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Abstract: We address a hyperbolic predator–prey model, which we formulate with the use of the
Cattaneo model for chemosensitive movement. We put a special focus on the case when the Cattaneo
equation for the flux of species takes the form of conservation law—that is, we assume a special
relation between the diffusivity and sensitivity coefficients. Regarding this relation, there are pieces
arguing for its relevance to some real-life populations, e.g., the copepods (Harpacticoida), in the
biological literature (see the reference list). Thanks to the mentioned conservatism, we get exact
solutions describing the travelling shock waves in some limited cases. Next, we employ the numerical
analysis for continuing these waves to a wider parametric domain. As a result, we discover smooth
solitary waves, which turn out to be quite sustainable with small and moderate initial perturbations.
Nevertheless, the perturbations cause shedding of the predators from the main core of the wave, which
can be treated as a settling mechanism. Besides, the localized perturbations make waves, colliding
with the main core and demonstrating peculiar quasi-soliton phenomena sometimes resembling the
leapfrog playing. An interesting side result is the onset of the migration waves due to the explosion
of overpopulated cores.

Keywords: Patlak–Keller–Segel systems; the Cattaneo model of chemosensitive movement; hyperbolic
models; shock waves; conservation laws
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1. Introduction

The Patlak–Keller–Segel (PKS) law provides a simple macroscopic model for a per-
ceptual motion (taxis) of the particles ensemble in response to the spatial gradient of a
stimulus (or signal) field. The commonly recognized formulation of the PKS flux reads as:
χp∇s, where the notations of p, s, and χ stand for the density of the medium that moves
in response to the signal, the intensity of the signal itself and the sensitivity coefficient,
correspondingly. A multitude of parabolic PKS systems resulting from the summation of
the diffusive and PKS fluxes stand as the subject of intensive research for last five decades.
A considerable number of reviews expose the advances in this area, e.g., [1–3].

However, usage of the parabolic framework is not a unique way of treating the PKS
law. For example, Dolak and Hillen [4] proposed a different formulation known as the
Cattaneo model for chemosensitive movement. In contrast with the parabolic models,
this one takes into account the inertia of the response and becomes hyperbolic. At that,
the flux has a contribution from the local time derivative of itself in addition to those
mentioned above. From the articles [5,6], it follows that the common parabolic model,
the Cattaneomodel and several other hyperbolic models represent the approximations of
the kinetics equations under different hypotheses. There is a concise review by R. Eftimie [7]
of this subject that covers deriving the models and the issues of exact solutions, stability
and bifurcations, etc. It makes clear that the hyperbolic models are not less natural than
their parabolic counterparts, e.g., while modelling the aggregation processes in the active
media. Nevertheless, the former receive much less attention than the latter. The mentioned

Axioms 2022, 11, 187. https://doi.org/10.3390/axioms11050187 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11050187
https://doi.org/10.3390/axioms11050187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-8575-4917
https://doi.org/10.3390/axioms11050187
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11050187?type=check_update&version=3


Axioms 2022, 11, 187 2 of 17

review by R. Eftimie reports the deficiency of results for understanding the generic pattern
emerging from the dynamics of the local hyperbolic models even in the case of one spatial
dimension (see Table 9.1, Chapter 9) despite a considerable piece of work exposed therein.

Anyway, the hyperbolic models are the subject of continuing research. Among the
recent results, those published in [8,9] have much to do with the present study. These
articles address propagating the travelling shock waves and the gradual formation of the
shocks from the initially smooth solutions for an infinite time extent. The analysis covers the
rigorous proof of both features for a non-local hyperbolic model of a media, the density of
which governs its velocity via the action of a given first-order pseudo-differential operator.
Interestingly, the travelling shock waves coexist with the smooth ones. The latter are the
widely studied features in the parabolic case, see, e.g., [10–12] and the references therein.
The studies of their hyperbolic counterparts likely traced back to K. Hadeler [13–16].

In the present paper, we address similar issues but in a different context. We consider
the Cattaneo model for a predator–prey community with the Lotka–Volterra kinetics.
Regarding the predator flux, we assume that the diffusivity coefficient, µ = µ(p, s), and
the sensitivity coefficient, χ = χ(p, s), are given functions in the species densities, p and
s. In addition, we assume that 1-form −µ(p, s)dp + pχ(p, s)ds is exact. Despite being
restrictive, this assumption relies on certain biological grounds [17,18]. Formally, it entails
the conservatism of the flux equation. Thanks to this circumstance, we take advantage of
considering the travelling shock waves and arrive at very simple exact solutions for the
limit case of sedentary prey and a highly-inertial predator. In the aforementioned articles,
K. Hadeler addressed the travelling waves in a semi-linear version of the Cattaneo model.
However, the model dealt with here is not semi- but quasi-linear. Besides, the conservatism
allows for the elimination of the flux from the governing equations using the ansatz by
K. Hadeler; see the reference above again. This reduction is helpful for calculating the
numerical solution. The numerical continuation of the travelling shock waves to a wider
parametric area discovered their smooth counterparts. These are the soliton-like waves.
The study of their perturbations and collisions have discovered a rather peculiar interplay
that resembles the quasi-soliton interactions reported in [19–21]. An interesting side result
is the explosive migration waves emergent from the overpopulated cores.

Thus, there are several key findings in the present article, namely: (i) identifying a class
of the Cattaneo models for the chemosensitive movement that allows the formulation of the
governing equations as the conservation laws on one hand and, on the other hand, includes
a biologically justified model; (ii) discovering the exact solutions describing the travelling
shock waves in the limit of sedentary prey and highly-inertial predators; (iii) discovering
the smooth counterparts of the shocks in the general case and their interactions such as
leapfrog playing; (iv) observing the migration waves due to exploding the overpopulated
kernels; (v) formation of the layers of high concentrations of the species nearby the fronts
of waves emerging from the collisions of the solitary waves or upon the massive escape
from the overpopulated areas.

The paper is organized as follows. In Section 2, we formulate the model and put
it into the dimensionless form. In Section 3, we consider the case of the sedentary prey,
in which the system becomes purely hyperbolic. In Section 4, we discuss the general issues
regarding the shock waves, particularly the travelling ones. In Section 5, we distinguish a
special case that allows a very simple exact solution. In Section 6, we discuss the general
setting of the numerical experiments, and present their results. In Section 7, we discuss
the results of our study and their applications. In the Appendix A, we have gathered the
precise formulations of the data used for performing the numerical experiments.
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2. The Governing Equations and Scaling

The governing equations read as:

pt + qx = F(p, s) (1)

τqt + νq = χ(p, s)psx − µ(p, s)px, (2)

st = G(p, s) + Dssxx. (3)

In this system, the dependent variables, x and t, stand for the spatial and temporal
coordinates, correspondingly, x ∈ R, t > 0. The dependent variables are p = p(x, t),
q = q(x, t) and s = s(x, t). The first and the last one play the parts of the densities of the
species, say, the predators and the prey, correspondingly. The first two equations constitute
the Cattaneo model for the prey-sensitive movement of the predators, so that the remaining
dependent variable, q, stands for the predators’ flux. The prey spreads itself purely by
diffusion, and the notation of Ds stands for its diffusivity. In what follows, Ds ≡ const by
assumption. We also assume that the predators’ diffusivity, µ(p, s), and the sensitivity,
χ(p, s), are specified, and

pχ(p, s)→ 0, p→ +0, ∀ s ≥ 0. (4)

We assume that the reaction terms, G and F, are prescribed, but postpone further
detailing them to Section 5. The mechanical analogy suggests treating the second term
on the left hand side of the second equation as a contribution of the resistance of the
environment to the predator’s motion. So, we will be calling the correspondent coefficient,
ν, as the resistivity.

Let the notations T, X, P, S, Q, Dp, C, Jp, Js stand for characteristic scales for the time,
length, predator’s density, prey’s density, diffusivity, sensitivity, predator’s and prey’s
sources densities correspondingly. The resistivity coefficient, ν, is naturally dimensionless.
Since the values of Dp, Ds and C depend on the concrete species, it is natural to consider
them as anyhow given. In contrast, the values of X, T, S, P, Jp and Js are free to choose.
Given this, let us set

T = τ, X =
√

τDp, Q = P

√
Dp

τ
, Jp = Js = τ−1, (5)

and postpone defining the values of P and S. We also set

µ̄( p̄, s̄) = D−1
p µ(Pp̄, Ss̄), χ̄( p̄, s̄) = C−1χ(Pp̄, Ss̄). (6)

In what follows, every variable employed is dimensionless by default.
Upon the above scaling, the dimensionless form of the governing equations reads:

pt + qx = F(p, s), (7)

qt + νq = κχ(p, s)psx − µ(p, s)px, (8)

st = G(p, s) + δsxx, (9)

κ = CS/Dp, δ = Ds/Dp. (10)

For the forthcoming analysis, it is important to distinguish the case when the right-
hand side in the flux equation is integrable in the sense that:

κχ(p, s)psx − µ(p, s)px = (ϕ(p, s))x. (11)

For such an integrability, it is necessary and sufficient to link the diffusivity to the
sensitivity as follows:

µs(p, s) = −κ(pχ)p. (12)
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3. Sedentary Prey and Hyperbolicity

Throughout this section, we consider the system (7)–(9) with δ = 0. Then it becomes a
first order quasi-linear PDE system, which we put into the form:

zt + A(z)zx = b(z), where (13)

z =

 p
q
s

, b :

 p
q
s

 7→
 F(p, s)
−νq

G(p, s)

, A :

 p
q
s

 7→
 0 1 0

µ(p, s) 0 −κpχ(p, s)
0 0 0

. (14)

The eigenvalues of matrix A are ±
√

µ(p, s), 0. They are real and distinct one from
another as long as µ(p, s) > 0. It is always true by assumption. Hence the system of
Equations (13) and (14) is strictly hyperbolic. The above triple of eigenvalues deter-
mines the triple of characteristic speeds—that is, every characteristic of system (13) al-
lows a parametrization by the mapping t 7→ (t, X(t)) that satisfies an equation Ẋ(t) =
λ(p(X(t), t), s(X(t), t)), where λ ∈ {0,±

√
µ(p, s)}.

A question to ask about a first-order hyperbolic system is whether or not it allows
diagonalizing by a pointwise transform ρ = R(z). Such an ansatz generally does not exist
for a system that includes more than two equations. The diagonalizing is feasible, provided
that the system matrix, A = A(z), satisfies an integrability criterion, which allows a straight
algebraic formulation. Another formulation requires satisfying the Frobenius condition
dωi ∧ωi = 0 with every 1-form ωi = `i · dz generated by the vectors of the dual eigenbasis
{`1, `2, ...} of the matrix A (this is the eigenbasis of the transposed matrix). Then for every i
there exists a factor αi = αi(z) such that αiωi = dρi, and ρi = Ri. The last criterion is handy
to use as long as there is a handy dual eigenbasis, as in the case of matrix (14), for example.
Then a routine calculation reduces the diagonalization criterion to the following condition:

µs(p, s) = κpχ(p, s)5
(

ln
µ(p, s)

p2χ2(p, s)

)
p
. (15)

Under condition (12) the obtained criterion simplifies to:

µ(p, s) = pc(s)χ(p, s), (16)

where c stands for an arbitrary function. Thus, assuming the diagonalization entails
restrictions that are too artificial even in the simplified form. That is why we will not be
considering this option in this study anymore.

Let the condition (12) hold throughout all subsequent considerations. Then there exists
a single-valued function ϕ = ϕ(p, s) such that:

dϕ = µ(p, s)dp− κpχ(p, s)ds. (17)

Hence, the system (13) and (14) consists of conservation laws, namely:

pt + qx = F(p, s), qt + ϕx = −νq, st = G(p, s). (18)

This feature makes feasible the generalized solutions, e.g., the shock waves.
Consider now a shock wave with discontinuities at some curve x = X(t). Then the

velocity of the shock, Ẋ, has to satisfy the Rankine–Hugoniot conditions entailed by the
conservations laws (18). They read as:

Ẋ[p] = [q], Ẋ[q] = [ϕ], Ẋ[s] = 0. (19)



Axioms 2022, 11, 187 5 of 17

Here the notation of a dependent variable put in the square brackets stands for the
jump of this variable across the discontinuity—that is, the difference between the limit
values evaluated for (x, t)→ (X(t) + 0, t) and (x, t)→ (X(t)− 0, t). At that,

[ϕ] =

(p+ ,s+)∫
(p− ,s−)

µ(p, s)dp− κpχ(p, s)ds, (20)

where the superscripts + or − stand for the unilateral limit values at the left and right
shores of the discontinuity (when the observer looks forward alongside the time axis).
There are two possibilities. The first is the standing wave—that is,

Ẋ = 0, [q] = [p] = 0, (21)

where the value of [s] remains undetermined. The second is the travelling wave—that is,

Ẋ 6= 0, [s] = 0, [q]2 = [p][ϕ] = [p]

(p+ ,s∗)∫
(p− ,s∗)

µ(s, p)dp = [p]2µ(p∗, s∗), (22)

where s∗ = s(X(t), t) is the value of the prey density directly on the shock (note that
function s remains continuous across the shock), and p∗ ∈ (p−, p+) is an unknown quantity
that for each t satisfies the equation:

(p+ ,s∗)∫
(p− ,s∗)

µ(p, s)dp = [p]µ(p∗, s∗). (23)

The speed at which such a wave propagates can take two opposite values, namely:

Ẋ = [q]/[p] = [ϕ]/[q] = ±
√

µ(p∗, s∗). (24)

Generically, the shock wave speeds determined in (24) differ from the characteristic
ones, which are discontinuous across the shocks. It depends on the inequalities between
the velocity of a specific shock wave and the limit values of the characteristic velocities
whether or not this shock propagates. These inequalities are known as Lax conditions.
Checking them yields a conclusion that shock waves can propagate provided that:(

µ(p+, s∗)− µ(p∗, s∗)
)(

µ(p−, s∗)− µ(p∗, s∗)
)
< 0. (25)

Moreover, exactly one of the two possible shock waves can propagate, and the prop-
agation speed is equal to

√
µ(p∗, s∗) provided that µ(p−, s∗) > µ(p∗, s∗) or −

√
µ(p∗, s∗)

otherwise.
A peculiar degeneration occurs when a predator’s diffusivity is independent of its

density—that is, µ = µ(s). Given this, the expressions for the shock wave speeds read
as either:

Ẋ = ±
√

µ(s∗) (26)

or Ẋ = 0. It is worth recalling that s∗ stands for the trace of the prey’s density, s, right on
the shock. It is defined well due to the continuity of the function s across the shock. Hence,
every possible wave’s speed coincides with a characteristic one—that is, the shocks spread
along the characteristics.
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Matching the predator-independent diffusivity to the integrability condition, (12) and
assumption (4) make the sensitivity, χ, predator-independent too. Given this, the integra-
bility condition simplifies as follows:

µ = µ(s), µs(s) = −κχ(s). (27)

Modulo the scaling, relation (27) is equivalent to that deduced by Tyutyunov et al. from
biological rationales in the aforementioned articles. Also, Tyutyunov et al. addressed some
issues of stability and pattern formation for the corresponding PKS systems in the parabolic
form [22]. Throughout the rest of the present article, we will be studying Cattaneo’s systems
that arise from relation (27).

4. The Travelling Shock Waves for the Predator-Independent Diffusivity

Let d/dt stand for the total derivative along a characteristic. From system (18) it
follows that:

dq
dt

+ λ
dp
dt

= κχ(s)psx − νq + cF(p, s), (28)

where the notation of λ = ±
√

µ(s) stands for the corresponding characteristic speed. If this
characteristic supports a shock, then the same equations hold on the shores of the shock
with the limit values of every quantity involved. Subtracting them and eliminating the
variable q with the use of the Rankine–Hugoniot conditions (19) lead to the following
equation on the shock

d(λ∗[p])
dt

+ λ∗
d[p]
dt

= κχ∗[psx]− νλ∗[p] + c[F], q = λ∗[p], (29)

where subscript ∗ indicates the quantities, which depend on the values of s∗ only. Further-
more, from the continuity of the prey’s density, s, it follows that the gap of ∇s across the
shock is normal to it everywhere—that is,

[st] + λ∗[sx] = 0. (30)

So, we are discussing the travelling shock waves. By definition, such a wave propa-
gates at a constant speed c, and the corresponding solution depends on only one variable,

ξ = t− x/c. (31)

Then the characteristics at which the shocks occur are the parallel lines determined by
equations ξ = ξ∗ for the values of ξ∗ varying over some set, Σ, which we assume to be finite.
This set gathers all the discontinuities of the solution in variable ξ. On the complement of
the singular set, the system (18) reduces to an ODE system. Namely,

(c2 − µ(s))pξ = c2(F(p, s)− ν(p− r))− κχ(s)pG(p, s), rξ = F(p, s), sξ = G(p, s), (32)

where r = p− q/c, ξ 6∈ Σ. The conditions for matching the solutions are defined on the
adjacent intervals separated by a discontinuity following from Equations (29) and (30).
The latter holds trivially for every function in only variable ξ, while the former turns to a
system of functional equations as follows:

c2([F]− ν[p])− κχ∗[pG] = 0, [s] = 0, [r] = 0. (33)

The last equation in this set is equivalent to [q] = c[p]. The following constraint is for
the wave speed, c, to obey:

∃ c : ∀ ξ∗ ∈ Σ λ∗ = ±
√

µ(s∗) = c, s∗ = s(ξ∗). (34)
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Alluding to the values of the unknown, s, taken on Σ is correct by the continuity
that is consistent with the matching condition (33). The same is true regarding another
unknown, r.

The first equation in system (32) degenerates when the independent variable, ξ, is
approaching a discontinuity. Let us restrict ourselves within the solutions obeying the
following condition:

p±ξ = o
(
(ξ − ξ∗)

−1
)

, ξ → ξ∗, (35)

where the superscripts, + and −, are to distinguish the solutions settled on the right and left
intervals adjacent to the discontinuity point, ξ∗. This estimate entails one more condition
for matching the solutions at the discontinuity. Namely, the following equations are to obey:

c2(F(p±∗ , s∗)− ν(p±∗ − r∗))− κχ∗p±∗ G(p±∗ , s∗) = 0, (36)

where the notations of p±∗ , s∗ and r∗ stand for the unilateral limits of variable p and the
bilateral limits of variables s and r correspondingly. It is worth noting that subtracting the
equalities (36) gives the first of matching condition (33).

At first, let us address the waves which allow a single shock only. Then there must
be only one discontinuity on the ξ-axis, so let us place the origin there, and put ξ∗ = 0.
Consider the equation:

µ(z)F(x, z)− ν(x− y)− κχ(z)xG(x, z) = 0. (37)

By conditions (36), a nonzero jump across the singularity in variable p due to a
travelling wave presumes that Equation (37) has several distinct solutions (xi, y, z) with
the same y, z, e.g., z = s∗, y = r∗, xi = p+∗ and xj = p−∗ for some i 6= j.

Assume there exists a nonempty set filled with solutions (x, y, z) to Equation (37) such
that x ≥ 0, z ≥ 0, and let the projection of this set onto the yz-plane alongside the x-axis
cover some domain with multiplicity N ≥ 2. For every point (z, y) in this domain, let
Pi = Pi(y, z), i = 1, 2, . . . , N be the coordinates of projection of its pre-image on the x-axis
alongside the yz-plane. Then constructing the travelling shock waves can go the following
way: set

s∗ = y, r∗ = z, p+∗ = Pi(y, z), p−∗ = Pj(y, z), i 6= j, (38)

and then try to find the solutions p± = p±(ξ), r± = r+(ξ), s± = s±(ξ) to Equation (32),
that are defined and bounded for ±ξ > 0 and match the data listed above when ξ = 0.
Note that the values of y, z are free to manipulate. One can try to obtain some pairs of
conjugated waves by transposing i and j. Since we have been assuming the projection to
be the N-leaf covering mapping, there are N(N − 1)/2 conjugated pairs of the datasets.
In the next subsection, we will be considering a case of a very simple implementation of
the approach outlined above.

5. The Inertial Limit for the Sedentary Prey

At this point, we need more details regarding the reaction terms, F = F(p, s) and
G = G(p, s). Henceforth, we will be assuming the following:

F = p f (p, s), f |s=0 < 0, G = sg(p, s), g(0, 0) > 0, gp|p=0 = −1, gs|s=0 = −1. (39)

The last two assumptions are equivalent to inequalities gp|p=0 < 0, gs|s=0 < 0 modulo
the scaling of variables p, s since the characteristic scales of these variables, P and S, are
indefinite still. For example, the Lotka–Volterra kinetics while being normalized in accord
with (39) reads as

F = p(γs− β), G = s(α− s− p), α, β, γ = const > 0. (40)

Thus, parameter α plays the part of the carrying capacity given the scaling adopted here.
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Consider the Cauchy problem

Sτ = G(0, S), S|τ=0 = a. (41)

Assume there exists a number a0 > 0 such that for every a ∈ [0, a0] problem (41)
has a solution S = S(τ, a) defined on R, and such that the mapping a → S(τ, a) sends
the segment [0, a0] to itself for every τ ∈ R. Consider also the following system of func-
tional equations:

g(p, s) = 0, f (p, s) = 0, (42)

and assume there exists a positive solution s = se > 0, p = pe > 0. The last assumption
entails the existence of a strictly positive equilibrium for general system (7)–(9). By equilib-
rium, we mean a particular solution specified as follows: q = 0, p = const, s = const, so
that both species distribute themselves homogeneously. A nonnegative equilibrium not
being strictly positive can make sense too. For example, the Lotka–Volterra kinetics (40)
allows an equilibrium with p = 0, s = α for every parameter setting, and there exists the
strictly positive equilibrium se = β/γ, pe = α− se provided that β < αγ.

Throughout the rest of this section, we will be considering the inertial limit and
sedentary prey. So, we put ν = δ = 0. We also assume all the listed assertions on the
kinetics to be true. The Lotka–Volterra kinetics defined in (40) meet such an assumption for
β < αγ; at that, the ODE involved in the Cauchy problem (41) reads as Sτ = S(α− S).

Given the assumption made, there are at least two solutions, x = Pi(y, z), i = 1, 2
to Equation (37) defined in some vicinity of every point (y, se). At that, P1 ≡ 0, while
function P2 (in fact, in one variable, z) is that defined implicitly by equations µ(z) f (x, z) =
κχ(z)g(x, z) = 0, Pi(se) = pe. However, we do not need much manipulating with the
values y, z here, since the choice is evident; namely, x1 = 0, x2 = pe, z = se, and the
values of y are arbitrary. Then there are two pairs of the travelling shock waves, one pair
propagates at speed c =

√
µ(se), and the other one propagates at the opposite speed.

The formulae for both are the same, and they read as:

p = 0, r = y, s = S(ξ, se), ξ ∈ (−∞, 0), p = pe, r = y, s = se, ξ ∈ (0, ∞), (43)

p = 0, r = y, s = S(ξ, se), ξ ∈ (0, ∞), p = pe, r = y, s = se, ξ ∈ (−∞, 0), (44)

where y is an arbitrary constant.
Waves (43) and (44) are conjugated in the sense explained in the previous section but

not mirroring one by the other one. Although both species in both waves take the same
equilibrium values within the areas settled by predators, outside them, prey spreads itself
differently. Indeed, the solutions to the Cauchy problem (41) generically behave differently
for ±τ > 0 (except for the equilibria).

In Figure 1, the left and middle frames show profiles of waves (43) and (44) corre-
spondingly. For both waves, the front of the predator’s invasion moves towards the smaller
concentration of prey. This feature is not as paradoxical as it can seem given the locality of
the predator–prey interactions.

An overlay of waves (44) and (43) gives examples of finite predators’ mass localized
within a patch that moves uniformly. Such a wave propagates with two shocks at the speed
c =

√
µ(se) or at the opposite speed. The formulae read as:

p = 0, r = y, s = S(ξ − ξ0, se), ξ < ξ0,

s = se, p = pe, r = y, ξ ∈ (ξ0, ξ1), ξ1 − ξ0 = M/pe (45)

p = 0, r = y, s = S(ξ − ξ1, se), ξ > ξ1,

where the values of y and M > 0 are arbitrary constants. At that, the values of M stand
as the mass of the patch. It is worth noting that the shapes of the patchy waves differ
depending on the sign of the wave speed, c. The prey are dying out to the left (right) of
the predators patch for negative (positive) c, so that the patch moves towards the smaller
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concentration of prey (see the right panel in Figure 1). In Section 7, we return to these
waves to discuss their relevance to the population dynamics.

Figure 1. The figure shows the propagation of waves (43)–(45) calculated for the Lotka–Volterra
kinetics (40) (from the left to the right). Each frame shows three instantaneous profiles for both the
predator and the prey densities. In the left and middle frames, the blue (green) coloured lines are for
the former (latter), while the solid, dashed and dotted lines picture the profiles taken at t = 0, t = 3/2
and t = 3. The right frame addresses the wave that transports a patch filled with the unit mass of
predators. At that, the dashed (solid) lines mark out the densities of the predators (prey). The colours
green, red and blue are for the shots taken at t = 0, t = 3/2 and t = 3 (so that the wave speed is
negative). All three panels correspond to the Lotka–Volterra kinetics (40), where α = 1, β = 0.2,
γ = 0.8. At that, the diffusivity function reads as µ = (1 + s)−1, so that κ = 1, and the equality (27)
determines the sensitivity, χ. These definitions give the wave speed, c =

√
µ(se) ≈ 0.9. Finally, recall

that the figure regards the diffusionless and inertial limit, and δ = ν = 0, hence.

6. Numerical Experiments

In this section, we present the numerical solutions to system (7)–(9) that we formulate
with the use of the Lotka–Volterra kinetics (40) and predators’ diffusivity µ = (1 + κs)−1.
The diffusivity determines the sensitivity, χ(s), by the simplified integrability condition (27).
For the numerical implementation, we eliminate the flux, q, from this system with the
use of ansatz by K. Hadeler (see references provided above). As a result, we arrive at the
following equations:

ptt + ν(pt − F(p, s)) = (µ(s)p)xx + (F(p, s))t, (46)

st = G(p, s) + δsxx. (47)

Substituting this second-order system for the original one (which is of order 1) requires
ad hoc initial conditions. These are:

pt=0 = p0, st=0 = s0, pt t=0 = F(p0, q0)− q0x, (48)

where the notations of p0, q0, s0 stand for the functions which determine the initial values
of the dependent variables of the original system (7)–(9). The numerical implementation
also requires restricting the solution within a finite spatial domain and formulating suitable
boundary conditions. So, we set

px x=±L = 0, sx x=±L = 0. (49)

It turns out that the numerical solving of the initial-boundary problems (46)–(49) is
quite feasible with the Maple built-in PDE solver.
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Implementation of the numerical solution should cover a spatial interval wide enough
to put the artificial boundaries far out of the domain in which the phenomena of interest
occurs. We had controlled all the results below by widening the spatial area and found them
reproducing themselves sustainably for values of L higher than 8. In particular, L = 10 for
all the figures presented in this section. In a similar way, we checked the influence of the
mesh refining and varying the level of smoothing used for preparing the initial data and
found the results of this inspection quite satisfactory.

The first set of numerical experiments is for answering the question of whether the
shock waves persist for the positive values of the resistivity, ν and the prey diffusivity, δ.
To this end, we have been taking the profiles of the species’ densities, s and p from the
waves (43)–(45) and putting them as the initial profiles, s0 and p0, which enter the boundary
conditions (48). At that, we have been smoothing the shocks slightly. Further, we have been
putting q0 = c∗p0, where c∗ =

√
µ(se) is the shock wave speed. This choice is consistent

with the definition of the shock waves. Appendix A provides the concrete details of setting
initial conditions, the control parameters values, etc. The answer to the question formulated
above is fully affirmative. The shocks become a bit smoother, but keep propagating at an
almost constant speed that is nearly equal to the value of c∗. Figure 2 shows the typical
behavior of the slightly smoothed counterpart of the patchy shock wave. This figure tells
us that the smoothed patch spreads as a kind of soliton, which is shaped rather sharply for
the small resistivity and prey diffusivity. An increase in the resistivity produces scattering
of the predators behind the rear front of the wave.

The next piece of computing addresses the interactions of the observed solitary waves
with some perturbations applied initially. These are:

(a) a small displacement of the species density profiles one relative to the other one with
no deformation;

(b) a small deformation of the species density profiles;
(c) a small droplet of predators localized behind the main core;
(d) a small droplet of predators localized ahead of the main core.

In cases (a) and (b), the smallness means that the magnitudes of mutual displace-
ments (deformations) are approximately ten percent of the magnitude of the main patch.
The smallness of the droplet means that its mass is ten times smaller than the mass of
the main patch, while they both are localized in the intervals of nearly equal lengths. In
Appendix A, there is the exact formulation of the initial conditions and the concrete values
of the control parameters.

In cases (a) and (b), the effects of the initial perturbations manifest themselves mostly
by the predators scattering, which goes almost the same way as shown in the bottom row
of frames in Figure 2, with no any qualitative distinctions. So, we do not illustrate these
cases. Case (c) is similar to the above, but shedding the predators is rather intensive. We
illustrate this case in the top row of frames in Figure 3. Case (d) demonstrates a very
peculiar interplay of solitary waves. Namely, the main patch and the droplet attract one
to the other one until they clash. Then they play leapfrog: droplet climbs over the patch
and rolls down to the other side of it. The patch drops some mass due to the scattering but
keeps moving at almost the same speed. The droplet keeps moving too but in the opposite
direction while getting bigger and sharper. We illustrate this case in the bottom row of
frames in Figure 3.
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Figure 2. The figure illustrates propagating the solitary waves that are the slightly smoothed counter-
parts of the shock patchy wave (45) when the resistivity, ν, and prey diffusivity, δ, take some small
values. In Appendix A, there is the accurate exposition of all the parameter values and initial data that
we have used for producing all the pictures displayed herein. The upper row of frames shows three
distributions of the predators over x, t-plane which arise from propagating the shock and smoothed
patchy waves. The left upper frame displays the former while the central and right frames display the
latter for two different values of the resistivity. Both values are small, but the one corresponding to
the central frame is substantially smaller. The saturation of blue is in use for indicating the predators’
density. The central and lower rows animate the propagation of the smoothed patchy waves shown in
the middle and right frames in the upper row. For comparison, the shock patchy wave (that we have
been showing in the left upper frame) is animated in the same frames synchronously. For capturing
the former (latter), the solid (dotted) lines are in use, and the coloring of them distinguishes the
species. Namely, for both waves, the profile of the predators’ (prey) density is blue (green) colored.

The results presented above confirm the stability of the travelling patchy waves.
Figure 4 demonstrates the results of a more extreme crash-test. Appendix A provides the
detailed description of the initial states and other settings used for this piece of computing.
It is worth recalling that every travelling patchy wave has a counterpart that propagates
at the opposite speed. Gluing this pair provides the initial state for computing the next
five patterns pictured in Figure 4. Overall, they illustrate the collision of two patchy waves.
The remarkable feature is that the collision gives rise to an expansion wave, at the fronts
of which peaks are arising and sharpening in the course of its propagation. The mirror
symmetry of the patterns is due to the mirror symmetry of the problem and initial data.
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Figure 3. The figure illustrates the evolution of the initial perturbations described in clauses (c)
and (d) on page 10. In particular, the bottom row demonstrates the leapfrog playing. The detailed
description of the initial states and all other settings used for computing this figure is in Appendix A.

Figure 4. The figure illustrates a collision of two patchy waves, which propagate at the opposite
speeds. The blue (green) lines are for the instant profiles of the predators’ (prey) density. The detailed
description of the initial states and other settings used for computing this figure is in Appendix A.

Further, we proceed with an asymmetrical initial configuration that arises from per-
turbing the travelling patchy wave in a way similar to that used in case (d) above. However,
the perturbation is not small this time as its mass is equal to the patch mass. Appendix A
provides a detailed description of the initial states and other settings used for this piece
of computing. In Figure 5, the two rows of images display two ways of the evolution of
this configuration for two different values of the resistivity, ν. The top row regards the
smaller resistivity. The initial stage of evolution is qualitatively like that reported for case
(d) above. New features arise after the leapfrog playing. Among them, the most notable is
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the spike that springs up suddenly at the foremost bound of the main patch. The other core
becomes sharper too. The bottom row shows the changes due to increasing the resistivity
to a considerable extent. It is easy to see a powerful smoothing, which is emergent from
forcing out the waves by the equilibrium state. The rightmost frame indeed allows us to
see that the values of the densities are close to the equilibrium ones near the origin. Here
it is worth recalling that, for the kinetics (40), the equilibrium densities are pe = α− se,
se = β/γ. So, pe ≈ 0.43, se ≈ 0.57 for the parameters values adopted for computing the
patterns presented herein.

The numerical experiments illustrated above are about the travelling shock waves
presented in Section 5. The system we deal with, however, hides a multitude of interesting
features, one of which is the formation of peaks after colliding the travelling patchy wave
with another pattern, which is not necessarily a wave of the same type too. In Figure 6, we
illustrate the occurence of a similar feature irrespective of the patchy waves. Namely, we
consider an explosion wave due to a unit mass of the predators smoothly localized in a
compact area at the initial time moment with the zero initial flux, q0. At that, the initial
density of prey is everywhere equal to the carrying capacity, which, effectively, takes the
value of the parameter α given the scaling applied here. At the same time, it is the value
of carrying capacity that corresponds to the prey density at the equilibrium state with no
predators. Then the initial core of the predators stands as a perturbation, which is not small
though localized. The bottom (top) row of frames corresponds to the parameters values
such that the equilibrium state with a positive predators’ density is possible (impossible).
The mirror symmetry of the patterns is due to the mirror symmetry of the problem and
initial data, the detailed description of which is in Appendix A. Both rows demonstrate an
explosion of the initial core accompanied by spreading the predators across a widening
areal extent with peaks at the bounds. Outside these boundary layers, both densities tend
to the equilibrium values. If the positive equilibrium density of the predators is not feasible
then smoothing and decaying of the boundary peaks takes place by degrees. Otherwise,
these peaks become sharper and higher.

Figure 5. The figure illustrates two ways of evolution of a heavily perturbed patchy wave. The per-
turbation is smoothly localized ahead from the patch and got moving instantly towards the patch.
The meaning of the colors and styles of lines is the same as for Figure 3. The detailed description of
the initial states and other settings used for computing this figure are in Appendix A.
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Figure 6. The figure illustrates propagating two waves due to the explosion of a smoothly localized
unit mass of predators amid the uniform distribution of prey, the density of which is equal to the
carrying capacity. The blue lines are for the instantaneous graphs of the predators’ density. The green
lines are for the deviation of the prey density from the carrying capacity. The detailed description of
the initial states and other settings used for computing this figure is in Appendix A.

7. Discussion

We have addressed a Cattaneo-type dynamics of the predator–prey system with the
Lotka–Volterra kinetics term in one spatial dimension. By assumption, only the predators
are capable of the perceptual motions, and the flux of them generally reads as pχ(p, s)sx −
µ(p, s)px, where µ(p, s) and χ(p, s) are some prescribed functions. To start with, we have
considered the sedentary prey. In this approximation, the governing equations turn to
form a strictly hyperbolic system, for which we have formulated the criterion for reducing
to Riemann’s invariants in terms of sensitivity, χ(p, s), and diffusivity, µ(p, s), explicitly.
It has turned out, however, that the class of systems obeying this criterion looks rather
artificial. At the same time, reducing the governing equations to the conservation laws
happened to be less restrictive. In particular, such a reduction is possible provided that
µ = µ(s), κχ(s) = −dµ/ds . Since there are biological rationales for this structural relation
(see the reference above), we have accepted it.

For the systems of conservation laws, the shock waves are natural, and we have
derived a system of conditions on the shocks. In the inertial limit—that is, for ν = 0—we
have discovered a very simple exact solutions that describe the travelling shock waves.
The wave pattern represents a semi-infinite or even finite patch of predators that propagates
at a constant speed. There are no predators outside the patch while both species coexist in
the equilibrium state inside, see Figure 1. The wave speed is equal to ±

√
µ(se), where se is

the prey density at the equilibrium state.
The waves carrying semi-infinite patches describes the transitions between two equilib-

ria states. The community goes either from the extinction of both species to the coexistence
at the equilibrium or from the coexistence at the equilibrium to the extinction of the preda-
tors and restoring the prey up to the carrying capacity. In this sense they resemble the
KPP-Fisher waves. Here, however, the extinction of predators means that the wave either
has not brought them to the areal extent under consideration yet or has moved them out
already. The interesting feature is that the front of the predators’ invasion always moves
towards the smaller concentration of prey. This is not as paradoxical as it can seem given
the locality of the predator–prey interactions. Thus, two patterns of behavior are emergent
from propagating these waves. The first is restoring the resource up to the carrying capacity
after the migrating predators’ withdrawal. The second is the transition from the prey dying
out to the mutual equilibrium with the spreading predators. The travelling shock waves
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carrying a finite mass of the predators combine both features. Indeed, the profile of such a
wave involves the transitions from the mutual extinction via the coexistence to the extinc-
tion of predators. Besides, the patch of predators moves towards the smaller concentration
of prey again. So, the corresponding pattern of behavior looks like preventing the prey
from dying out and even restoring the prey population due to migrating a compact core of
the predators.

We have extended the travelling shock waves to the positive values of the prey
diffusivity, δ, and the resistivity, ν, numerically. It turns out that they withstand such
an extension, at least while the values of δ and ν remain small enough. The shocks
smooth themselves, but the speed at which they propagate is nearly equal to the value of
c = ±

√
µ(se).

The shock waves carrying a finite mass of predators transform themselves into the
smooth soliton-like waves, to which we have paid particular attention, see Figure 2. An in-
teresting feature is shedding the predators behind the rear front of the wave due to an
increase in the resistivity. As a result, the core of migration leaves behind itself a populated
areal extent, which remains settled even when the migration core moves far ahead. Thus,
propagating the patchy wave can play a part in settling the predators due to migration.

A relatively small predator’s droplet that occurs instantly ahead of or behind the
main core of the soliton-like wave enhances the above scattering but does not cause any
other noticeable changes (see Figure 3). The main core never absorbs the droplet in the
case of collision, but they both keep moving after a peculiar interaction resembling the
leapfrog play. Quite a different pattern of behavior arises from colliding the cores, which
have gathered the equal masses of the predators (see Figures 4–6). We have examined
colliding for several pairs of cores, which belong to the following classes: (i) two identical
smoothed travelling patchy waves which propagate at opposite speeds; (ii) a compact
group of predators that occurs suddenly ahead of the predators’ patch of a travelling wave
and get moving towards it; (iii) a finite mass of predators that suddenly have landed on a
compact part of a greater areal extent where the resource density has attained the value of
the carrying capacity. Merging the cores immediately leads to local overpopulation and
a lack of prey, which, in turn, gives rise to an explosive migration. The explosion wave
spreads the predators uniformly across a widening area while boundary layers of high
density occur near the wave fronts. Deep in this area, the species coexist at equilibrium if
feasible, or the predators become extinct, and the prey density goes back to the carrying
capacity. Various numerical experiments have been reproducing this pattern of behavior
sustainably though not literally, of course. Thus, we conclude that the explosive waves that
we have been discussing deliver a mechanism for overcoming the local overpopulation
and lack of resources.
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Appendix A. Initial Data

Implementing the numerical experiments, the outcomes of which we have been dis-
cussing above, numerically solved several initial-boundary value problems, each of which
comprises Equations (46) and (47) with the Lotka–Volterra kinetics (40), boundary condi-
tions (49), and initial conditions (48). These problems depend on the control parameters,
α, β, γ, δ, κ, ν, L. We have also been using parameter ε while smoothing some initial condi-
tions. Table A1 displays the values of these parameters and the subsections below explain
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setting the initial conditions for the concrete computations. We also recall that, throughout
all the computations, the predators’ diffusivity reads as:

µ(s) =
1

1 + κs
. (A1)

At that, the relation (27) determines the predators sensitivity, χ.

Table A1. The correspondence between the Figures presented above and the values of the parameters
that enter Equations (46) and (47) and initial conditions (48).

Figure α β γ δ ε κ ν L

Figure 2, top row-left 1 0.4 0.7 0.00 n/a 0.6 0 n/a
Figure 2, top row-middle 1 0.4 0.7 0.01 0.05 0.6 0.005 10

Figure 2, top row-right 1 0.4 0.7 0.01 0.05 0.6 0.1 10
Figure 2, middle row 1 0.4 0.7 0.01 0.05 0.6 0.005 10
Figure 2, bottom row 1 0.4 0.7 0.01 0.05 0.6 0.1 10

Figure 3, top row 1 0.4 0.7 0.01 0.05 0.6 0.1 10
Figure 3, bottom row 1 0.4 0.7 0.01 0.05 1 0.05 10

Figure 4 1 0.4 0.7 0.01 0.05 0.6 0.1 10
Figure 5, top row 1 0.4 0.7 0.01 0.05 0.6 0.25 10

Figure 5, bottom row 1 0.4 0.7 0.01 0.05 0.6 1.5 10
Figure 6, top row 1 0.5 0.4 0.01 0.05 1 0.2 10

Figure 6, bottom row 1 0.4 0.7 0.01 0.05 1 0.2 10

Appendix A.1. Data for Figure 2

The initial conditions are:

2p0 = peerf
(

x−x0
2εc∗

)
− peerf

(
x−x1
2εc∗

)
, pe = α− β

γ , q0 = c∗p0 (A2)

and s0 is given by equality (45), where ξ = x/c∗, ξ0 = x0/c∗, x0 = −1/pe, x1 = 0,
ξ1 = x1/c∗, c∗ =

√
µ(se) and se =

β
γ .

Appendix A.2. Data for Figure 3

As we have been saying on page 10, this Figure corresponds to the initial data that
read as:

p0 = pw + Ppd, q0 = c∗pw + Qpd, s0 = sw, (A3)

where the notations of pw and sw stand for the same functions as those defined in Appendix A.1.

P = 0.1, Q = 0, pd = exp(−3(x + 5)2) for the top row,

P = 0.1, Q = −0.1, pd = exp(−3(x− 3)2) for the bottom row.

Appendix A.3. Data for Figure 4

In this Figure, the all of images correspond to the initial data that read as:

2p0(x) =

{
pw(x), x > 0,

pw(−x), x < 0,
, pw = peerf

(
x− x0

2εc∗

)
− peerf

(
x− x1

2εc∗

)
. (A4)

q0 = −c∗erf(3x)p0(x) (A5)

s0 =

{
sw(x), x > 0,

sw(−x), x < 0,
, (A6)

where the notation of sw stands for the same function as that defined in Appendix A.1
with ξ = x/c∗, ξ0 = x0/c∗, ξ1 = x1/c∗, c∗ =

√
µ(se) and se = β

γ . Here x0 = −5− 1/pe,
x1 = −5.
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Appendix A.4. Data for Figure 5

In this Figure, both rows of images correspond to the initial data that read as:

p0 = pw + pd, q0 = c∗(pw − pd), s0 = sw + sd, (A7)

where pw and sw are the same as those defined in Appendix A.1, and

pd = sd =

√
3 exp

(
− 3(x−3)2

2

)
√

2π
, c∗ =

√
µ(se), se =

β

γ
.

Appendix A.5. Data for Figure 6

In this Figure, both rows of images correspond to the initial data that read as:

p0 =
5e−

25x2
4

2
√

π
, q0 = 0, s0 = α. (A8)

References
1. Horstmann, D. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch.

Math.-Verein. 2004, 106, 51–69.
2. Hillen, T.; Painter, K.J. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 2009, 58, 183. [CrossRef]
3. Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M. Toward a mathematical theory of Keller-Segel models of pattern formation in

biological tissues. Math. Models Methods Appl. Sci. 2015, 25, 1663–1763. [CrossRef]
4. Dolak, Y.; Hillen, T. Cattaneo models for chemosensitive movement: Numerical solution and pattern formation. J. Math. Biol.

2003, 46, 461–478 [CrossRef]
5. Filbet, F.; Laurencot, P.; Perthame, B. Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 2005, 50,

189–207. [CrossRef]
6. Outada, N.; Vauchelet, N.; Akrid, T.; Khaladi, M. From kinetics theory of multicellular systems to hyperbolic tissue equations:

Asymptotic limits and computing. Math. Model. Methods Appl. Sci. 2016, 26, 2709–2734. [CrossRef]
7. Eftimie, R. Hyperbolic and Kinetic Models for Self-Organised Biological Aggregations. A Modelling and Pattern Formation Approach;

Springer: Cham, Switzerland, 2018. [CrossRef]
8. Fu, X.; Griette, Q.; Magal, P. A cell-cell repulsion model on a hyperbolic Keller-Segel equation. J. Math. Biol. 2020, 80, 2257–2300.

[CrossRef]
9. Fu, X.; Griette, Q.; Magal, P. Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation. Math. Model. Methods

Appl. Sci. 2021, 31, 861–905. [CrossRef]
10. Berezovskaya, F.S.; Karev, G.P. Bifurcations of travelling waves in population taxis models. Phys.-Uspekhi 1999, 42, 917. [CrossRef]
11. Berezovskaya, F.S.; Karev, G.P. Parametric portraits of travelling waves of population models with polynomial growth and

auto-taxis rates. Nonlinear Anal. Real World Appl. 2000, 1, 123–136. [CrossRef]
12. Horstmann, D.; Stevens, A. A constructive approach to traveling waves in chemotaxis. J. Nonlinear Sci. 2004, 14, 1–25. [CrossRef]
13. Hadeler, K.P. Hyperbolic travelling fronts. Proc. Edinb. Math. Soc. 1988, 31, 89–97. [CrossRef]
14. Hadeler, K.P. Travelling fronts for correlated random walks. Canad. Appl. Math. Wuart. 1994, 2, 27–43. [CrossRef]
15. Hadeler, K.P. Reaction transport equations in biological modeling. Math. Comput. Model. 2000, 31, 75–81. [CrossRef]
16. Hadeler, K.P.; Lewis, M.A. Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Can. Appl. Math.

Quart 2002, 10, 473–499.
17. Tyutyunov, Y.V.; Zagrebneva, A.D.; Surkov, F.A.; Azovsky, A.I. Microscale patchiness of the distribution of copepods (Harpacti-

coida) as a result of trophotaxis. Biophysics 2009, 54, 355–360. http://dx.doi.org/10.1134/S000635090903018X. [CrossRef]
18. Tyutyunov, Y.V.; Zagrebneva, A.D.; Surkov, F.A.; Azovsky, A.I. Derivation of density flux equation for intermittently migrating

population. Oceanology 2010, 50, 67–76. http://dx.doi.org/10.1134/S000143701001008X.
19. Tsyganov, M.A.; Brindley, J.; Holden, A.V.; Biktashev, V.N. Quasisoliton interaction of pursuitevasion waves in a predator–prey

system. Phys. Rev. Lett. 2003, 91, 218102. [CrossRef]
20. Tsyganov, M.A.; Brindley, J.; Holden, A.V.; Biktashev, V.N. Soliton-like phenomena in one-dimensional cross-diffusion systems:

A predator-prey pursuit and evasion example. Phys. Nonlinear Phenom. 2004, 197, 18–33. [CrossRef]
21. Tsyganov, M.A.; Biktashev, V.N. Half-soliton interaction of population taxis waves in predator–prey systems with pursuit and

evasion. Phys. Rev. 2004, 70, 031901. [CrossRef]
22. Tyutyunov, Y.; Titova, L.; Senina, I. Prey-taxis destabilizes homogeneous stationary state in spatial Gause-Kolmogorov-type

model for predator–prey system. Ecol. Complex. 2017, 31, 170–180. [CrossRef]

http://doi.org/10.1007/s00285-008-0201-3
http://dx.doi.org/10.1142/S021820251550044X
http://dx.doi.org/10.1007/s00285-003-0221-y
http://dx.doi.org/10.1007/s00285-004-0286-2
http://dx.doi.org/10.1142/S0218202516500640
http://dx.doi.org/10.1007/978-3-030-02586-1
http://dx.doi.org/10.1007/s00285-020-01495-w
http://dx.doi.org/10.1142/S0218202521500214
http://dx.doi.org/10.1142/S0218202521500214
http://dx.doi.org/10.1142/S0218202521500214
http://dx.doi.org/10.1070/PU1999v042n09ABEH000564
http://dx.doi.org/10.1016/S0362-546X(99)00396-X
http://dx.doi.org/10.1007/s00332-003-0548-y
http://dx.doi.org/10.1017/S001309150000660X
http://dx.doi.org/10.1016/S0895-7177(00)00024-8
http://dx.doi.org/10.1134/S000635090903018X
http://dx.doi.org/10.1134/S000143701001008X
http://dx.doi.org/10.1103/PhysRevLett.91.218102
http://dx.doi.org/10.1016/j.physd.2004.06.004

	Introduction
	The Governing Equations and Scaling
	Sedentary Prey and Hyperbolicity
	The Travelling Shock Waves for the Predator-Independent Diffusivity
	The Inertial Limit for the Sedentary Prey
	Numerical Experiments
	Discussion
	Initial Data
	 Data for Figure 2
	Data for Figure 3
	Data for Figure 4
	 Data for Figure 5
	 Data for Figure 6

	References

