithm by
Chen et al. [50]. AnO∗(2t)-algorithm for MinVCP3 was given by the author [51]. This result
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was improved several times [52–55], and Tsur [56] presented an O∗(1.713t)-algorithm for
MinVCP3.

The author and Jin [57] gave an O∗(3t)-time FPT algorithm for MinVCP4 using the
iterative compression method. Tsur [58] improved the result to O∗(2.619t). For k = 5, 6,
and 7, FPT algorithms for MinVCPk were also given in [59,60]. Very recently, Červený and
Suchý [61] gave FPT algorithms outperforming those previously known for MinVCPk for
3 ≤ k ≤ 8.

Theorem 25. The current best running times known of FPT algorithms for MinVCPk for 3 ≤ k ≤
8 are given in Table 2.

Table 2. The running times of MinVCPk for 3 ≤ k ≤ 8.

MinVCPk k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

O∗(1.712t) O∗(2.151t) O∗(2.695t) O∗(3.45t) O∗(4.872t) O∗(5.833t)

For MinVCP3 in planar graphs, the author et al. [62] showed that there is an FPT
algorithm with subexponential time O∗(2O(

√
t)).

When the parameter is the treewidth of the given graphs, the author et al. [62,63]
showed that MinVCP3 is fixed parameter tractable. The treewidth is an important graph
parameter which has been often used in parameterized algorithmics.

Theorem 26 ([63]). If a tree decomposition of a graph G of width of at most p is given, MinVCP3
in G admits an O∗(3p)-algorithm.

ConsiderW-MinVCPk. Shachnai and Zehavi [64] introduced a multivariate method
that can be useful for solving weighted parameterized problems. From their results, one
can obtain FPT algorithms forW-MinVCP2 andW-MinVCP3.

Theorem 27 ([64]). Let G = (V, E) be a graph and w be a vertex weight function V → [1,+∞).
If the paremeter is the total weight W of the solution searched for and s is the smallest possible size
of a solution of weight of at most W, then

(1) there exists an FPT algorithm forW-MinVCP2 in G that runs in O∗(1.381s) time and in
polynomial space, or in O∗(1.363s) time and space.

(2) there exists an FPT algorithm forW-MinVCP3 in G that runs in O∗(2.168s) time and in
polynomial space.

Fernau [34] studied FPT algorithms for the weighted version of k-Hit. Following his
results, one can obtain FPT algorithms forW-MinVCPk for any k ≥ 4.

Theorem 28 ([34]). Let G = (V, E) be a graph and w be a vertex weight function V → [1,+∞).
When the parameter is the total weight W of the solution sought after,W-MinVCP4 in G admits an
O∗((3.1479)W)-algorithm.

Theorem 29 ([34]). Let G = (V, E) be a graph and w be a vertex weight function V → [1,+∞).
When the parameter is the total weight W of the solution sought after,W-MinVCPk in G admits an
O∗((ck)

W)-algorithm, where ck is the largest positive root of the characteristic polynomial

x4 − 3x3 − (k2 − 5k + 5)x2 + x + (k2 − 6k + 9).

Some values of ck are listed in Table 3:
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Table 3. Some values of ck

k 5 6 7 8 9 10 100

ck (≤) 4.1017 5.0640 6.0439 7.0320 8.0243 9.0191 99.0002

Kernelization is an important method that is often used for dealing with NP-hard
problems. Two instances of a decision problem are equivalent if and only if they are either
both yes-instances or both no-instances. A kernelization algorithm for a given parameterized
problem Π with a parameter p is a polynomial-time algorithm which takes an input instance
(I, p) of Π and returns an equivalent instance (I′, p′), called a kernel, so that t′ ≤ t and
|I′| ≤ g(p) for a function g(p). If g(p) is linear, the kernel is called linear.

Following a result on k-Hit [65,66], MinVCPk admits a kernel with O(tk−1) vertices
and O(k · tk) edges. On the other hand, it is not possible to achieve a kernel with O(t2−ε)
edges for MinVCPk unless coNP is in NP/poly [67]. Very recently, Červený et al. [68] gave
a kernel with O(t3) edges for MinVCPk for any k ≥ 6.

Theorem 30 ([68]). For any k ≥ 6, MinVCPk admits a kernel with O(t3kO(k)) vertices and edges.

For MinVCP2, the current best kernel known is a kernel with 2t− c log t vertices for
any fixed constant c by Lampis [69]. Nemhauser and Trotter [70] showed a well-known
theorem (the NT-Theorem) for MinVCP2.

Theorem 31 ([70]). Given a graph G, there exists an O(
√

mn + n)-time algorithm that can
partition the vertex set of G into three subsets A, B and C so that

(1) if F is a VCP2 of G[C], then |F| ≥ |C|/2 and A ∪ F is a VCP2 of G;
(2) there must be a minimum VCP2 F′ of G with A ⊆ F′.

Fellows et al. [71] extended the NT-Theorem for d-BDD and Xiao [72] improved
Fellow et al.’s result. Since MinVCP3 is equivalent to 1-BDD, one can derive a generalization
of the NT-theorem for MinVCP3.

Theorem 32 ([72]). For a graph, there exists an O(n5/2m)-time algorithm that can partition the
vertex set of G into three subsets A, B and C so that

(1) if F is a VCP3 of G[C], then |F| ≥ |C|/13 and A ∪ F is a VCP3 of G;
(2) there must be a minimum VCP3 F′ of G with A ⊆ F′.

The generalization of the NT-theorem for MinVCP3 implies a kernel with 13t vertices
for MinVCP3. The bound of the size of the kernel for MinVCP3 was subsequently improved
several times [55,73]. The current best kernel known is by Xiao and Kou [55].

Theorem 33 ([55]). MinVCP3 admits a kernel with 5t vertices.

Červený et al. [68] also gave kernels with O(t2) edges for MinVCP4 and MinVCP5 that
are asymptotically optimal (unless coNP is in NP/poly).

Theorem 34 ([68]). MinVCP4 admits a kernel with at most 176t2 + 166t edges.

Theorem 35 ([68]). MinVCP5 admits a kernel with at most 608t2 + 583t edges.

6. The k-Path Vertex Cover Number

Computing ψk(G) is NP-hard. Moreover, Computing ψ3(G) remains NP-hard in
bipartite C4-free graphs of maximum degree three [28]. Some upper and lower bounds on
ψk(G) in accordance with different graph parameters were given in the literature.
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Theorem 36 ([4]). For n ≥ k ≥ 2, the exact values of ψk(G) of Pn, Cn and Kn are b n
k c, d

n
k e and

n− k + 1, respectively.

Theorem 37 ([74]). For n ≥ 4,
(i) ψk(Kn,n) = d n+1

2 e when k = n + 1;
(ii) ψk(Kn,n) = n + 1− b k

2c when n + 2 ≤ k < 2n;
(iii) ψk(Kn,n) ≥ n2−nk+2n

n− k
2+1

when 4 ≤ k ≤ n.

Theorem 38 ([74]). If m ≥ n ≥ 2, ψ2(Km,n) = ψ3(Km,n) = n. If m > n ≥ 2 and k ≥ 3,

ψk(Km,n) = n + 1− b k
2
c.

Theorem 39 ([12]). For a tree T, ψk(T) ≤ n/k.

Theorem 40 ([4]). For d ≥ k− 1 ≥ 1 and any d-regular graph G,

ψk(G) ≥ d− k + 2
2d− k + 2

n.

Recently, Bujtás et al. [75] generalized the result of Theorem 40 to general graphs in
terms of ∆(G) and δ(G).

Theorem 41 ([75]). If G is a graph and δ(G) ≥ k− 1 ≥ 2, then

ψk(G) ≥ δ(G)− k + 2
δ(G) + ∆(G)− k + 2

n.

Theorem 42 ([75]). If k ≥ 3 and ∆ = 2 or ∆ ≥ 4, and G is a graph with vertex degree at most ∆,
then

(i) if ∆ ≥ 2 is even,

ψk(G) ≤ (k− 1)(∆− 2) + 4
(k− 1)∆ + 4

n;

(ii) if ∆ ≥ 5 is odd,

ψk(G) ≤ (k− 1)(∆− 3) + 8
(k− 1)(∆− 1) + 8

n.

Theorem 43 ([75]). If G is a graph without isolated vertices and k ≥ 3,

ψk(G) ≤ n− 2k− 3
k− 1 ∑

v∈V(G)

1
1 + d(v)

.

A graph which contains no induced cycle with a size of at least four is called a
chordal graph.

Theorem 44 ([75]). If G is a chordal graph of clique number ω and k ≥ 3,

ψk(G) ≤ ω

ω + k− 1
n.

The bounds on ψk(G) for small k were also investigated.

Theorem 45 ([12,75]). For a graph G,
(i) ψ3(G) ≤ max{ 2n+m

6 , n+m
4 , 4n+m

9 },
(ii) ψ4(G) ≤ n+3m

10 .
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Theorem 46 ([12]). Let G be a graph,

ψ3(G) ≤
d∆(G)−1

2 e
d∆(G)+1

2 e
n.

Corollary 1 ([17]). If G is a cubic graph, 2n/5 ≤ ψ3(G) ≤ n/2.

Theorem 47 ([4]). For a graph G, let d(G) be the average degree of G and let ` be the smallest
possible positive integer so that ` ≥ (d(G)− 2)/2, then

ψ3(G) ≤ `n
`+ 2

+
m

(`+ 1)(`+ 2)
.

Theorem 48 ([75]). Let G be a planar graph, ψ3(G) ≤ 11n/15 and ψ6(G) ≤ 2n/3.

Theorem 49 ([12]). Let G be an outerplanar graph, ψ3(G) ≤ n/2.

Theorem 50 ([75]). Let G be a chordal planar graph, ψ3(G) ≤ 2n/3, ψ4(G) ≤ 4n/7, and ψ5(G) ≤
n/2.

Some bounds and exact values for ψk(G) on Cartesian product graphs, rooted product
graphs, and Kneser graphs were also investigated [4,74,76,77].

7. Conclusions

MinVCPk is a natural generalization of the classic MinVCP2 and has received increas-
ing attention in recent years. This work aims to present a survey on the problem that could
be used to gain insight into the topic. In this survey, we mainly focus on the cases with
k ≥ 3. It is important to point out that although there are various methods to deal with
NP-hard problems, we focus mainly on the results of exact algorithms, approximation
algorithms and parameterized algorithms for MinVCPk and its variants. In fact, some
results on online algorithms and heuristic algorithms for MinVCPk have also been reported
in the literature [78,79]. Finally, we present some important problems which could be used
to draw future research directions in this area.

Problem 1. For general k and a fixed constant 0 < c < 1, find an (1 − c)k-approximation
algorithm for MinVCPk.

Problem 2. Determine whether MinVCPk admits an O∗((k− 1− ε)t)-algorithm for any k and
any constant ε > 0.

Problem 3. Determine whether MinVCPk admits a kernel with O(t) vertices, or a kernel with
O(t2) edges for any k.

Problem 4. Find a generalization of the NT-theorem for MinVCPk for general k.

Problem 5. Prove and disprove the following conjecture: If G is a planar graph, ψ3(G) ≤ 2n/3.
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ogy and Business University (No. 19008021187).
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