



# Article Strong Chromatic Index of Outerplanar Graphs

Ying Wang <sup>1,†</sup>, Yiqiao Wang <sup>2,‡</sup>, Weifan Wang <sup>3,\*,§</sup> and Shuyu Cui <sup>3</sup>

- School of Mathematics and Information Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; zhuti@163.com
- <sup>2</sup> School of Management, Beijing University of Chinese Medicine, Beijing 100029, China; yqwang@bucm.edu.cn
- <sup>3</sup> Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China; cuishuyu@zjnu.edu.cn
- Correspondence: wwf@zjnu.cn
- + Research Supported Partially by NSFC (No. 12001156).
- ‡ Research Supported Partially by NSFC (No. 12071048) and Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).
- § Research Supported Partially by NSFC (No. 12031018).

**Abstract:** The strong chromatic index  $\chi'_{s}(G)$  of a graph *G* is the minimum number of colors needed in a proper edge-coloring so that every color class induces a matching in *G*. It was proved In 2013, that every outerplanar graph *G* with  $\Delta \ge 3$  has  $\chi'_{s}(G) \le 3\Delta - 3$ . In this paper, we give a characterization for an outerplanar graph *G* to have  $\chi'_{s}(G) = 3\Delta - 3$ . We also show that if *G* is a bipartite outerplanar graph, then  $\chi'_{s}(G) \le 2\Delta$ ; and  $\chi'_{s}(G) = 2\Delta$  if and only if *G* contains a particular subgraph.

Keywords: strong edge-coloring; strong chromatic index; outerplanar graph; bipartite graph

MSC: Graph Theory with Applications



Citation: Wang, Y.; Wang, Y.; Wang, W.; Cui, S. Strong Chromatic Index of Outerplanar Graphs. *Axioms* 2022, *11*, 168. https://doi.org/10.3390/ axioms11040168

Academic Editor: Federico G. Infusino

Received: 4 February 2022 Accepted: 7 March 2022 Published: 8 April 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

## 1. Introduction

Only simple graphs are considered in this paper. For a graph *G*, we use V(G), E(G), and  $\Delta(G)$  to denote its vertex set, edge set and maximum degree, respectively. A vertex *v* is called a *k*-vertex (or  $k^+$ -vertex) if the degree  $d_G(v)$  of *v* is *k* (or at least *k*). Let  $N_G(v)$  denote the set of vertices adjacent to *v* in *G*. If no ambiguity arises in the context,  $\Delta(G)$ ,  $d_G(v)$ , and  $N_G(v)$  are simply written as  $\Delta$ , d(v), and N(v), respectively. A subgraph of *G* is called a *clique* if any two of its vertices are adjacent in *G*. A subset  $I \subset V(G)$  of a connected graph *G* is called a *clique-cut* if G[I] is a clique and G - I is disconnected.

A proper edge-k-coloring of a graph *G* is a mapping  $\phi : E(G) \to \{1, 2, ..., k\}$  such that  $\phi(e) \neq \phi(e')$  for any two adjacent edges *e* and *e'*. The *chromatic index*  $\chi'(G)$  of *G* is the smallest *k* such that *G* has a proper edge *k*-coloring. An edge coloring of the graph *G* is called *strong* if every color class induces a matching in *G*. The *strong chromatic index* of *G*, denoted  $\chi'_{s}(G)$ , is the smallest *k* such that *G* has a strong edge-*k*-coloring.

The strong edge-coloring of graphs was introduced by Fouquet and Jolivet [1]. In 1985, Erdős and Nešetřil raised the following conjecture and showed that the upper bounds are tight:

**Conjecture 1.** For a graph G,

 $\chi'_{\mathrm{s}}(G) \leq \left\{ egin{array}{ll} 1.25\Delta^2, & ext{if }\Delta ext{ is even;} \ 1.25\Delta^2 - 0.5\Delta + 0.25, & ext{if }\Delta ext{ is odd.} \end{array} 
ight.$ 

Using probabilistic method, Molloy and Reed [2] showed that  $\chi'_s(G) \leq 1.998\Delta^2$  when  $\Delta$  is sufficiently large. This result was further improved in [3] to that  $\chi'_s(G) \leq 1.93\Delta^2$  for any graph *G*. Using Four-Colour Theorem and Vizing Theorem, Faudree et al. [4] showed

that every planar graph *G* has  $\chi'_{s}(G) \leq 4\Delta + 4$ ; and constructed a planar graph *G* such that  $\chi'_{s}(G) = 4\Delta - 4$ .

A planar graph is called *outerplanar* if it has a plane embedding such that all the vertices lie on the boundary of the unbounded face. It was shown in [5] that a graph *G* is outerplanar if and only if *G* is  $K_4$ -minor-free and  $K_{2,3}$ -minor-free. Hence outerplanar graphs are special  $K_4$ -minor-free graphs. Wang et al. [6] showed that every  $K_4$ -minor-free graph *G* with  $\Delta \ge 3$  has  $\chi'_s(G) \le 3\Delta - 2$  and the upper bound is tight. Hocquard et al. [7] proved that every outerplanar graph *G* with  $\Delta \ge 3$  has  $\chi'_s(G) \le 3\Delta - 3$  and the upper bound is tight.

In this paper we will give a characterization for an outerplanar graph *G* with  $\Delta \ge 3$  to have  $\chi'_{s}(G) = 3\Delta - 3$ .

#### 2. Sun-Graphs

Suppose that *G* is an outerplanar graph. We embed *G* in the plane so that all the vertices occur in the boundary of unbounded face. Let F(G) denote the set of faces in *G*. The unbounded face, denoted by  $f_0(G)$ , of *G* is called *outer face*, and other faces *inner faces*. For a face  $f \in F(G)$ , the boundary of *f* is denoted by b(f). A 3-face with *x*, *y*, *z* as boundary vertices is written as [xyz]. The edges lying in the outer face are called *outer edges* and other edges *inner edges*. An inner face *f* is called an *end-face* if b(f) contains at most one inner edge. A *leaf* of *G* is a vertex of degree 1, and a *pendant edge* is an edge incident to a leaf. For a vertex  $v \in V(G)$ , let L(v) denote the set of pendant edges at vertex v. For a cycle *C*, an edge  $xy \in E(G) \setminus E(C)$  is called a *chord* of *C* if  $x, y \in V(C)$ .

Let  $F_1$  denote a subgraph of G, which consists of a 3-cycle  $C_3 = x_0 x_1 x_2 x_0$  with  $d_G(x_i) = \Delta \ge 3$  for i = 0, 1, 2.

Let  $F_2$  denote a subgraph of G, which consists of a 4-cycle  $C_4 = x_0 x_1 x_2 x_3 x_0$  with  $d_G(x_0) = d_G(x_1) = \Delta \ge 3$ .

Let  $F_3$  denote a subgraph of G, which consists of a 7-cycle  $C_7 = x_0 x_1 \cdots x_6 x_0$  with  $d_G(x_i) = 3$  for  $i = 0, 1, \dots, 6$ .

We assume that  $C_4$  in  $F_2$  and  $C_7$  in  $F_3$  have no chord.

The configurations  $F_1$ ,  $F_2$ ,  $F_3$  are depicted in Figure 1. By the outerplanarity of G, for  $F_j$ ,  $j \in \{1, 2, 3\}$ , some vertex  $y_i \in N(x_i) \setminus \{x_{i-1}, x_{i+1}\}$  may identify with some vertex  $y_{i+1} \in N(x_{i+1}) \setminus \{x_i, x_{i+2}\}$ , but there is at most one such pair  $\{y_i, y_{i+1}\}$  satisfying  $y_i = y_{i+1}$ , where indices i are taken as modulo n.



**Figure 1.** Configurations *F*<sub>1</sub>, *F*<sub>2</sub>, and *F*<sub>3</sub>.

**Lemma 1** ([7]). *If G is an outerplanar graph with*  $\Delta \ge 3$ *, then*  $\chi'_{s}(G) \le 3\Delta - 3$ *.* 

**Lemma 2.** Let  $F_1$ ,  $F_2$ ,  $F_3$  are defined as above. Then

- (1)  $\chi'_{\rm s}(F_1) = 3\Delta 3.$
- (2)  $\chi'_{\rm s}(F_2) = 3\Delta 3.$
- (3)  $\chi'_{\rm s}(F_3) = 6.$

**Proof.** (1) Since  $|E(F_1)| = 3\Delta - 3$  and it is easy to check that any two edges of  $F_1$  have distance at most two, so it follows that  $\chi'_s(F_1) = 3\Delta - 3$ .

- (2) Applying the similar analysis as in (1), we can derive that  $\chi'_{s}(F_{2}) = 3\Delta 3$ .
- (3) It is evident that  $\chi'_{s}(F_{3}) \leq 6$  by Lemma 1. Conversely, assume that  $F_{3}$  admits a strong edge-5-coloring  $\phi$  using the color set  $C = \{1, 2, ..., 5\}$ . Let  $E_{i}$  denote the set of edges colored with the color *i* under the coloring  $\phi$ . Set  $E^{*} = E(F_{3}) E(C_{7})$ . First, it is easy to inspect that  $|E_{i}| \leq 3$  for each  $i \in C$ . Next, because  $|E(F_{3})| = 14$  and |C| = 5, we can assume that  $|E_{i}| = 3$  for i = 1, 2, 3, 4 and  $|E_{5}| = 2$ . Since  $|E^{*}| = 7$ , some  $E_{i}$  for  $i \in \{1, 2, 3, 4\}$ , say i = 1, satisfies  $|E_{1} \cap E^{*}| \leq 1$ . It implies that  $|E_{1} \cap E(C_{7})| \geq 2$ . On the other hand, it is easy to inspect that  $|E_{1} \cap E(C_{7})| \leq 2$ . So  $|E_{1} \cap E(C_{7})| = 2$  and  $|E_{1} \cap E^{*}| = 1$ , however such coloring is impossible, a contradiction. This shows that  $\chi'_{s}(F_{3}) \geq 6$ .  $\Box$

Let  $C_n = x_0x_1 \cdots x_{n-1}x_0$  be a cycle with  $n \ge 3$ . Let  $k \ge 3$  be an integer. At each vertex  $x_i$ , we glue k - 2 leaves and write the resultant graph as  $S_n^k$ . Then  $S_n^k$  is an outerplanar graph with maximum degree k and order n(k - 1). We call  $S_n^k$  a *sun-graph* with parameters n and k. If k = 3, then we use  $y_i$  to denote a leaf adjacent to  $x_i$  for  $i = 0, 1, \ldots, n - 1$ . As an easy observation, we have the following:

**Lemma 3.** Let  $C_n$  be a cycle with  $n \ge 3$ . Then

$$\chi'_{s}(C_{n}) = \begin{cases} 5, & \text{if } n = 5; \\ 3, & \text{if } n \equiv 0 \pmod{3}; \\ 4, & \text{otherwise.} \end{cases}$$

**Lemma 4.** Let  $S_n^3$  be a sun-graph with  $n \ge 3$ . Then

$$\chi'_{s}(S_{n}^{3}) = \begin{cases} 6, & \text{if } n = 3, 4, 7; \\ 5, & \text{otherwise.} \end{cases}$$

**Proof.** If n = 3, 4, 7, the conclusion follows immediately from Lemma 2. So suppose that  $n \neq 3, 4, 7$ . It holds trivially that  $\chi'_{s}(S^{3}_{n}) \geq 5$  since  $S^{3}_{n}$  contains two adjacent 3-vertices. To show that  $\chi'_{s}(S^{3}_{n}) \leq 5$ , we make use of induction on n. It remains to construct a strong edge-5-coloring  $\phi$  of  $S^{3}_{n}$  using the color set  $C = \{1, 2, ..., 5\}$ .

- If n = 5, then we color the edges in  $\{x_iy_i, x_{i+2}x_{i+3}\}$  with i + 1 for i = 0, 1, 2, 3, 4, where indices are taken as modulo 5.
- If  $n \equiv 0 \pmod{6}$ , then we alternatively color the edges in  $E(C_n)$  with 1, 2, 3, and color alternatively pendant edges with 4, 5.
- If n = 8, then we color  $\{x_1y_1, x_3x_4, x_6x_7\}$  with 1,  $\{x_3y_3, x_0x_1, x_5x_6, \}$  with 2,  $\{x_5y_5, x_0x_7, \}$  $\{x_2x_3\}$  with 3,  $\{x_7y_7, x_1x_2, x_4x_5\}$  with 4, and  $\{x_0y_0, x_2y_2, x_4y_4, x_6y_6\}$  with 5.
- If n = 9, then we color  $\{x_1y_1, x_3y_3, x_8y_8, x_5x_6\}$  with 1,  $\{x_0y_0, x_5y_5, x_7y_7, x_2x_3\}$  with 2,  $\{x_2y_2, x_4y_4, x_6y_6, x_0x_8\}$  with 3,  $\{x_0x_1, x_3x_4, x_6x_7\}$  with 4, and  $\{x_1x_2, x_4x_5, x_7x_8\}$  with 5.

Now assume that  $n \ge 10$  and  $n \ne 0 \pmod{6}$ . Consider the graph  $S_{n-5}^3$ . Note that  $n-5 \ge 5$ , and  $n-5 \ne 7$ . By the induction hypothesis,  $\chi'_s(S_{n-5}^3) = 5$ . Let  $\phi$  be a strong edge-5-coloring of  $S_{n-5}^3$ , so that  $\phi(x_0x_1) = 1$ ,  $\phi(x_0y_0) = 2$ ,  $\phi(x_{n-7}x_{n-6}) = 3$ ,  $\phi(x_{n-6}y_{n-6}) = 4$ , and  $\phi(x_0x_{n-6}) = 5$ . Clearly,  $S_n^3$  can be obtained from  $S_{n-5}^3$  by inserting five vertices  $x_{n-5}, x_{n-4}, x_{n-3}, x_{n-2}, x_{n-1}$  to the edge  $x_0x_{n-6}$  and adding a leaf  $y_j$  at  $x_j$  for  $j = n - 5, n - 4, \ldots, n - 1$ . We extend  $\phi$  to  $S_n^3$  by coloring  $\{x_{n-3}x_{n-2}, x_{n-5}y_{n-5}\}$  with 1,  $\{x_{n-5}x_{n-4}, x_{n-2}y_{n-2}\}$  with 2,  $\{x_{n-2}x_{n-1}, x_{n-4}y_{n-4}\}$  with 3,  $\{x_{n-4}x_{n-3}, x_{n-1}y_{n-1}\}$  with 4, and  $\{x_0x_{n-1}, x_{n-6}x_{n-5}, x_{n-3}y_{n-3}\}$  with 5. It is easy to testify that the extended coloring is a strong edge-5-coloring of  $S_n^3$ .

For a sun-graph  $S_n^k$  with  $C_n = x_0 x_1 \cdots x_{n-1} x_0$ , we set  $L(x_i) = \{e_i^1, e_i^2, \dots, e_i^{k-2}\}$  for  $i = 0, 1, \dots, n-1$ . Recall that  $L(x_i)$  stands for the set of pendant edges incident to  $x_i$ .

4 of 7

**Lemma 5.** Let  $S_n^k$  be a sun-graph with  $k, n \ge 4$  and n being even. Then

$$\chi'_{s}(S_{n}^{k}) = \begin{cases} 2k, & \text{if } n = 4; \\ 2k - 1, & \text{if } n \ge 6. \end{cases}$$

**Proof.** Since  $k \ge 4$ , it follows that  $k - 2 \ge 2$ . The proof is split into the following two cases.

- Assume that n = 4. Color x<sub>0</sub>x<sub>1</sub>, x<sub>1</sub>x<sub>2</sub>, x<sub>2</sub>x<sub>3</sub>, x<sub>3</sub>x<sub>0</sub> with 1, 2, 3, 4, respectively; For i = 0,2,..., n − 2, we color k − 2 pendant edges in L(x<sub>i</sub>) with colors 5, 6, ..., k + 2; For i = 1, 3, ..., n − 1, we color k − 2 pendant edges in L(x<sub>i</sub>) with colors k + 3, k + 4, ..., 2k. It is easy to see that the defining coloring is a strong edge-2k-coloring of S<sup>k</sup><sub>4</sub>. Hence X'<sub>s</sub>(S<sup>k</sup><sub>4</sub>) ≤ 2k. Conversely, we note that every pendant edge of S<sup>k</sup><sub>4</sub> has distance at most two to any edge in E(C<sub>4</sub>). This implies that, for any strong edge coloring of S<sup>k</sup><sub>4</sub>, the color of any pendant edge is distinct from that of edges in C<sub>4</sub>. Moreover, at least 2(k − 2) colors are needed when we color the 4(k − 2) pendant edges of S<sup>k</sup><sub>4</sub>. It follows therefore that X'<sub>s</sub>(S<sup>k</sup><sub>4</sub>) ≥ 4 + 2(k − 2) = 2k. This yields that X'<sub>s</sub>(S<sup>k</sup><sub>4</sub>) = 2k.
- Assume that  $n \ge 6$ . It is straightforward to conclude that  $\chi'_{s}(S_{n}^{k}) \ge 2k 1$  since  $S_{n}^{k}$  contains two adjacent *k*-vertices. Conversely, we notice that  $S_{n}^{3}$  is a spanning subgraph of  $S_{n}^{k}$ . By Lemma 4,  $S_{n}^{3}$  has a strong edge-5-coloring  $\phi$  using colors 1, 2, 3, 4, 5. Based on  $\phi$ , we can color the remaining k 3 pendant edges in  $L(x_{i})$  with colors 6, 7, . . . , k + 2 for each i = 0, 2, . . . , n 2; and color the remaining k 3 pendant edges in  $L(x_{i})$  with colors k + 3, k + 4, . . . , 2k 1 for each i = 1, 3, . . . , n 1. The extended coloring is a strong edge-(2k 1)-coloring of  $S_{n}^{k}$ . It therefore turns out that  $\chi'_{s}(S_{n}^{k}) \le 2k 1$ .

**Lemma 6.** Let  $n \ge 4$  be an odd number. Then (1)  $\chi'_{s}(S^{4}_{n}) \le 8$ . (2)  $\chi'_{s}(S^{5}_{n}) \le 11$ .

**Proof.** We first prove (1), by discussing two cases below.

- Assume that n = 7. Give a strong edge-7-coloring  $\phi$  of  $S_7^4$  as follows:  $\phi(x_i x_{i+1}) = i + 1$  for i = 0, 1, ..., 6, where indices are taken as modulo 7; then we color  $L(x_0)$  with 3, 5,  $L(x_1)$  with 4, 6,  $L(x_2)$  with 5, 7,  $L(x_3)$  with 1, 6,  $L(x_4)$  with 2, 7,  $L(x_5)$  with 1, 3, and  $L(x_6)$  with 2, 4.
- Assume that  $n \neq 7$ . By Lemma 4,  $S_n^3$  admits a strong edge-5-coloring  $\phi$  using the colors 1, 2, ..., 5 so that  $e_0^1, e_1^1, \ldots, e_{n-1}^1$  have been colored. Afterward, we extend  $\phi$  to the remaining edges of  $S_n^4$  by coloring  $e_0^2$  with 6,  $\{e_1^2, e_3^2, \ldots, e_{n-2}^2\}$  with 7, and  $\{e_2^2, e_4^2, \ldots, e_{n-1}^2\}$  with 8. It is easily seen that the resultant coloring is a strong edge-5-coloring of  $S_n^4$ .

Next we prove (2). By the result of (1),  $S_n^4$  has a strong edge-8-coloring  $\phi$  using the colors 1, 2, ..., 8. Based on  $\phi$ , we can color  $e_0^3$  with 9,  $\{e_1^3, e_3^3, \ldots, e_{n-2}^3\}$  with 10, and  $\{e_2^3, e_4^3, \ldots, e_{n-1}^3\}$  with 11. This leads to a strong edge-11-coloring of  $S_n^5$ .  $\Box$ 

We first establish a useful claim:

**Claim 1.** Let  $A_i = \{e'_i, e''_i\} \subseteq L(x_i)$  for i = 0, 1, ..., n - 1. Let  $A = A_0 \cup A_1 \cup \cdots \cup A_{n-1}$ . Then A can be strongly edge-5-colored on the graph  $S_n^k$ .

**Proof.** Since  $n \ge 5$  is odd, we can give an edge 5-coloring  $\pi$  of A as follows: coloring  $A_1$  with 2, 4;  $A_2$  with 3, 5;  $A_3$  with 1, 4; each of  $A_0, A_5, A_7, \ldots, A_{n-2}$  with 1, 3; and each of  $A_4, A_6, A_8, \ldots, A_{n-1}$  with 2, 5. It is easy to confirm that  $\pi$  is a strong edge-5-coloring of A restricted in the graph  $S_n^k$ .  $\Box$ 

**Lemma 7.** Let  $k \ge 6$ , and let  $n \ge 5$  be odd. Then  $\chi'_{s}(S_{n}^{k}) \le \lceil 2.5k - 2 \rceil$ .

**Proof.** If *k* is even, then by Lemma 6(1) and repeatedly applying Claim 1, we get that  $\chi'_{s}(S_{n}^{k}) \leq 8 + 5 \cdot \frac{k-4}{2} = 2.5k - 2 = \lceil 2.5k - 2 \rceil$ .

If *k* is odd, then by Lemma 6(2) and repeatedly applying Claim 1, we get that  $\chi'_{s}(S_{n}^{k}) \leq 11 + 5 \cdot \frac{k-5}{2} = 2.5k - 1.5 = \lceil 2.5k - 2 \rceil$ .  $\Box$ 

### 3. Outerplanar Graphs

Suppose that *G* is a connected outerplanar graph. Let  $I \subseteq V(G)$  be a clique-cut of *G* with  $1 \leq |I| \leq 2$ ; that is, G[I] is  $K_1$  or  $K_2$  such that G - I is disconnected. If G - I has at least two components each containing at least one edge, then *I* is said to be a *separable* clique-cut.

For a separable clique-cut *I* of *G*, let  $H_1, H_2, ..., H_s$  ( $s \ge 2$ ) denote the components of G - I with  $|E(H_1)| \ge 1$  and  $|E(H_2)| \ge 1$ . We set  $G_1 = G[E(H_1) \cup E(I)]$  and  $G_2 = G[E(H_2) \cup \cdots \cup E(H_s) \cup E(I)]$ , where E(I) denotes the set of edges in *G* which are incident to at least one vertex in *I*.

The following lemma plays a crucial role in the proof of our main results.

**Lemma 8.** Let G be a connected outerplanar graph with a separable clique-cut I. Suppose that  $G_1$  and  $G_2$  are defined as above. Then

$$\chi'_{s}(G) = \max\{\chi'_{s}(G_{1}), \chi'_{s}(G_{2})\}\$$

**Proof.** Let  $l_1 = \chi'_s(G_1)$ ,  $l_2 = \chi'_s(G_2)$ , and  $l = \max\{l_1, l_2\}$ . For i = 1, 2, let  $\phi_i$  be a strong edge-*l*-coloring of  $G_i$  using the color set  $C = \{1, 2, ..., l\}$ . By the definition of  $G_i$ , we deduce that  $E(I) \subset E(G_i)$  for i = 1, 2, and  $E(G_1) \cap E(G_2) = E(I)$ . Observe that any edge in  $E(G_1) \setminus E(I)$  and any edge in  $E(G_2) \setminus E(I)$  have distance at least three in *G*. Moreover, since the distance between any two edges in E(I) is less than three, no two edges in E(I) are assigned same color in both  $\phi_1$  and  $\phi_2$ . So we may assume that  $\phi_1(e) = \phi_2(e)$  for each  $e \in E(I)$ . Combining  $\phi_1$  and  $\phi_2$ , we get a strong edge-*l*-coloring of *G*. This shows that  $\chi'_s(G) \leq l$ . On the other hand, since  $G_i$  is a subgraph of *G*, we have naturally that  $\chi'_s(G) \geq \max\{\chi'_s(G_1), \chi'_s(G_2)\} = l$ . Consequently,  $\chi'_s(G) = l$ .  $\Box$ 

**Theorem 1.** Let G be an outerplanar graph with  $\Delta \ge 4$ . If G does not contain  $F_1$  as a subgraph, then  $\chi'_s(G) \le 3\Delta - 4$ .

**Proof.** Assume the contrary, let *G* be a counterexample with |E(G)| being as small as possible. Then *G* is connected,  $|E(G)| \ge 3\Delta - 3$ , and possesses the following properties:

**(P1)** No  $F_1$  is contained in *G* or its subgraphs.

(P2) *G* is not strongly edge- $(3\Delta - 4)$ -colorable, but any subgraph *H* of *G* with |E(H)| < |E(G)| is strongly edge- $(3\Delta - 4)$ -colorable.

In fact, if  $\Delta(H) < \Delta$ , then by Lemma 1,  $\chi'_{s}(H) \le 3\Delta(H) - 3 \le 3(\Delta - 1) - 3 < 3\Delta - 4$ since  $\Delta \ge 4$ . If  $\Delta(H) = \Delta$ , then by the minimality of *G*,  $\chi'_{s}(H) \le 3\Delta(H) - 4 = 3\Delta - 4$ .

(P3) *G* is not a tree; otherwise  $\chi'_{s}(G) \leq 2\Delta - 1 < 3\Delta - 4$ , contradicting (P2). By Lemma 8, the following claim holds:

**Claim 2.** *G* does not contain a separable clique-cut  $I \subseteq V(G)$  with  $1 \leq |I| \leq 2$ .

Embed *G* to the plane so that all the vertices lie in the boundary of  $f_0(G)$ . Let *H* denote the graph obtained from *G* by removing all leaves. By (P3) and Claim 2, we can easily deduce Claims 3 and 4 below.

**Claim 3.** *H* is 2-connected, and  $b(f_0(H))$  forms a Hamiltonian cycle. This furthermore implies that all vertices in  $V(G) \setminus V(H)$  are leaves.

**Claim 4.** Every inner edge uv of H is incident to an end-3-face [uvw] such that  $d_G(w) = d_H(w) = 2$ .

Claim 4 implies that  $2 \le \Delta(H) \le 4$ ; for otherwise *H* will contain an inner edge *xy* with  $d_H(x) \ge 5$  and  $\{x, y\}$  is a separable clique-cut of *G*.

Let  $G^*$  denote the graph obtained from *G* by carrying out repeatedly the following operation:

(\*) If *x* is a 2-vertex of *H* incident to an end-3-face [*xyz*], then we split *x* into two new vertices *y*<sub>1</sub> and *z*<sub>1</sub> so that *y*<sub>1</sub> joins with *y*, and *z*<sub>1</sub> joins with *z*.

Intuitively speaking, every 2-vertex of *H* which is incident to an end-3-face is replaced by two leaves in *G*. It is easy to see that  $\Delta(G^*) = \Delta(G)$ , and  $\phi$  is a strong edge-*k*-coloring of *G*<sup>\*</sup> if and only if  $\phi$  is a strong edge-*k*-coloring of *G*.

It is easily observed that  $G^*$  is a spanning subgraph of some sun-graph  $S_n^k$ , where  $k = \Delta(G)$  and n is the total number of 3<sup>+</sup>-vertices in G and the number of 2-vertices in G which are not on any 3-face. As an example, we observe the graphs G and  $G^*$  depicted in Figure 2.



**Figure 2.**  $G^*$  is obtained from G by carrying out (\*), and  $G^*$  is a subgraph of  $S_5^4$ .

Noting that  $3k - 4 \ge \max\{2k, \lceil 2.5k - 2\rceil\}$ , we deduce by Lemmas 5 and 7 that  $\chi'_s(G) = \chi'_s(G^*) \le \chi'_s(S^k_n) \le 3k - 4 = 3\Delta - 4$ . This completes the proof of the theorem.  $\Box$ 

Combining Theorem 1 and Lemmas 1 and 2(1), the following theorem holds:

**Theorem 2.** Let G be an outerplanar graph with  $\Delta \ge 4$ . Then  $\chi'_s(G) \le 3\Delta - 3$ ; and  $\chi'_s(G) = 3\Delta - 3$  if and only if G contains  $F_1$  as a subgraph.

**Theorem 3.** Let *G* be an outerplanar graph with maximum degree  $\Delta = 3$ . If *G* does not contain  $F_1$ ,  $F_2$  or  $F_3$  as a subgraph, then  $\chi'_s(G) \leq 5$ .

**Proof.** Assume the contrary, let *G* be a counterexample with |E(G)| being as small as possible. Then *G* is connected,  $|E(G)| \ge 6$ , and possesses the following properties:

(Q1) None of  $F_1$ ,  $F_2$ ,  $F_3$  is contained in *G* or its subgraphs.

(Q2) *G* is not strongly edge-5-colorable, but any subgraph *H* of *G* with |E(H)| < |E(G)| is strongly edge-5- colorable. Actually, if  $\Delta(H) \le 2$ , then by Lemma 3,  $\chi'_{s}(H) \le 5$ . If  $\Delta(H) = 3$ , then by the minimality of *G*, we obtain that  $\chi'_{s}(H) \le 5$ .

(Q3) *G* is not a tree; otherwise  $\chi'_{s}(G) \leq 5$ , contradicting (Q2).

By Lemma 8, *G* does not contain a separable clique-cut  $I \subseteq V(G)$  with  $1 \leq |I| \leq 2$ . Embed *G* to the plane so that all the vertices lie in  $b(f_0(G))$ . Removing all the leaves of *G*, we get a subgraph *H* of *G*. Similarly to the proof of Theorem 1, we conclude the

• *H* is 2-connected, and all vertices in  $V(G) \setminus V(H)$  are leaves.

following:

• Every inner edge uv of H is incident to an end-3-face [uvw] such that  $d_G(w) = d_H(w) = 2$ .

Let  $G^*$  be the graph obtained from G by doing repeatedly the following operation:

(\*) If *x* is a 2-vertex of *H* incident to an end-3-face [*xyz*] in *H*, then we split *x* into two new vertices *y*<sub>1</sub> and *z*<sub>1</sub> so that *y*<sub>1</sub> joins with *y*, and *z*<sub>1</sub> joins with *z*.

Then  $\Delta(G^*) = \Delta(G)$ , and  $\chi'_s(G) = \chi'_s(G^*)$ . Note that  $G^*$  is a spanning subgraph of some sun-graph  $S_n^3$ , where *n* is the total number of 3-vertices in *G* and the number of 2-vertices in *G* which are not on any 3-face. By Lemma 4, we derive immediately that  $\chi'_s(G) = \chi'_s(G^*) \le \chi'_s(S_n^3) \le 5$ .  $\Box$ 

Combining Theorem 3 and Lemmas 1 and 2, we have the following:

**Theorem 4.** Let G be an outerplanar graph with  $\Delta = 3$ . Then  $\chi'_s(G) \le 6$ ; and  $\chi'_s(G) = 6$  if and only if G contains at least one of  $F_1$ ,  $F_2$ ,  $F_3$  as a subgraph.

When restricted to the family of bipartite outerplanar graphs *G*, smaller and tight upper bounds for  $\chi'_{s}(G)$  can be obtained.

**Theorem 5.** Let G be a bipartite and outerplanar graph with maximum degree  $\Delta \ge 3$ . Then  $\chi'_{s}(G) \le 2\Delta$ ; moreover,  $\chi'_{s}(G) = 2\Delta$  if and only if G contains  $F_{2}$  as a subgraph.

**Proof.** We first show that  $\chi'_{s}(G) \leq 2\Delta$ . Assume the contrary, let *G* be a counterexample with |E(G)| being as small as possible. Then *G* is connected, other than a tree, and is not strongly edge 2 $\Delta$ -colorable, but any subgraph *H* of *G* with |E(H)| < |E(G)| is strongly edge-2 $\Delta$ -colorable. Moreover, by Lemma 8, there is no separable clique-cut  $I \subseteq V(G)$  with  $1 \leq |I| \leq 2$ .

Embed *G* to the plane so that all the vertices occur in  $b(f_0(G))$ . Removing all the leaves of *G*, we obtain a subgraph *H* of *G*. Then *H* is a Hamiltonian cycle without chords, and  $V(G) \setminus V(H)$  are all leaves. So *G* is a subgraph of some  $S_n^k$  where n = |V(H)| is even and  $k = \Delta(G)$ . By Lemma 5,  $\chi'_s(G) \le \chi'_s(S_n^k) \le 2k = 2\Delta$ .

If *G* contains  $F_2$  as a subgraph, then  $\chi'_s(G) \ge \chi'_s(F_2) = |E(F_2)| = 2\Delta$ . Using the foregoing proof, we get that  $\chi'_s(G) = 2\Delta$ . Conversely, if *G* does not contain  $F_2$  as a subgraph, then similarly to the above discussion we can show that  $\chi'_s(G) \le 2\Delta - 1$ .  $\Box$ 

Author Contributions: Conceptualization, Y.W. (Ying Wang) and W.W.; methodology, Y.W. (Ying Wang) and Y.W. (Yiqiao Wang); validation, Y.W. (Yiqiao Wang) and W.W.; formal analysis, Y.W. (Yiqiao Wang); investigation, S.C.; resources, S.C.; writing-original draft preparation, Y.W. (Ying Wang) and S.C.; writing-review and editing, Y.W. (Ying Wang) and W.W.; visualization, Y.W. (Yiqiao Wang); supervision, W.W.; project administration, Y.W. (Yiqiao Wang); funding acquisition, Y.W. (Ying Wang) and W.W. All authors have read an agreed to the published version of the manuscript.

**Funding:** This research was funded by the NSFC (No. 12001156), NSFC (No. 12071048), NSFC (No. 12031018), Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

**Institutional Review Board Statement:** Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant date are within the paper.

**Conflicts of Interest:** The authors declare no conflict of interest.

#### References

- 1. Fouquet, J.L.; Jolivet, J.L. Strong edge-colorings of graphs and applications to multi-*k*-gons. *Ars Combin.* **1983**, *16*, 141–150.
- 2. Molloy, M.; Reed, B. A bound on the strong chromatic index of a graph. J. Combin. Theory Ser. B 1997, 69, 103–109. [CrossRef]
- 3. Bruhn, H.; Joos, F. A stronger bound for the strong chromatic index. Combin. Probab. Comput. 2018, 27, 21–43. [CrossRef]
- 4. Faudree, R.J.; Gyárfás, A.; Schelp, R.H.; Tuza, D. The strong chromatic index of graphs. Ars Combin. 1990, 29, 205–211.
- 5. Chartrand, G.; Harary, F. Planar permutation graphs. Ann. Inst. Henri Poincaré Sect. B (N.S.) 1967, 3, 433–438.
- 6. Wang, Y.; Wang, P.; Wang, W. Strong chromatic index of K<sub>4</sub>-minor free graphs. Inform. Process. Lett. 2018, 129, 53–56. [CrossRef]
- Hocquard, H.; Ochem, P.; Valicov, P. Strong edge-colouring and induced matching. *Inform. Process. Lett.* 2013, 113, 836–843. [CrossRef]