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Abstract: First, we prove that the BMO condition by John–Nirenberg leads in the natural way to
the asymptotic homogeneity at the origin of regular homeomorphic solutions of the degenerate
Beltrami equations. Then, on this basis we establish a series of criteria for the existence of regular
homeomorphic solutions of the degenerate Beltrami equations in the whole complex plane with
asymptotic homogeneity at infinity. These results can be applied to the fluid mechanics in strongly
anisotropic and inhomogeneous media because the Beltrami equation is a complex form of the main
equation of hydromechanics.
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1. Introduction

A real-valued function u in a domain D in C is said to be of bounded mean oscillation
in D, abbr. u ∈ BMO(D), if u ∈ L1

loc(D) and

‖u‖∗ := sup
B

1
|B|

∫
B

|u(z)− uB| dm(z) < ∞ , (1)

where the supremum is taken over all discs B in D and

uB =
1
|B|

∫
B

u(z) dm(z) .

Recall that the class BMO was introduced by John and Nirenberg (1961) in the paper [1]
and soon became an important concept in harmonic analysis, partial differential equations
and related areas, see, e.g., [2,3].

A function ϕ in BMO is said to have vanishing mean oscillation, abbr. ϕ ∈ VMO, if
the supremum in (1) taken over all balls B in D with |B| < ε converges to 0 as ε→ 0. Recall
that VMO has been introduced by Sarason in [4]. There are a number of papers devoted to
the study of partial differential equations with coefficients of the class VMO, see, e.g., [5–9].
Note, by the way, that W 1,2(D) ⊂ VMO(D), see [10].

Let D be a domain in the complex plane C, i.e., a connected open subset of C, and
let µ : D → C be a measurable function with |µ(z)| < 1 a.e. (almost everywhere) in D. A
Beltrami equation is an equation of the form

∂ f (z) = µ(z) · ∂ f (z) (2)
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with the formal complex derivatives ∂ f = ( fx + i fy)/2, ∂ f = ( fx − i fy)/2, z = x + iy,
where fx and fy are usual partial derivatives of f in x and y, correspondingly. The function
µ is said to be the complex coefficient and

Kµ(z) :=
1 + |µ(z)|
1− |µ(z)| (3)

the dilatation quotient of Equation (2). The Beltrami equation is called degenerate if
ess sup Kµ(z) = ∞. Homeomorphic solutions of the Beltrami equations with Kµ ≤ Q < ∞
in the Sobolev class W1,1

loc are called Q-quasiconformal mappings.
It is known that if Kµ is bounded, then the Beltrami equation has homeomorphic

solutions, see, e.g., [11–14]. Recently, a series of effective criteria for the existence of
homeomorphic W1,1

loc solutions have been also established for degenerate Beltrami equations,
see, e.g., historic comments with relevant references in monographs the [15–17].

These criteria were formulated both in terms of Kµ and the more refined quantity that
takes into account not only the modulus of the complex coefficient µ but also its argument

KT
µ (z, z0) :=

∣∣∣1− z−z0
z−z0

µ(z)
∣∣∣2

1− |µ(z)|2 (4)

that is called the tangent dilatation quotient of the Beltrami equation with respect to a
point z0 ∈ C, see, e.g., [18–23]. Note that

K−1
µ (z) 6 KT

µ (z, z0) 6 Kµ(z) ∀ z ∈ D , z0 ∈ C . (5)

The geometrical sense of KT
µ can be found, e.g., in the monograph [16].

A function f in the Sobolev class W1,1
loc is called a regular solution of the Beltrami

Equation (2) if f satisfies it a.e. and its Jacobian J f (z) = |∂ f (z)|2 − |∂ f (z)|2 > 0 a.e. in C.
By the well-known Gehring–Lehto–Menchoff theorem, see [24,25], or see the mono-

graphs [11,13], each homeomorphic W1,1
loc solution f of the Beltrami equation is differentiable

a.e. Recall that a function f : D → C is differentiable by Darboux Stolz at a point z0 ∈ D
if

f (z)− f (z0) = ∂ f (z0) · (z− z0) + ∂ f (z0) · (z− z0) + o(|z− z0|) (6)

where o(|z− z0|)/|z− z0| → 0 as z→ z0. Moreover, f is called conformal at the point z0
if in addition fz(z0) = 0 but fz(z0) 6= 0.

The example w = z(1 − ln |z|) of B.V. Shabat, see [26], p. 40, shows that, for a
continuous complex characteristic µ(z), the quasiconformal mapping w = f (z) can be
non-differentiable by Darboux Stolz at the origin. If the characteristic µ(z) is continuous at
a point z0 ∈ D, then, as was first established, apparently, by P.P. Belinskij in [26], p. 41, the
mapping w = f (z) is differentiable at z0 in the following meaning:

∆w = A(ρ)
[
∆z + µ0∆z + o(ρ)

]
, (7)

where µ0 = µ(z0), ρ = |∆z + µ0∆z|, A(ρ) depends only on ρ and o(ρ)/ρ → 0 as ρ → 0.
As it was clarified later in [27], see also [28], here A(ρ) may not have a limit with ρ → 0;
however,

lim
ρ→0

A(tρ)
A(ρ)

= 1 ∀ t > 0 . (8)

Following [27], a mapping f : D → C is called differentiable by Belinskij at a point
z0 ∈ D if conditions (7) and (8) hold with some µ0 ∈ D := {µ ∈ C : |µ| < 1}. Note that
here, in the case of discontinuous µ(z), it is not necessary µ0 = µ(z0). If in addition µ0 = 0,
then f is called conformal by Belinskij at the point z0.



Axioms 2022, 11, 171 3 of 28

For quasiconformal mappings f : D → C with f (0) = 0 ∈ D, it was shown in [27],
see also [28], that the conformality by Belinskij of f at the origin is equivalent to each of its
properties:

lim
τ→0

f (τζ)

f (τ)
= ζ along the ray τ > 0 ∀ ζ ∈ C , (9)

lim
z→0

{
f (z′)
f (z)

− z′

z

}
= 0 along z, z′ ∈ C, |z′| < δ|z|, ∀ δ > 0 , (10)

lim
z→0

f (zζ)

f (z)
= ζ along z ∈ C∗ := C \ {0} ∀ ζ ∈ C , (11)

and, finally, to the property of the limit in (11) to be locally uniform with respect to ζ ∈ C.
Following the article [28], the property (11) of a mapping f : D → C with f (0) = 0 ∈ D

is called its asymptotic homogeneity at 0. In the sequel, we sometimes write (11) in the
shorter form f (ζz) ∼ ζ f (z).

In particular, we obtain from (10) under |z′| = |z| that

lim
r→0

max
|z|=r
| f (z)|

min
|z|=r
| f (z)| = 1 (12)

i.e., that the Lavrent’iev characteristic is equal 1 at the origin. It is natural to say in the
case of (12) that the mapping f is conformal by Lavrent’iev at 0. As we see, the usual
conformality implies the conformality by Belinskij and the latter implies the conformality
by Lavrent’iev at the origin meaning geometrically that the infinitesimal circle centered at
zero is transformed into an infinitesimal circle also centered at zero.

However, condition (11) is much stronger than condition (12). We also obtain from
(11) the asymptotic preserving angles

lim
z→0

arg
[

f (zζ)

f (z)

]
= arg ζ ∀ ζ ∈ C∗ (13)

and asymptotic preserving moduli of infinitesimal rings

lim
z→0

| f (z ζ)|
| f (z)| = |ζ| ∀ ζ ∈ C∗ . (14)

The latter two geometric properties characterize asymptotic homogeneity and demonstrate
that it is close to the usual conformality.

It should be noted that, despite (14), an asymptotically homogeneous map can send

radial lines to infinitely winding spirals, as shown by the example f (z) = zei
√
− ln |z|,

see [26], p. 41. Moreover, the above Shabat example shows that the conformality by
Belinskij admits infinitely great tensions and pressures at the corresponding points.

It was shown in [27] that a quasiconformal mapping f : D → C, whose complex
characteristic µ(z) is approximately continuous at a point z0 ∈ D, is differentiable by
Belinskij at the point with µ0 = µ(z0) and, in particular, is asymptotically homogeneous if
µ(z0) = 0. Recall that µ(z) is called approximately continuous at the point z0 if there is a
measurable set E such that µ(z)→ µ(z0) as z→ z0 in E and z0 is a point of density for E,
i.e.,

lim
ε→0

|E ∩ D(z0, ε)|
|D(z0, ε)| = 1 ,
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where D(z0, ε) = {z ∈ C : |z− z0| < ε}. Note also that, for functions µ in L∞, the points of
approximate continuity coincide with the Lebesgue points of µ, i.e., such z0 for which

lim
r→0

1
r2

∫
|z−z0|<r

|µ(z) − µ(z0)| dm(z) = 0 ,

where dm(z) := dxdy, z = x + iy, stands to the Lebesgue measure (area) in C.
The above results on the asymptotic homogeneity, i.e., on the conformality by Belinskij,

are extended to the degenerate Beltrami equations with its dilatation Kµ in BMO. Just
our approximate approach to the study of the degenerate Beltrami equations allowed us
significantly to move forward.

As we saw, the asymptotic homogeneity inherits the main geometric properties of
conformal mappings. Thus, our research is organically inserted into the stream of numerous
works that were devoted to the study of conformality of mappings, see, e.g., [26,29–35].

2. FMO and the Main Lemma with Participation of BMO

Here and later on, we apply the notations

D(z0, r) := {z ∈ C : |z− z0| < r} , D(r) := D(0, r) , D := D(0, 1) ,

and of the mean value of integrable functions ϕ over the disks D(z0, r)

−
∫
D(z0,r)

ϕ(z) dm(z) :=
1

|D(z0, r)|

∫
D(z0,r)

ϕ(z) dm(z) .

Following [36], we say that a function ϕ : D → R has finite mean oscillation at a
point z0 ∈ D, abbr. ϕ ∈ FMO(z0), if

lim
ε→0

−
∫
D(z0,ε)

|ϕ(z)− ϕ̃ε(z0)| dm(z) < ∞ , (15)

where
ϕ̃ε(z0) = −

∫
D(z0,ε)

ϕ(z) dm(z) . (16)

Note that the condition (15) includes the assumption that ϕ is integrable in some neighbor-
hood of the point z0. We say also that a function ϕ : D → R is of finite mean oscillation in
D, abbr. ϕ ∈ FMO(D) or simply ϕ ∈ FMO, if ϕ ∈ FMO(z0) for all points z0 ∈ D.

Remark 1. It is evident that BMO(D) ⊂ BMO(D)loc ⊂ FMO(D) and it is well-known by the
John–Nirenberg lemma that BMOloc ⊂ Lp

loc for all p ∈ [1, ∞), see, e.g., [1] or [3]. However, FMO
is not a subclass of Lp

loc for any p > 1 but only of L1
loc, see, e.g., example 2.3.1 in [16]. Thus, the

class FMO is much more wider than BMOloc.

The following statement is obvious by the triangle inequality.

Proposition 1. If, for a collection of numbers ϕε ∈ R, ε ∈ (0, ε0],

lim
ε→0

−
∫
D(z0,ε)

|ϕ(z)− ϕε| dm(z) < ∞ , (17)

then ϕ is of finite mean oscillation at z0.

In particular, choosing here ϕε ≡ 0, ε ∈ (0, ε0] in Proposition 1, we obtain the following.
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Corollary 1. If, for a point z0 ∈ D,

lim
ε→0

−
∫
D(z0,ε)

|ϕ(z)| dm(z) < ∞ , (18)

then ϕ has finite mean oscillation at z0.

Recall that a point z0 ∈ D is called a Lebesgue point of a function ϕ : D → R if ϕ is
integrable in a neighborhood of z0 and

lim
ε→0

−
∫
D(z0,ε)

|ϕ(z)− ϕ(z0)| dm(z) = 0 . (19)

It is known that, almost every point in D is a Lebesgue point for every function ϕ ∈ L1(D).
Thus, we have by Proposition 1 the next corollary.

Corollary 2. Every locally integrable function ϕ : D → R has a finite mean oscillation at almost
every point in D.

Remark 2. Note that the function ϕ(z) = log(1/|z|) belongs to BMO in the unit disk D, see,
e.g., [3], p. 5, and hence also to FMO. However, ϕ̃ε(0)→ ∞ as ε→ 0, showing that condition (18)
is only sufficient but not necessary for a function ϕ to be of finite mean oscillation at z0.

Versions of the next statement has been first proved for the class BMO. For the FMO
case, see the paper [36] and the monograph [16]. Here we prefer to use its following version,
see Lemma 2.1 in [23], cf. also Lemma 5.3 in the monograph [16]:

Proposition 2. Let ϕ : D → R be a non-negative function with finite mean oscillation at 0 ∈ D
and integrable in the disk D(1/2) ⊂ D. Then∫

A(ε,1/2)

ϕ(z) dm(z)(
|z| log2

1
|z|

)2 ≤ C · log2 log2
1
ε

∀ ε ∈ (0, 1/4) , (20)

where
C = 4π (ϕ0 + 6d0) , (21)

ϕ0 is the average of ϕ over the disk D(1/2) and d0 is the maximal dispersion of ϕ in D(1/2).

Recall that the maximal dispersion of the function ϕ in the disk D(z0, r0) is the quan-
tity

sup
r∈(0,r0]

−
∫
D(z0,r)

|ϕ(z)− ϕ̃r(z0)| dm(z) . (22)

Here and later on, we also use the following designations for the spherical rings in C :

A(z0, r1, r2) := {z ∈ C : r1 < |z− z0| < r2}, A(r1, r2) := A(0, r1, r2). (23)

Further, we denote by M the conformal modulus (or 2−modulus) of a family of paths
in C, see, e.g., [37]. Moreover, given sets E and F and a domain D in C, we denote by
Γ(E, F, D) the family of all paths γ : [0, 1] → C joining E and F in D, that is, γ(0) ∈ E,
γ(1) ∈ F and γ(t) ∈ D for all t ∈ (0, 1).

Let Q : C → (0, ∞) be a Lebesgue measurable function. A mapping f : D → C is
called a ring Q−mapping at a point z0 ∈ D, if

M( f (Γ(S(z0, r1), S(z0, r2), D))) 6
∫
A

Q(z) · η2(|z− z0|) dm(z) (24)
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for each spherical ring A = A(z0, r1, r2) with arbitrary 0 < r1 < r2 < δ0 := dist (z0, ∂D)
and all Lebesgue measurable functions η : (r1, r2)→ [0, ∞] such that

r2∫
r1

η(r) dr > 1. (25)

Here we use also the notations for the circles in C centered at a point z0

S(z0, r0) = { z ∈ C : |z − z0| = r0 }.

Remark 3. Recall that regular homeomorphic solutions of the Beltrami Equation (2) are Qz0−map-
pings with Qz0(z) = KT

µ (z, z0) and, in particular, Q−mappings with Q(z) = Kµ(z) at each point
z0 ∈ D, see [38], see also Theorem 2.2 in [16].

Later on, in the extended complex plane C = C∪ {∞}, we use the spherical (chordal)
metric s defined by the equalities

s(z, ζ) =
|z− ζ|√

1 + |z|2
√

1 + |ζ|2
, z 6= ∞ 6= ζ , s(z, ∞) =

1√
1 + |z|2

, (26)

see, e.g., [37] (Definition 12.1). For a given set E in C, we also use its spherical diameter

s(E) := sup
z,ζ∈E

s(z, ζ) . (27)

Given a domain D in C, a prescribed point z0 ∈ D and a measurable Q : D → (0, ∞),
later on R∆

Q denotes the class of all ring Q−homeomorphisms f at z0 in D with

s(C \ f (D)) ≥ ∆ > 0 .

The following statement, see Theorem 4.3 in [23], provides us by the effective estimates
of the distortion of the spherical distance under the ring Q−homeomorphisms, and it
follows just on the basis of Proposition 2 on FMO functions above.

Proposition 3. Let f ∈ R∆
Q(D) with ∆ > 0 and Q : D → R be a non-negative function with

finite mean oscillation at ζ0 ∈ D and integrable in the disk D(ζ0, ε0) ⊂ D, ε0 > 0. Then

s( f (ζ), f (ζ0)) ≤
32
∆
·
(

log
2ε0

|ζ − ζ0|

)− 1
α0 ∀ ζ ∈ D(ζ0, ε0/2) , (28)

where
α0 = 2(q0 + 6d0) , (29)

q0 is the average of Q over D(ζ0, ε0) and d0 is the maximal dispersion of Q in D(ζ0, ε0).

Propositions 2 and 3 are key in establishing equicontinuity of classes of mappings
associated with asymptotic homogeneity in the proof of the central lemma involving BMO.

Lemma 1. Let D be a domain in C, 0 ∈ D, and let f : D → C be a regular homeomorphic solution
of the Beltrami Equation (2) with f (0) = 0. Suppose that its dilatation Kµ has a majorant Q ∈
BMO(D). Then the family of mappings fz(ζ) := f (ζ z)/ f (z) is equicontinuous with respect to the
spherical metric at each point ζ0 ∈ C as z→ 0 along z ∈ C∗ := C \ {0}.

Proof. Indeed, for ζ0 ∈ D(δ), δ > 1, 0 < δ∗ < dist (0, ∂D), τ∗ := δ∗/δ < δ∗, we see that

D(zζ0, ρz) ⊆ D(δ∗) ⊆ D , where ρz := δ∗ − |zζ0| ≥ δ∗(1− |ζ0|/δ) > 0, z ∈ D(τ∗) \ {0} .
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Thus, by the construction the disks

D(ζ0, Rz) ⊆ D(δ∗/|z|) , where Rz := δ∗/|z| − |ζ0| ≥ δ− |ζ0| > 0 , z ∈ D(τ∗) \ {0} ,

belong to the domain of definition for the family of the functions fz(ζ), z ∈ D(τ∗) \ {0}.
It is clear, see, e.g., I.D(8) in [11], that fz(ζ) is a regular homeomorphic solution of the

Beltrami equation with the complex coefficient µz such that |µz(ζ)| = |µ(zζ)| and

Kµz(ζ) ≤ Qz(ζ) := Q(zζ) ∀ ζ0 ∈ D(δ) , ζ ∈ D(ζ0, Rz) .

Note that the BMO norm of Q as well as its averages over disks are invariant under linear
transformations of variables in C. Moreover, the averages Q̃z(ζ0) of the function Q over the
disks D(zζ0, ρz) forms a continuous function with respect to the parameter z ∈ D(τ∗) \ {0}
in view of absolute continuity of its indefinite integrals and it can be extended by continuity
to z = 0 as its (finite !) average over the disk D(δ∗). Since the closed disk D(τ∗) is compact,

Q0 := max
z∈D(τ∗)

Q̃z(ζ0) < ∞ .

Note also that by Remark 4 fz, z ∈ D(τ∗), belongs to the class R∆
Qτ

at ζ0 in the
punctured disk D(ζ0, δ− |ζ0|) \ {0} with ∆ = 1 > 0 if ζ0 6= 0, and in D(ζ0, δ− |ζ0|) \ {1}
with ∆ = 1/

√
2 > 1/2 if ζ0 6= 1. Hence by Proposition 3 in any case we obtain the following

estimate

s( fτ(ζ), fτ(ζ0)) ≤ 64
(

log
2(δ− |ζ0|)
|ζ − ζ0|

)− 1
α0

(30)

for all z ∈ D(τ∗) and ζ ∈ D(ζ0, (δ− |ζ0|)/2), where α0 = 2(Q0 + 6‖Q‖∗), i.e., the family
of the mappings fz(ζ), z ∈ D(τ∗), is equicontinuous at each point ζ0 ∈ D(δ). In view of
arbitrariness of δ > 1, the latter is true for all ζ0 ∈ C at all.

By the Ascoli theorem, see, e.g., 20.4 in [37], and Lemma 1 we obtain the next conclu-
sion.

Corollary 3. Let a mapping f : D → C satisfy the hypotheses of Lemma 1. Then mappings
fz(ζ) := f (ζ z)/ f (z) form a normal family, i.e., every sequence fzn(ζ), n = 1, 2, . . . with |zn| →
+0 as n → ∞ contains a subsequence fznk

(ζ), k = 1, 2, . . . that converges with respect to the
spherical metric locally uniformly in C as k → ∞ to a continuous mapping f0 : C → C with
f0(0) = 0 and f0(1) = 1.

Furthermore, we are dealing with the so-called approximate solutions of the Beltrami
equations. Namely, given a domain D in C, a homeomorphic ACL (absolutely continuous
on lines) solution f of the Beltrami Equation (2) in D is called its approximate solution if f
is a locally uniform limit in D as n→ ∞ of (quasiconformal) homeomorphic ACL solutions
fn of the Beltrami equations with the complex coefficients

µn(z) :=

{
µ(z), if µ(z) 6 1− 1/n ,
0, otherwise .

Let us give a proof of the following important fact.

Proposition 4. Every approximate solution f of Beltrami Equation (2) with Kµ ∈ L1
loc is its

regular homeomorphic solution and, moreover, f −1 ∈W1,2
loc .

Proof. Indeed, let f be an approximate solution of the Beltrami Equation (2) and let fn be
its approximating sequence. Then first of all f ∈W1,1

loc by Theorem 2.1 in [16].



Axioms 2022, 11, 171 8 of 28

Let us now prove that f −1 ∈W1,2
loc . Indeed, by Lemma 2.16 in [16] gn := f−1

n → g :=
f −1 uniformly in C as n→ ∞. Note that fn and gn ∈ W1,2

loc , n = 1, 2, . . . , because they are
quasiconformal mappings. Consequently, these homeomorphisms are locally absolutely
continuous, see, e.g., Theorem III.6.1 in [13]. Observe also that µn := (gn)w̄/(gn)w =
−µn ◦ gn, see, e.g., Section I.C in [11]. Thus, replacing variables in the integrals, see, e.g.,
Lemma III.2.1 in [13]), we obtain that∫

B

|∂gn(w)| 2 dm(w) =
∫

gn(B)

dm(z)
1− |µn(z)|2

6
∫

B ∗

Kµ(z) dm(z) < ∞

for sufficiently large n, where B and B ∗ are arbitrary domains in C with compact closures in
f (D) and D, respectively, such that g(B) ⊂ B ∗. It follows from the latter that the sequence
gn is bounded in the space W1,2(B) in each such domain B. Hence f −1 ∈ W1,2

loc , see, e.g.,
Lemma III.3.5 in [39].

Finally, the latter brings in turn that g has (N)−property, see Theorem III.6.1 in [13].
Hence J f (z) 6= 0 a.e., see Theorem 1 in [40]. Thus, f is really a regular solution of the
Beltrami Equation (2).

Note also that Lemma 2.12 in the monograph in [16] is extended from quasiconfor-
mal mappings to approximate solutions of the Beltrami Equation (2) immediately by the
definition of such solutions.

Proposition 5. Let f : D→ C \ {a, b}, a, b ∈ C, s(a, b) ≥ δ > 0, be an approximate solution of
the Beltrami Equation (2). Suppose that s( f (z1), f (0)) ≥ δ for z1 ∈ D\{0}. Then, for every point
z with |z| < min(1− |z1|, |z1|/2),

s( f (z), f (0)) ≥ ψ(|z|) (31)

where ψ is a nonnegative strictly increasing function depending only on δ and ||Kµ||1.

In turn, Propositions 4 and 5 make it possible to prove the following useful statement.

Proposition 6. Let D be a domain in C and fn : D → C be a sequence of approximate solutions
of the Beltrami equations ∂ fn = µn∂ fn. Suppose that fn → f as n → ∞ locally uniformly in D
with respect to the spherical metric and the norms ‖Kµn‖1, n = 1, 2, . . . are locally equipotentially
bounded. Then either f is constant or it is a homeomorphism.

Proof. Consider the case when f is not constant in D. Let us first show that then no point in
D has a neighborhood of the constancy for f . Indeed, assume that there is at least one point
z0 ∈ D such that f (z) ≡ c for some c ∈ C in a neighborhood of z0. Note that the set Ω0 of
such points z0 is open. The set Ec = {z ∈ D : s( f (z), c) > 0} is also open by continuity
of f and not empty if f is not constant. Thus, there is a point z0 ∈ ∂Ω0 ∩ D because D
is connected. By continuity of f we have that f (z0) = c. However, by the construction
there is a point z1 ∈ Ec = D \Ω0 such that |z0 − z1| < r0 = dist (z0, ∂D) and, thus, by the
lower estimate of the distance s( f (z0), f (z)) in Proposition 5 we obtain a contradiction for
z ∈ Ω0. Then again by Proposition 5 we obtain that the mapping f is discrete. Hence f is a
homeomorphism by Proposition 2.6 in the monograph [16].

Corollary 4. Let a mapping f : D → C satisfy the hypotheses of Lemma 1 and f be an approximate
solution of the Beltrami Equation (2) and, moreover,

lim sup
r→0

1
r2

∫
|z|<r

|Kµ(z)| dm(z) < ∞ . (32)
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Then each limit mapping f0 of a sequence fzn(ζ) := f (ζ zn)/ f (zn), zn ∈ C \ {0}, n = 1, 2, . . .
with zn → 0 as n→ ∞ is a homeomorphism of C into C.

Proof. Indeed, fn are approximate solutions of the Beltrami equations ∂ fn = µn∂ fn with
|µn(ζ)| = |µ(znζ)|, see, e.g., Section I.C in [11], and by simple calculations, for all R > 0,

lim
n→∞

∫
|ζ|<R

|Kµn(ζ)| dm(ζ) = R2 · lim
r→0

1
(R|zn|)2

∫
|z|<R|zn |

|Kµ(z)| dm(z) < ∞ (33)

and, thus, by Proposition 6 the mapping f0 is a homeomorphism in C.
Now, let us assume that f0(ζ0) = ∞ for some ζ0 ∈ C. Since fn are homeomorphisms,

there exist points ζn ∈ S(ζ0, 1) such that s(ζn, ∞) > s(ζ0, ∞) for all large enough n. We
may assume in addition, with no loss of generality, that ζn → ζ∗ ∈ S(ζ0, 1) because the
circle S(ζ0, 1) is a compact set. Then f0(ζ∗) = lim

n→∞
fn(ζn) = ∞ because by Lemma 1 the

sequence fn is equicontinuous and, for such sequences, the pointwise convergence fn → f0
is equivalent to its continuous convergence, see, e.g., Theorem 7.1 in [17]. However, the
latter leads to a contradiction because ζ∗ 6= ζ0 and by the first part f0 is a homeomorphism.
The obtained contradiction disproves the above assumption and, thus, really f0(ζ) 6= ∞ for
all ζ ∈ C, i.e., f0 is a homeomorphism of C into C.

3. The Main Theorems and Consequences on Asymptotic Homogeneity at the Origin

The following theorem shows, in particular, that the Belinskij conformality still remains
to be equivalent to the property of asymptotic homogeneity for regular homeomorphic
solutions of the degenerate Beltrami Equations (2) if its dilatation Kµ has a majorant Q in
BMO.

Theorem 1. Let D be a domain in C, 0 ∈ D, and let f : D → C be a regular homeomorphic
solution of the Beltrami equation with f (0) = 0 and Kµ have a majorant Q ∈ BMO(D). Then the
following assertions are equivalent:

(1) f is conformal by Belinskij at the origin,
(2) for all ζ ∈ C,

lim
τ→0
τ>0

,

f (τζ)

f (τ)
= ζ , (34)

(3) for all δ > 0, along z ∈ C∗ := C \ {0} and z′ ∈ C with |z′| ≤ δ|z|,

lim
z→0

{
f (z′)
f (z)

− z′

z

}
= 0 , (35)

(4) for all ζ ∈ C,

lim
z→0
z∈C∗

,

f (zζ)

f (z)
= ζ , (36)

(5) the limit in (36) is uniform in the parameter ζ on each compact subset of C.

Proof. Let us follow the scheme (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (1) and set

f0(ζ) = ζ , fz(ζ) = f (ζ z)/ f (z) ∀ z ∈ D \ {0} , ζ ∈ C : zζ ∈ D .

(1) ⇒ (2). Immediately the definition of the conformality by Belinskij yields the
convergence fτ(ζ)→ f0(ζ) as τ → 0 along τ > 0 for every fixed ζ ∈ C, i.e., just (34).
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(2) ⇒ (3). In view of Lemma 1, the pointwise convergence in (34) for each ζ ∈ C
implies the uniform convergence there on compact sets in C, see, e.g., Theorem 7.1 in [17].
To obtain on this basis the implication (2)⇒ (3), let us note the identities

fz(ζ) =
f|z|(ζz/|z|)
f|z|(z/|z|) =

f (z′)
f (z)

∀ ζ =
z′

z
∈ C , z ∈ C∗ := C \ {0} .

Hence to prove (35) it is sufficient to show that fz(ζ) − f0(ζ) → 0 as z → 0, z ∈ C∗
uniformly with respect to the parameter ζ in the closed disks Dδ := {ζ ∈ C : |ζ| ≤ δ},
δ > 0.

Indeed, let us assume the inverse. Then there is a number ε > 0 and consequences
ζn ∈ Dδ, zn → 0, zn ∈ C∗, such that |gn(ζn)− ζn| ≥ ε, where gn(ζ) = fzn(ζ), ζ ∈ C. Since
the closed disk Dδ and the unit circle ∂D1 are compact sets, then with no loss of generality
we may in addition to assume that ζn → ζ0 ∈ Dδ and ηn = zn/|zn| → η0 ∈ ∂D1 as n→ ∞.

Let us denote by ϕn(ζ) the mappings f|zn |(ζ), ζ ∈ C, n = 1, 2, . . . . Then ϕn(ζ)→ ζ as
n→ ∞ uniformly on Dδ ∪ ∂D1 and gn(ζ) = ϕn(ηnζ)/ϕn(ηn). Consequently, gn(ζ)→ ζ as
n→ ∞ uniformly on Dδ. Hence gn(ζn)→ ζ0 as n→ ∞ because the uniform convergence
of continuous mappings on compact sets implies the so-called continuous convergence, see,
e.g., Remark 7.1 in [17]. Thus, the obtained contradiction disproves the above assumption.

(3)⇒ (4). Setting in (35) z′ = zζ and δ = |ζ|, we immediately obtain (36).
(4)⇒ (5). The limit relation (36) means in the other words that fz(ζ)→ f0(ζ) as z→ 0

along z ∈ C∗ pointwise in C. In view of Lemma 1, the latter implies the locally uniform
convergence fz → f0 as z→ 0 in C, see again Theorem 7.1 in [17].

(5)⇒ (1). From (36) for z = ρ > 0, ζ = eiϑ, ϑ ∈ R, and w = ζz = ρ eiϑ we obtain that
f (w) = f (ρ)(ζ + α(ρ)), where α(ρ)→ 0 as ρ→ 0. Consequently,

f (w) = A(ρ)(w + o(ρ)) ,

where A(ρ) = f (ρ)/ρ and o(ρ)/ρ → 0 as ρ → 0. Moreover, by (36) with z = ρ > 0 and
ζ = t > 0 we have that A satisfies the condition

lim
ρ→0

A(tρ)
A(ρ)

= 1 ∀ t > 0 ,

i.e., f is conformal by Belinskij at the origin.

The following result is fundamental for further study of asymptotic homogeneity
because it facilitates considerably the verification of (36) and at the same time reveals the
nature of the notion. Let Z be an arbitrary set in the complex plane C, 0 /∈ Z, with the origin
as its accumulation point. Further, we use the following characteristic of its sparseness:

SZ(ρ) :=
infz∈Z,|z|≥ρ, |z|
supz∈Z,|z|≤ρ, |z|

∀ ρ > 0 . (37)

Theorem 2. Let f satisfy the hypotheses of Theorem 1. Suppose that

lim sup
ρ→0

SZ(ρ) < ∞ (38)

and

lim
z→0
z∈Z

,

f (zζ)

f (z)
= ζ ∀ ζ ∈ C . (39)

Then f is asymptotically homogeneous at the origin.

Remark 4. For Theorem 2 to be true, the condition (38) on the extent of possible sparseness of Z is
not only sufficient but also necessary as Proposition 2.1 in [28] in the case Q ∈ L∞ ⊂ BMO shows.
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In particular, any continuous path to the origin or a discrete set, say 1/n, n = 1, 2, . . ., can be taken
as the set Z in Theorem 2. For instance, the conclusion of Theorem 2 is also true if Z has at least one
point on each circle |z| = ρ for all small enough ρ > 0.

Proof. Indeed, by (39) we have that, for functions fz(ζ) := f (zζ)/ f (z), pointwise

lim
z→0
z∈Z

,
fz(ζ) = ζ ∀ ζ ∈ C (40)

and, by Theorem 7.1 in [17] and Lemma 1, the limit in (40) is locally uniform in ζ ∈ C.
Let us assume that (36) does not hold for f , in other words, there exist ζ ∈ C, ε > 0

and a sequence zn ∈ C∗, n = 1, 2, . . . such that zn → 0 as n→ ∞ and

| fzn(ζ) − ζ | > ε . (41)

On the other hand, by (38) there is a sequence z∗n ∈ Z such that

0 < δ ≤ |τn| ≤ 1 < ∞

for all large enough n = 1, 2, . . ., where

τn =
zn

z∗n
, δ = 1/2 lim sup

ρ→0
SZ(ρ) .

With no loss of generality, we may assume in addition that τn → τ0 with δ ≤ |τ0| ≤ 1 as
n→ ∞ because the closed ring R := {z ∈ C : δ ≤ |z| ≤ 1} is a compact set. Note also that

fzn(ζ) =
fz∗n(ζτn)

fz∗n(τn)
.

Thus, fz∗n(ζτn) ∼ ζτ0 and fz∗n(τn) ∼ τ0 as n→ ∞ because the uniform convergence in (40)
with respect to ζ over any compact set implies the so-called continuous convergence, see,
e.g., Remark 7.1 in [17]. Consequently, fzn(ζ) ∼ ζ as n→ ∞ because τ0 6= 0. However, the
latter contradicts (41). The obtained contradiction disproves the above assumption and the
conclusion of the theorem is true.

Now, recall that the abstract spaces F in which convergence is a primary notion were
first considered by Frechet in his thesis in 1906. Later on, Uryson introduced the third
axiom in these spaces: if a compact sequence fn ∈ F has its unique accumulation point
f ∈ F, then lim

n→∞
fn = f , see, e.g., [41], Chapter 2, 20,1-II. Recall that fn ∈ F, n = 1, 2, . . . is

called a compact sequence if each its subsequence contains a converging subsequence and,
moreover, f ∈ F is said to be an accumulation point of the sequence fn ∈ F if f is a limit
of some its subsequence. It is customary to call such spaces L∗−spaces.

Remark 5. In particular, any convergence generated by a metric satisfies Uryson’s axiom, see,
e.g., [41], Chapter 2, 21, II. However, the well-known convergence almost everywhere of measurable
functions yields a counter-example to Uryson’s axiom: any sequence converging in measure is
compact with respect to convergence almost everywhere, but not every such sequence converges
almost everywhere. Later on, we apply the convergence generated by the uniform convergence of
continuous functions, generated as known by the uniform norm.

To prove the corresponding sufficient criteria for the asymptotic homogeneity at the
origin for solutions of degenerate Beltrami equations, we need also the following general
lemma.

Lemma 2. Let D be a bounded domain in C and fn : D → C, n = 1, 2, . . . be a sequence of W1,1

solutions of the Beltrami equations ∂ fn = µn∂ fn. Suppose that fn → f as n → ∞ in L1 and the
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norms ‖∂ fn‖1 and ‖∂ fn‖1 are equipotentially bounded. Then f ∈W1,1 and ∂ fn and ∂ fn converge
weakly in L1 to ∂ f and ∂ f , respectively. Moreover, if µn → µ a.e. or in measure as n→ ∞, then
∂ f = µ∂ f a.e.

Proof. The first part of conclusions follow from Lemma III.3.5 in [39]. Let us prove the
latter of these conclusions. Namely, assuming that µn(z)→ µ(z) a.e. as n→ ∞ and, setting

ζ(z) = ∂ f (z)− µ(z) · ∂ f (z) ,

let us show that ζ(z) = 0. Indeed, since ∂ fn(z)− µn(z)∂ fn(z) = 0, by the triangle inequality∫
D

|ζ(z)| dm(z) ≤ I1(n) + I2(n) + I3(n) ,

where
I1(n) :=

∫
D

|∂ f (z)− ∂ fn(z)| dm(z) ,

I2(n) :=
∫
D

|µ(z)| · |∂ f (z)− ∂ fn(z)| dm(z) ,

I3(n) :=
∫
D

|µ(z)− µn(z)| · |∂ fn(z)| dm(z) .

By the first part of conclusions, with no loss of generality, assume that |∂ f (z)− ∂ fn(z)| → 0
and |∂ f (z) − ∂ fn(z)| → 0 as n → ∞ weakly in L1, see Corollary IV.8.10 in [42]. Thus,
I1(n)→ 0 and I2(n)→ 0 as n→ ∞ because the dual space of L1 is naturally isometric to
L∞, see, e.g., Theorem IV.8.5 in [42].

Moreover, by Corollary IV.8.11 in [42], for each ε > 0, there is δ > 0 such that over
every measurable set E in D with |E| < δ∫

E

| ∂ fn(z)| dm(z) < ε, n = 1, 2, . . . . (42)

Further, by the Egoroff theorem, see, e.g., III.6.12 in [42], µn(z)→ µ(z) as n→ ∞ uniformly
on some set S in D with |E| < δ where E = D \ S. Hence |µn(z)− µ(z)| < ε on S and

I3(n) ≤ ε
∫
S

| ∂ fn(z)| dm(z) + 2
∫
E

| ∂ fn(z)| dm(z) ≤ ε(‖∂ fn(z)‖1 + 2)

for large enough n, i.e., I3(n)→ 0 because ε > 0 is arbitrary. Thus, really ζ = 0 a.e.

Theorem 3. Let D be a domain in C, 0 ∈ D, f : D → C, f (0) = 0, be an approximate solution of
the Beltrami Equation (2) and Kµ have a majorant Q ∈ BMO(D). Suppose that

lim sup
r→0

1
πr2

∫
|z|<r

Kµ(z) dm(z) < ∞ , (43)

and
lim
r→0

1
πr2

∫
|z|<r

|µ(z)| dm(z) = 0 . (44)

Then f is asymptotically homogeneous at the origin.
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Proof. By Theorem 2 with Z := {2−n}∞
n=N , where 2−N < dist(0, ∂D), it is sufficient to

show that

lim
n→∞

f2−n(ζ) = ζ ∀ ζ ∈ C , f2−n(ζ) :=
f (2−nζ)

f (2−n)
.

By Corollary 3 the sequence f2−n(ζ) is compact with respect to locally uniform convergence
in C and by Remark 5 it remains to prove that each its converging subsequence f ∗k = fnk

with nk → ∞ as k→ ∞ has the identity mapping of the complex plane C as its limit f0.
Indeed, the mappings f ∗k are approximate solutions of Beltrami equations ∂ f ∗k =

µ∗k · ∂ f ∗k with |µ∗k (ζ)| = |µ(2
−nk ζ)|, see, e.g., calculations of Section I.C in [11]. Since such

solutions are regular by Proposition 4, we have by the calculations that

| ∂ f ∗k | ≤ | ∂ f ∗k | ≤ | ∂ f ∗k |+ | ∂ f ∗k | ≤ K1/2
µ∗k

J1/2
f ∗k

a.e. , k = 1, 2, . . .

where

Kµ∗k
(ζ) = Kµ(2−nk ζ) , J f ∗k

(ζ) = |∂ f ∗k (ζ)|
2 − |∂ f ∗k (ζ)|

2 = J fnk
(ζ) = J f (2

−nk ζ)/| f (2−nk )|2.

Consequently, by the Hölder inequality for integrals, see, e.g., Theorem 189 in [43], and
Lemma III.3.3 in [13], we obtain that

‖∂ f ∗k ‖1(Dl) ≤ ‖Kµ∗k
‖

1
2
1 (Dl) · | f ∗k (Dl)|

1
2 ∀ l = 1, 2, . . . , Dl := D(2l) .

Now, by the condition (43) and simple calculations, for each fixed l = 1, 2, . . . ,

lim
k→∞

‖Kµ∗k
‖1(Dl) = 22l · lim

k→∞

1
(2l2−nk )2

∫
|z|<2l2−nk

|Kµ(z)| dm(z) < ∞ .

Next, choosing ζk in Sl := {ζ ∈ C : |ζ| = 2l} with | f (2−nk ζk)| = max
ζ∈Sl
| f (2−nk ζ)|, we see

that

| f ∗k (Dl)| =
∣∣ fnk (Dl)

∣∣ =
∣∣∣ f (D(2l−nk ))

∣∣∣
| f (2−nk ζk)|2

· | f (2
−nk ζk)|2

| f (2−nk )|2 ≤ π| f2−nk (ζk)|2 .

With no loss of generality, we may assume that ζk → ζ0 ∈ Sl as k→ ∞ because the circle
Sl is a compact set. Then f2−nk (ζk)→ f0(ζ0) because the uniform convergence implies the
so-called continuous convergence, see, e.g., Remark 7.1 in [17]. However, f0(ζ0) 6= ∞, see
Corollary 4.

Thus, the norms of ∂ f ∗k and ∂ f ∗k are locally equipotentially bounded in L1. Then f0

is W1,1
loc solution of the Beltrami equation with µ ≡ 0 in C by Lemma 2 in view of (44).

Moreover, f0 is a homeomorphism of C into C by Corollary 4. Hence f0 is a conformal
mapping of C into C, see, e.g., Corollary II.B.1 in [11]. Hence f0(ζ) is a linear function a+ bζ,
see, e.g., Theorem 2.31.1 in [44]. In addition, by the construction f0(0) = 0 and f0(1) = 1.
Thus, f0(ζ) ≡ ζ in the whole complex plane C and the proof is thereby complete.

Remark 6. Note that, in particular, both conditions (43) and (44) follow from the only one stronger
condition

lim
r→0

1
πr2

∫
|z|<r

Kµ(z) dm(z) = 1 (45)

because

|µ(z)| ≤ |µ(z)|
1− |µ(z)| =

Kµ(z)− 1
2

. (46)

Combinig Theorems 1 and 3, see also Proposition 4, we obtain the following conclu-
sions.
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Corollary 5. Under hypotheses of Theorem 3, f is conformal by Lavrent’iev at the origin, i.e., f
preserves infinitesimal circles centered at the origin:

lim
r→0

max
|z|=r
| f (z)|

min
|z|=r
| f (z)| = 1 , (47)

asymptotically preserves angles, i.e.,

lim
z→0

arg
[

f (zζ)

f (z)

]
= arg ζ ∀ ζ ∈ C , |ζ| = 1 , (48)

and asymptotically preserves the moduli of infinitesimal rings, i.e.,

lim
z→0

| f (z ζ)|
| f (z)| = |ζ| ∀ ζ ∈ C∗ := C \ {0} . (49)

Corollary 6. Under hypotheses of Theorem 3, for all δ > 0, along z ∈ C∗ := C \ {0} and z′ ∈ C
with |z′| ≤ δ|z|,

lim
z→0

{
| f (z′)|
| f (z)| −

|z′|
|z|

}
= 0 . (50)

Moreover, by the theorem of Stolz (1885) and Cesaro (1888), see, e.g., Problem 70
in [45], we derive from Corollary 6 the next assertion on logarithms.

Corollary 7. Under hypotheses of Theorem 3,

lim
z→0
z∈C∗

ln | f (z)|
ln |z| = 1 . (51)

Proof. For brevity, let us introduce designations tn = − ln |zn|, τn = − ln | f (zn)| and
assume that (51) does not hold, i.e., there exist ε > 0 and a sequence zn → 0 such that∣∣∣∣τn

tn
− 1
∣∣∣∣ ≥ ε ∀ n = 1, 2, . . . . (52)

Passing, if necessary, to a subsequence, we can consider that tn − tn−1 ≥ 1 for all n =
1, 2, . . . . Then, we can achieve that tn − tn−1 < 2, by inserting, if necessary, the mean
arithmetic values between neighboring terms of the subsequence tn, n = 1, 2, . . . . In this
case, inequality (52) holds for the infinite number of terms of the subsequence.

Thus, the sequence ρn = |zn| = e−tn satisfies the inequalities e−2 < ρn/ρn−1 ≤ e−1.
Relations (50) implies that exp(τn−1 − τn) = exp(tn−1 − tn) + αn, where αn → 0 as n→ ∞,
or, in the other form, exp(τn−1 − τn) = (1 + βn) exp(tn−1 − tn) with βn → 0 as n → ∞.
The latter gives that (τn − τn−1) = (tn − tn−1) + γn with γn → 0 as n → ∞ and, since
tn − tn−1 ≥ 1, we have that (τn − τn−1)/(tn − tn−1) = 1 + δn, where δn → 0 as n → ∞.
By the Stolz theorem, then we conclude that τn/tn → 1 in contradiction with (52). This
contradiction disproves the above assumption, i.e., (51) is true.

Theorem 4. Let D be a domain in C and let f : D → C be an approximate solution of the Beltrami
Equation (2), Kµ have a majorant Q ∈ BMO(D) and at a point z0 ∈ D

lim sup
r→0

1
πr2

∫
|z−z0|<r

Kµ(z) dm(z) < ∞ . (53)

Suppose that µ(z) is approximately continuous at z0. Then the mapping f is differentiable by
Belinskij at this point with µ0 = µ(z0).



Axioms 2022, 11, 171 15 of 28

Proof. First of all, |µ(z0)| < 1 because by the hypotheses Kµ ∈ L1
loc and µ(z) is approxi-

mately continuous at z0. Note also that f is differentiable by Belinskij with µ0 = µ(z0) at z0
if and only if g := h ◦ ϕ−1 is conformal by Belinskij at zero, where h(z) = f (z0 + z)− f (z0)
and ϕ(z) = z + µ0z. It is evident that µh(z) = µ(z + z0) and Kµh = Kµ(z + z0) and by
elementary calculations, see, e.g., Section I.C(6) in [11], µg ◦ ϕ = (µh − µ0)/(1− µ0µh)
and Kµg ≤ K0 · Kµh ◦ ϕ−1 ≤ K0Q0, where K0 = (1 + |µ0|)/(1 − |µ0|) and Q0(w) =

Q(z0 + ϕ−1(w)) belongs to BMO in D0 := ϕ(D) because ϕ and ϕ−1 are K0−quasiconformal
mappings, see the paper [46] and the monograph [3]. Thus, Theorem 4 follows from Theo-
rem 3.

4. On Homeomorphic Solutions in Extended Complex Plane

Here we start from establishing a series of criteria for existence of approximate solu-
tions f : C→ C to the degenerate Beltrami equations in the whole complex plane C with
the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

It is easy to give examples of locally quasiconformal mappings of C onto the unit
disk D, consequently, there exist locally uniform elliptic Beltrami equations with no such
solutions. Hence, compared with our previous articles, the main goal here is to find the
corresponding additional conditions on dilatation quotients of the Beltrami equations at
infinity.

Lemma 3. Let a function µ : C → C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C).

Suppose that, for every z0 ∈ C, there exist ε0 = ε(z0) > 0 and a family of measurable functions
ψz0,ε : (0, ∞)→ (0, ∞) such that

Iz0(ε) : =

ε0∫
ε

ψz0,ε(t) dt < ∞ ∀ ε ∈ (0, ε0) (54)

and ∫
ε<|z−z0|<ε0

KT
µ (z, z0) · ψ2

z0,ε(|z− z0|) dm(z) = o(I2
z0
(ε)) as ε→ 0 ∀ z0 ∈ C (55)

and, moreover, ∫
ε<|ζ|<ε∞

KT
µ (ζ, ∞) · ψ2

∞,ε(|ζ|)
dm(ζ)

|ζ|4 = o(I2
∞(ε)) as ε→ 0 , (56)

where KT
µ (ζ, ∞) := KT

µ (1/ζ, 0).
Then the Beltrami Equation (2) has an approximate homeomorphic solution f in C with the

normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Remark 7. After the replacements of variables ζ 7−→ z := 1/ζ, ε 7−→ R := 1/ε, ε∞ 7−→ R0 :=
1/ε∞ and functions ψ∞,ε(t) 7−→ ψR(t) := ψ∞,1/R(1/t), the condition (56) can be rewritten in
the more convenient form:∫

R0<|z|<R

KT
µ (z, 0) ψ2

R(|z|)
dm(z)
|z|4 = o(I2(R)) as R→ ∞ , (57)

with the family of measurable functions ψR : (0, ∞)→ (0, ∞) such that

I(R) : =

R∫
R0

ψR(t)
dt
t2 < ∞ ∀ R ∈ (R0, ∞) . (58)
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Before arriving at the proof of Lemma 3, let us recall that a condenser in C is a domain
R in C whose complement in C is the union of two distinguished disjoint compact sets
C1 and C2. For convenience, it is written R = R(C1, C2). A ring in C is a condenser
R = R(C1, C2) with connected C1 and C2 that are called the complementary components
ofR. It is known that the (conformal) capacity of a ringR = R(C1, C2) in C is equal to the
(conformal) modulus of all paths inR connecting C1 and C2, see, e.g., Theorem A.8 in [17].

Proof. By the first item of the proof of Lemma 3 in [21] the Beltrami Equation (2) has under
the conditions (55) an approximate homeomorphic solution f in C with f (0) = 0 and f (1) =
1. Moreover, by Lemma 3 in [21] we may also assume that f is a ring Q−homeomorphism
with Q(z) = KT

µ (z, 0) at the origin, i.e., for every ring A = A(r1, r2) := {z ∈ C : r1 < |z| <
r2}, we have the estimate of the capacity C f (r1, r2) of its image under the mapping f :

C f (r1, r2) ≤
∫

A(r1,r2)

KT
µ (z, 0) dm(z) ∀ r1, r2 : 0 < r1 < r2 < ∞ .

Let us consider the mapping F(z) := 1/ f (1/z) in C∗ := C \ {0}. Note that F(∞) = ∞
because f (0) = 0. Since the capacity is invariant under conformal mappings, we have by
the change of variables z 7−→ ζ := 1/z as well as r1 7−→ ε2 := 1/r1 and r2 7−→ ε1 := 1/r2
that

CF(ε1, ε2) ≤
∫

A(ε1,ε2)

KT
µ (1/ζ, 0)

dm(ζ)

|ζ|4 ∀ ε1, ε2 : 0 < ε1 < ε2 < ∞ ,

i.e., F is a ring Q̃−homeomorphism at the origin with Q̃(ζ) := KT
µ (1/ζ, 0)/|ζ|4. Thus, in

view of the condition (56), we obtain by Lemma 6.5 in [16] that F has a continuous extension
to the origin. Let us assume that c := lim

ζ→0
F(ζ) 6= 0.

However, C is homeomorphic to the sphere S2 by stereographic projection and hence
by the Brouwer theorem in S2 on the invariance of domain the set C∗ := F(C∗) is open in
C, see, e.g., Theorem 4.8.16 in [47]. Consequently, c /∈ C∗ because F is a homeomorphism.
Then the extended mapping F̃ is a homeomorphism of C into C∗ because f 6= ∞ in C. Thus,
again by the Brouwer theorem, the set C := F̃(C) is open in C and 0 ∈ C \ C 6= ∅. On the
other hand, the set C is compact as a continuous image of the compact space C. Hence
the set C \ C 6= ∅ is also open in C. The latter contradicts the connectivity of C, see, e.g.,
Proposition I.1.1 in [48].

The obtained contradiction disproves the assumption that c 6= 0. Thus, we have
proved that f is extended to a homeomorphism of C onto itself with f (∞) = ∞.

Choosing ψz0,ε(t) ≡ 1/(t log(1/t)) in Lemma 3, we obtain by Proposition 2 the
following.

Theorem 5. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C) and

∫
R0<|z|<R

Kµ(z) ψ2(|z|) dm(z)
|z|4 = o(I2(R)) as R→ ∞ (59)

for some R0 > 0 and a measurable function ψ : (0, ∞)→ (0, ∞) such that

I(R) : =

R∫
R0

ψ(t)
dt
t2 < ∞ ∀ R ∈ (R0, ∞) . (60)

Suppose also that KT
µ (z, z0) 6 Qz0(z) a.e. in Uz0 for every point z0 ∈ C, a neighborhood Uz0 of z0

and a function Qz0 : Uz0 → [0, ∞] in the class FMO(z0).
Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with the normali-

zation f (0) = 0, f (1) = 1 and f (∞) = ∞.
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In particular, by Proposition 1 the conclusion of Theorem 5 holds if every point z0 ∈ C
is the Lebesgue point of the function Qz0 .

By Corollary 1 we obtain the next nice consequence of Theorem 5, too.

Corollary 8. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

lim
ε→0

−
∫
D(z0,ε)

KT
µ (z, z0) dm(z) < ∞ ∀ z0 ∈ C . (61)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with the normalization
f (0) = 0, f (1) = 1 and f (∞) = ∞.

By (5), we also obtain the following consequences of Theorem 5.

Corollary 9. Let µ : C → C be measurable with |µ(z)| < 1 a.e., (59) and Kµ have a dominant
Q : C→ [1, ∞) in the class BMOloc. Then the Beltrami Equation (2) has a regular homeomorphic
solution f in C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Remark 8. In particular, the conclusion of Corollary 7 holds if Q ∈W1,2
loc because W 1,2

loc ⊂ VMOloc,
see, e.g., [10].

Corollary 10. Let µ : C → C be measurable with |µ(z)| < 1 a.e., (59) and Kµ(z) 6 Q(z)
a.e. in C with a function Q in the class FMO(C). Then the Beltrami Equation (2) has a regular
homeomorphic solution f in C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Similarly, choosing ψz0,ε(t) ≡ 1/t in Lemma 3, we come to the next statement.

Theorem 6. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

∫
ε<|z−z0|<ε0

KT
µ (z, z0)

dm(z)
|z− z0|2

= o

([
log

1
ε

]2
)

as ε→ 0 ∀ z0 ∈ C (62)

for some ε0 = ε(z0) > 0. Then the Beltrami Equation (2) has a regular homeomorphic solution f in
C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Remark 9. Choosing ψz0,ε(t) ≡ 1/(t log 1/t) instead of ψ(t) = 1/t in Lemma 2, we are able to
replace (62) by ∫

ε<|z−z0|<ε0

KT
µ (z, z0) dm(z)(

|z− z0| log 1
|z−z0|

)2 = o

([
log log

1
ε

]2
)

(63)

In general, we are able to give here the whole scale of the corresponding conditions in log using
functions ψ(t) of the form 1/(t log 1/t · log log 1/t · . . . · log . . . log 1/t).

Now, choosing in Lemma 3 the functional parameter ψz0,ε(t) ≡ ψz0(t) : = 1/[tkT
µ(z0, t)],

where kT
µ(z0, r) is the integral mean value of KT

µ (z, z0) over the circle S(z0, r) := {z ∈ C :
|z− z0| = r}, we obtain one more important conclusion.

Theorem 7. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

ε0∫
0

dr
rkT

µ(z0, r)
= ∞ ∀ z0 ∈ C (64)

for some ε0 = ε(z0) > 0. Then the Beltrami Equation (2) has a regular homeomorphic solution f in
C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.
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Corollary 11. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and

kT
µ(z0, ε) = O

(
log

1
ε

)
as ε→ 0 ∀ z0 ∈ C . (65)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with the normalization
f (0) = 0, f (1) = 1 and f (∞) = ∞.

Remark 10. In particular, the conclusion of Corollary 10 holds if

KT
µ (z, z0) = O

(
log

1
|z− z0|

)
as z→ z0 ∀ z0 ∈ D . (66)

Moreover, the condition (65) can be replaced by the whole series of more weak conditions

kT
µ(z0, ε) = O

([
log

1
ε
· log log

1
ε
· . . . · log . . . log

1
ε

])
∀ z0 ∈ D . (67)

For further consequences, the following statement is useful, see e.g., Theorem 3.2
in [22].

Proposition 7. Let Q : D→ [0, ∞] be a measurable function such that∫
D

Φ(Q(z)) dm(z) < ∞ (68)

where Φ : [0, ∞]→ [0, ∞] is a non-decreasing convex function such that

∞∫
δ

dτ

τΦ−1(τ)
= ∞ (69)

for some δ > Φ(+0). Then
1∫

0

dr
rq(r)

= ∞ (70)

where q(r) is the average of the function Q(z) over the circle |z| = r.

Here we use the following notions of the inverse function for monotone functions.
Namely, for every non-decreasing function Φ : [0, ∞]→ [0, ∞] the inverse function Φ−1 :
[0, ∞]→ [0, ∞] can be well-defined by setting

Φ−1(τ) := inf
Φ(t)>τ

t . (71)

Here inf is equal to ∞ if the set of t ∈ [0, ∞] such that Φ(t) > τ is empty. Note that
the function Φ−1 is non-decreasing, too. It is evident immediately by the definition that
Φ−1(Φ(t)) 6 t for all t ∈ [0, ∞] with the equality except intervals of constancy of the
function Φ(t).

Let us recall the connection of condition (69) with other integral conditions, see, e.g.,
Theorem 2.5 in [22].

Remark 11. Let Φ : [0, ∞]→ [0, ∞] be a non-decreasing function and set

H(t) = log Φ(t) . (72)
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Then the equality
∞∫

∆

H′(t)
dt
t
= ∞, (73)

implies the equality
∞∫

∆

dH(t)
t

= ∞ , (74)

and (74) is equivalent to
∞∫

∆

H(t)
dt
t2 = ∞ (75)

for some ∆ > 0, and (75) is equivalent to each of the equalities

δ∗∫
0

H
(

1
t

)
dt = ∞ (76)

for some δ∗ > 0,
∞∫

∆∗

dη

H−1(η)
= ∞ (77)

for some ∆∗ > H(+0) and to (69) for some δ > Φ(+0).

Moreover, (73) is equivalent to (74) and hence to (75)–(77) as well as to (69) are
equivalent to each other if Φ is in addition absolutely continuous. In particular, all the
given conditions are equivalent if Φ is convex and non-decreasing.

Note that the integral in (74) is understood as the Lebesgue–Stieltjes integral and the
integrals in (73) and (75)–(77) as the ordinary Lebesgue integrals. It is necessary to give
one more explanation. From the right hand sides in the conditions (73)–(77) we have in
mind +∞. If Φ(t) = 0 for t ∈ [0, t∗], then H(t) = −∞ for t ∈ [0, t∗] and we complete the
definition H′(t) = 0 for t ∈ [0, t∗]. Note, the conditions (74) and (75) exclude that t∗ belongs
to the interval of integrability because in the contrary case the left hand sides in (74) and
(75) are either equal to−∞ or indeterminate. Hence we may assume in (73)–(76) that δ > t0,
correspondingly, ∆ < 1/t0 where t0 := sup

Φ(t)=0
t, and set t0 = 0 if Φ(0) > 0.

The most interesting of the above conditions is (75) that can be rewritten in the form:

∞∫
∆

log Φ(t)
dt
t2 = +∞ for some ∆ > 0 . (78)

Combining Theorems 7, Proposition 7 and Remark 11, we obtain the following result.

Theorem 8. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and∫

Uz0

Φz0

(
KT

µ (z, z0)
)

dm(z) < ∞ ∀ z0 ∈ C (79)

for a neighborhood Uz0 of z0 and a convex non-decreasing function Φz0 : [0, ∞]→ [0, ∞] with

∞∫
∆(z0)

log Φz0(t)
dt
t2 = +∞ (80)
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for some ∆(z0) > 0. Then the Beltrami Equation (2) has a regular homeomorphic solution f in C
with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Corollary 12. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ ∈ L1
loc(C), (59) and∫

Uz0

eα(z0)KT
µ (z,z0) dm(z) < ∞ ∀ z0 ∈ C (81)

for some α(z0) > 0 and a neighborhood Uz0 of the point z0. Then the Beltrami Equation (2) has a
regular homeomorphic solution f in C with the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Since KT
µ (z, z0) 6 Kµ(z) for z and z0 ∈ C, we also obtain the following consequences

of Theorem 8.

Corollary 13. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., (59) and∫
C

Φ
(
Kµ(z)

)
dm(z) < ∞ (82)

over each compact C in C for a convex non-decreasing function Φ : [0, ∞]→ [0, ∞] with

∞∫
δ

log Φ(t)
dt
t2 = +∞ (83)

for some δ > 0. Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with
the normalization f (0) = 0, f (1) = 1 and f (∞) = ∞.

Corollary 14. Let µ : C→ C be measurable with |µ(z)| < 1 a.e., (59) and, for some α > 0, over
each compact C in C, ∫

C

eαKµ(z) dm(z) < ∞ . (84)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with the normalization
f (0) = 0, f (1) = 1 and f (∞) = ∞.

5. On Existence of Solutions with Asymptotics at Infinity

In the extended complex plane C = C∪ {∞}, we will use the so-called spherical area
whose element can be given through the element dm(z) of the Lebesgue measure (usual
area)

dS(z) :=
4 d m(z)
(1 + |z|2)2 =

4 dx dy
(1 + |z|2)2 , z = x + iy . (85)

Let us start from the following general lemma on the existence of regular homeomorhic
solutions for the Beltrami equations in C with asymptotic homogeneity at infinity.

Lemma 4. Let a function µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ have a majorant Q of
the class BMO in a connected open (punctured at ∞) neighborhood U of infinity,∫

|z|>R

|µ(z)| dS(z) = o
(

1
R2

)
(86)

and, moreover, ∫
|z|>R

Kµ(z) dS(z) = O
(

1
R2

)
. (87)
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Suppose also that, for every z0 ∈ C \U, there exist ε0 = ε(z0) > 0 and a family of measurable
functions ψz0,ε : (0, ∞)→ (0, ∞) such that

Iz0(ε) : =

ε0∫
ε

ψz0,ε(t) dt < ∞ ∀ ε ∈ (0, ε0) (88)

and ∫
ε<|z−z0|<ε0

KT
µ (z, z0) · ψ2

z0,ε(|z− z0|) dm(z) = o(I2
z0
(ε)) as ε→ 0 ∀ z0 ∈ C . (89)

Then the Beltrami Equation (2) has an approximate homeomorphic solution f in C with
f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity, f (ζz) ∼ ζ f (z)
as z→ ∞ for all ζ ∈ C, i.e.,

lim
z→∞

z∈C
,

f (zζ)

f (z)
= ζ ∀ ζ ∈ C (90)

and the limit (90) is locally uniform with respect to the parameter ζ in C.

Remark 12. (86) and (87) can be replaced by only one (stronger) condition

lim
r→∞

R2

π

∫
|z|>R

Kµ(z) dS(z) = 1 . (91)

Note also that, arguing similarly to the proofs of Theorem 1 and Corollary 7, we see
that the locally uniform property of the asymptotic homogeneity of f at infinity (90) implies
its conformality by Belinskij at infinity, i.e.,

f (z) = A(ρ) · [ z + o(ρ) ] as z→ ∞ , (92)

where A(ρ) depends only on ρ = |z|, o(ρ)/ρ→ 0 as ρ→ ∞ and, moreover,

lim
ρ→∞

A(tρ)
A(ρ)

= 1 ∀ t > 0 , (93)

its conformality by Lavrent’iev at infinity, i.e.,

lim
R→∞

max
|z|=R

| f (z)|

min
|z|=R

| f (z)| = 1 , (94)

the logarithmic property at infinity

lim
z→∞

ln | f (z)|
ln |z| = 1 , (95)

asymptotic preserving angles at infinity, i.e.,

lim
z→∞

arg
[

f (zζ)

f (z)

]
= arg ζ ∀ ζ ∈ C∗ (96)
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and asymptotic preserving moduli of rings at infinity, i.e.,

lim
z→∞

| f (z ζ)|
| f (z)| = |ζ| ∀ ζ ∈ C∗ . (97)

The latter two geometric properties characterize asymptotic homogeneity at infinity and
demonstrate that it is very close to the usual conformality at infinity.

Proof. The extended complex plane C = C∪ {∞} is a metric space with a measure with
respect to the spherical (chordal) metric s, see (26), and the spherical area S, see (85). This
space is regular by Ahlfors that is evident from the geometric interpretation of C as the
so-called stereographic projection of a sphere in R3, see details, e.g., in Section 13 and
Supplement B in the monograph [17].

Let us recall only here that, if the function Q belongs to the class BMO in U with
respect to the Euclidean distance and the usual area in C, then Q is in BMO with respect to
the spherical distance and the spherical area not only in U but also in U ∪ {∞}, see Lemma
B.3 and Proposition B.1 in [17]. Moreover, we have an analog of Proposition 2 in terms
of spherical metric and area, see Lemma 13.2 and Remark 13.3 in [17], that in turn can be
rewritten in terms of the Euclidean distance and area at infinity in the following form:∫

R0<|z|<R

Q(z)
log2 |z|

dm(z)
|z|2 = O(log log R) as R→ ∞ (98)

for large enough R0 with {z ∈ C : |z| > R0} ⊆ U. Consequently, we have the condition
(57) with ψR(t) ≡ ψ(t) := t−1log t and by Lemma 3, see also Remark 7, the Beltrami
Equation (2) has an approximate solution f in C with the normalization f (0) = 0, f (1) = 1
and f (∞) = ∞. Recall that f is its regular homeomorphic solution by Proposition 4.

Setting f ∗(ξ) := 1/ f (1/ξ) in C, we see that f ∗(0) = 0, f ∗(1) = 1, f ∗(∞) = ∞ and
that f ∗ is an approximate solution in C∗ = C \ {0} of the Beltrami equation with

µ∗(ξ) := µ

(
1
ξ

)
· ξ2

ξ̄2 , Kµ∗(ξ) = Kµ

(
1
ξ

)
, (99)

because

f ∗ξ̄ (ξ) =
1
ξ̄2 ·

fz̄(
1
ξ )

f 2( 1
ξ )

, f ∗ξ (ξ) =
1
ξ2 ·

fz(
1
ξ )

f 2( 1
ξ )

a.e. in C , (100)

see, e.g., Section I.C and the proof of Theorem 3 of Section V.B in [11].
Note that f ∗ belongs to the class W1,1

loc (C
∗) and, consequently, f ∗ is ACL (absolutely

continuous on lines) in C, see, e.g., Theorems 1 and 2 of Section 1.1.3 and Theorem of
Section 1.1.7 in [49]. However, it is not clear directly from (100) whether the derivatives f ∗

ξ̄

and f ∗ξ are integrable in a neighborhood of the origin, because of the first factors in (100).
Thus, to prove that f ∗ is a regular homeomorphic solution of the Beltrami equation in C, it
remains to establish the latter fact in another way.

Namely, after the replacements of variables z 7−→ ξ := 1/z and R 7−→ r := 1/R, in
view of (99), the condition (87) can be rewritten in the form

lim sup
r→0

1
r2

∫
|ξ|<r

Kµ∗(ξ) dm(ξ) < ∞ , (101)

and the latter implies, in particular, that, for some r0 ∈ (0, 1],

1
r2

0

∫
|ξ|<r0

Kµ∗(ξ) dm(ξ) < ∞ , (102)



Axioms 2022, 11, 171 23 of 28

i.e., the dilatation quotient Kµ∗ of the given Beltrami equation is integrable in the disk
D(r0).

Now, since f ∗ is a regular homeomorphism in C∗, in particular, its Jacobian J(ξ) =
| f ∗ξ |2 − | f ∗ξ̄ |

2 6= 0 a.e. and hence | f ∗ξ | − | f ∗ξ̄ | 6= 0 a.e. as well as f ∗ξ 6= 0 a.e., the following
identities are also correct a.e.

| f ∗ξ (ξ)| + | f ∗ξ̄ (ξ)| =
[
| f ∗ξ (ξ)| + | f ∗ξ̄ (ξ)|
| f ∗ξ (ξ)| − | f ∗ξ̄ (ξ)|

] 1
2

· J
1
2 (ξ) = K

1
2
µ∗(ξ) · J

1
2 (ξ) . (103)

Hence by the Hölder inequality for integrals, see, e.g., Theorem 189 in [43], we have that

∫
|ξ|<r0

(
| f ∗ξ (ξ)| + | f ∗ξ̄ (ξ)|

)
dm(ξ) ≤

 ∫
|ξ|<r0

Kµ∗(ξ) dm(ξ)


1
2

·

 ∫
|ξ|<r0

J(ξ) dm(ξ)


1
2

(104)
and, since the latter factor in (104) is estimated by the area of f ∗(D(r0)), see, e.g., the
Lebesgue theorem in Section III.2.3 of the monograph [13], we conclude that both partial
derivatives f ∗ξ and f ∗

ξ̄
are integrable in the disk D(r0).

Next, note that the function Q∗(ξ) := Q(1/ξ) is of the class BMO in a neighborhood
of the origin with respect to the spherical area as well as with respect to the usual area, see,
e.g., again Lemma B.3 in [17], because also the spherical area is invariant under rotations of
the sphere S2 in the stereographic projection. Moreover, by (86) and (99), we obtain that

lim
r→0

1
r2

∫
|ξ|<r

|µ∗(ξ)| dm(ξ) = 0 . (105)

Thus, by Theorems 3 we conclude that f ∗ is asymptotically homogeneous at the origin, i.e.,

lim
ξ→0
ξ∈C∗

,

f ∗(ξζ)

f ∗(ξ)
= ζ ∀ ζ ∈ C (106)

and, furthermore, the limit in (106) is locally uniform in the parameter ζ.
After the inverse replacements of the variables ξ 7−→ w := 1/ξ and the functions

f ∗(ξ) 7−→ f (w) = 1/ f ∗(1/w) the relation (106) can be rewritten in the form

lim
w→∞

w∈C
,

f (w)

f (wζ−1)
= ζ ∀ ζ ∈ C . (107)

Finally, after one more change of variables w 7−→ z := wζ−1, the latter is transformed into
(90), where the limit is locally uniform with respect to the parameter ζ ∈ C.

Choosing ψz0,ε(t) ≡ 1/(t log(1/t)) in Lemma 4, we obtain by Proposition 2 the
following.

Theorem 9. Let a function µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ have a majorant Q
of the class BMO in a neighborhood U of ∞ and satisfy (91). Suppose also that KT

µ (z, z0) 6 Qz0(z)
a.e. in Uz0 for every point z0 ∈ C \U, a neighborhood Uz0 of z0 and a function Qz0 : Uz0 → [0, ∞]
in the class FMO(z0). Then the Beltrami Equation (2) has a regular homeomorphic solution f in C
with f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

As a particular case of Theorem 9, we obtain the following central theorem in terms of
BMO.
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Theorem 10. Let a function µ : C→ C be measurable with |µ(z)| < 1 a.e., Kµ have a majorant Q
of the class BMO(C) and satisfy (91). Then the Beltrami Equation (2) has a regular homeomorphic
solution f in C with f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at
infinity.

Note also that, in particular, by Proposition 1 the conclusion of Theorem 9 holds if
every point z0 ∈ C \U is the Lebesgue point of the function Qz0 .

By Corollary 1 we obtain the next fine consequence of Theorem 9, too.

Corollary 15. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and

lim
ε→0

−
∫
D(z0,ε)

KT
µ (z, z0) dm(z) < ∞ ∀ z0 ∈ C \U . (108)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

By (5), we also obtain the following consequences of Theorem 9.

Corollary 16. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant Q
of the class BMO in C and satisfy (91). Then the Beltrami Equation (2) has a regular homeomorphic
solution f in C with f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at
infinity.

Corollary 17. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and Kµ(z) 6 Q∗(z) a.e. in C \U with
a function Q : C→ R+ of the class FMO(C \U). Then the Beltrami Equation (2) has a regular
homeomorphic solution f in C with f (0) = 0, f (1) = 1 and f (∞) = ∞ that is asymptotically
homogeneous at infinity.

Remark 13. In particular, the conclusion of Corollary 17 holds if Q∗ ∈ W1,2
loc because W 1,2

loc ⊂
VMOloc, see, e.g., [10].

Similarly, choosing ψz0,ε(t) ≡ 1/t in Lemma 4, we come also to the next statement.

Theorem 11. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and, for some ε0 = ε(z0) > 0,

∫
ε<|z−z0|<ε0

KT
µ (z, z0)

dm(z)
|z− z0|2

= o

([
log

1
ε

]2
)

as ε→ 0 ∀ z0 ∈ C \U . (109)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Remark 14. Choosing ψz0,ε(t) ≡ 1/(t log 1/t) instead of ψ(t) = 1/t in Lemma 4, we are able to
replace (109) by

∫
ε<|z−z0|<ε0

KT
µ (z, z0) dm(z)(

|z− z0| log 1
|z−z0|

)2 = o

([
log log

1
ε

]2
)

(110)

In general, we are able to give here the whole scale of the corresponding conditions in log using
functions ψ(t) of the form 1/(t log 1/t · log log 1/t · . . . · log . . . log 1/t).
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Now, choosing in Lemma 4 the functional parameter ψz0,ε(t) ≡ ψz0(t) : = 1/[tkT
µ(z0, t)],

where kT
µ(z0, r) is the average of KT

µ (z, z0) over the circle S(z0, r) := {z ∈ C : |z− z0| = r},
we obtain one more important conclusion.

Theorem 12. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and, for some ε0 = ε(z0) > 0,

ε0∫
0

dr
rkT

µ(z0, r)
= ∞ ∀ z0 ∈ C \U . (111)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Corollary 18. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and

kT
µ(z0, ε) = O

(
log

1
ε

)
as ε→ 0 ∀ z0 ∈ C \U . (112)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Remark 15. In particular, the conclusion of Corollary 18 holds if

KT
µ (z, z0) = O

(
log

1
|z− z0|

)
as z→ z0 ∀ z0 ∈ C \U . (113)

Moreover, the condition (112) can be replaced by the whole series of more weak conditions

kT
µ(z0, ε) = O

([
log

1
ε
· log log

1
ε
· . . . · log . . . log

1
ε

])
∀ z0 ∈ C \U . (114)

Combining Theorems 12, Proposition 4 and Remark 1, we obtain the following result.

Theorem 13. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and∫

Uz0

Φz0

(
KT

µ (z, z0)
)

dm(z) < ∞ ∀ z0 ∈ C \U (115)

for a neighborhood Uz0 of z0 and a convex non-decreasing function Φz0 : [0, ∞]→ [0, ∞] with

∞∫
∆(z0)

log Φz0(t)
dt
t2 = +∞ for some ∆(z0) > 0 . (116)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Corollary 19. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant Q
of the class BMO in a neighborhood U of ∞, satisfy (91) and, for some α(z0) > 0 and a neighborhood
Uz0 of the point z0, ∫

Uz0

eα(z0)KT
µ (z,z0) dm(z) < ∞ ∀ z0 ∈ C \U . (117)
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Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Since KT
µ (z, z0) 6 Kµ(z) for z and z0 ∈ C, we also obtain the following consequences

of Theorem 13.

Corollary 20. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and∫

C\U

Φ
(
Kµ(z)

)
dm(z) < ∞ (118)

for a convex non-decreasing function Φ : [0, ∞]→ [0, ∞] such that, for some δ > 0,

∞∫
δ

log Φ(t)
dt
t2 = +∞ . (119)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Corollary 21. Let µ : C→ C be a measurable function with |µ(z)| < 1 a.e., Kµ have a majorant
Q of the class BMO in a neighborhood U of ∞, satisfy (91) and, for some α > 0,∫

C\U

eαKµ(z) dm(z) < ∞ . (120)

Then the Beltrami Equation (2) has a regular homeomorphic solution f in C with f (0) = 0,
f (1) = 1 and f (∞) = ∞ that is asymptotically homogeneous at infinity.

Corollary 22. Recall that by Theorem 5.1 in [22] the condition (119) is not only sufficient but also
necessary for the existence of regular homeomorphic solutions for all Beltrami Equation (2) with the
integral constraints (118), see also Remark 11.

6. Conclusions

Thus, this paper contains a number of effective criteria for the existence of regular
homeomorphic solutions for the Beltrami equations with asymptotic homogeneity at
infinity where the BMO condition in a neighborhood of infinity plays a key role.

Finally, these results can be applied to the fluid mechanics in strongly anisotropic
and inhomogeneous media because the Beltrami equation is a complex form of the main
equation of hydromechanics, see, e.g., Theorem 16.1.6 in [15]; these results will be published
elsewhere.
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