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Abstract: Asymptotic equalities are obtained for the least upper bounds of approximations of
functions from the classes W/g,oo by the generalized Abel-Poisson integrals Py (6), 0 < ¢ < 2, for the
case r > 7 in the uniform metric, which provide the solution to the Kolmogorov-Nikol’skii problem
for the given method of approximation on the Weyl-Nagy classes.
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1. Introduction
Let L be a space of 27r-periodic summable functions and

SIf) = 2+ Y (ag coskx + by sinkx)
k=1

be the Fourier series of f € L.
Further, let C be a subset of the continuous functions from L with the uniform norm
lfllc = max |f(t)|; Loo be a subset of the functions f € L with the finite norm || f||cc =

esstsup [f(8)].

Let A = {As(k)} be the set of functions depending on k € NU 0 and on the parameter
0 € Ep C R, the set E, has at least one limit point and A5(0) = 1. Using the set A to each
function f € L we can associate the series

%O + Y As(k)(ag coskx + by sinkx), & € Ey,
k=1

which converges for every 6 € E, and all x to the continuous function U;(f; x; A).
If the series

1 00
5t kzzl As(k) cos kt

is the Fourier series of some summable function, then (similarly to ([1], p. 52)) for almost
all x € R we have the equality

Us(f;x,A) = % /f(x—l—t)(;—I—]i/\(g(k)coskt)dt. 1)
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Putting in the equality (1) As(k) = e*%, 0 < ¢ <2, we obtain the quantity

T 0 )
Us(f; x5 A) := Py (35 f;x) 71r/f x+t) {;+ Zegcoskt}dt, 5>0,0<y<2, (2

which is usually called the generalized Abel-Poisson integral of the function f (see,
e.g., [2,3]). For v = 1 the integral (2) is the Poisson integral (see, e.g., [4]), for v = 2
the integral (2) is the Weierstrass integral (see, e.g., [5]).
Let us define the classes of functions that we consider further. Let f € L, r > 0 and
be a real number. If the series

ko_ilk’ (ak cos (kx + ﬁg) + by sin (kx + ‘%T))

is the Fourier series of a summable function, then it is denoted by fg and is called the
(r, B)-derivative of the function f in the Weyl-Nagy sense (see, e.g., [6]). Let W},  be the
classes of the functions f for which || f50) |, <1

In this paper, we consider the problem of asymptotic behavior as § — oo of the quantity

EWpooi Py(8))c = sup [If(-) = Py (3, f, )l (©)
fWheo

If the function g(4) is found in an explicit form such that
E(Wp,oos Py (6))c = g(9) +0(8(8)),6 — oo,

then according to Stepanets [6] we say that the Kolmogorov—-Nikol’skii problem is solved
for the class W/§ ~ and the generalized Abel-Poisson integral in the uniform metric.

The approximation properties of the generalized Poisson integrals have been studied
only in the cases v = 1 (Poisson integral) and 7y = 1 (Weierstrass integral). In particular,
the Kolmogorov-Nikol’skii problems for the Poisson integral on the different functional
classes have been solved in [7-11]. Similar problems for Weierstrass integral have been
solved in [5,12-14].

Regarding the results of estimating the approximation rate by the generalized Poisson
integrals for 0 < v < 2 we note the work [2], where the approximation properties of the
integrals (2) on Zygmund classes Z,,0 < a < 2, have been studied.

In this paper, we aim to find asymptotic equations for quantities (3) for arbitrary
0 < 7 < 2. This will allow us to find such v for any 7, so that the approximation rate of
functions from the classes W}g,oo by the generalized Abel-Poisson integrals, i.e, the rate at

which the quantity (3) tends to zero, is equal to %. This approximation rate could not be
achieved when approximating by Poisson integrals and Weierstrass integrals.

At present, the extremal problems of the approximation theory, being related to the
study of the approximation properties of linear methods for summing Fourier series,
become increasingly relevant in applied mathematics, in particular, in the creation of
mathematical models [15-19], in signal transmission [20,21], in the decision theory [22]
and others. The problem considered in the paper, as well as those close to it [23-25] find
practical application in the issues of coding, transmission and reproduction of images.

2. Main Result

Let us define the summing function for the generalized Abel-Poisson integral as fol-
lows

IN
=
IN

()= { (1=e™) ( —r =15 e 7JF(2+r—”r)(5%71ul”>,0

T(u
(1—e " )u™" u> A
=
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where 0 < v <2, 6§ > 0.

Theorem 1. Let v > -y. Then the following asymptotic equality holds as § — oo:

1
E(Wheoi P2(0)) _ = o £ ()l + O (6,7,7)), )

where f (x) is (r, B)—derivative in the Weyl-Nagy sense as r = vy, p = 0 and

oy ¥ <r<2y,
Y(é, 7, ’)/) = Iné r = Zf)/,
r > 2.

Proof. Let us rewrite the function 7(u) given by (4) in the form t(u) = ¢(u) + u(u) (see,
e.g., [20]), where

H2_1 5 r+1_q 1
y—r—107 ut4+24+r—9)7v u, 0<u< =,
qo(u)—{(,,r ? ( ) 7 ©
u’r, 75
plu) =
Y . 21 W2 . 11— 1
_{ (1 em MZ (4 r 1(5 T+ 2+r—7)6 u 7),O§ugw, @
Q—e ™ —uM)u™"u> \[,
Further we show a summability of the transformations of the form
g 17 pr
Pp(t) = ¢(t,B) = —/(p ) cos | ut+ du, 8)
T 2
0
o L7 pr
flg(t) = a(t, B) = E/‘u cos| ut + - du. 9)
0
First, prove a convergence of the integral
17
Alp)=— [ [gp(t)at.

Integrating twice by parts and taking into account that ¢(0) = 0, lim ¢(u) =

U—00
li_r>ro1o ¢'(u) = 0and ¢’ (u) is continuous on [0, o), we have

0/°°go(u) cos (ut + [Z[)du = tlz (qo’(O) cos '877( — O/ooqo”(u) cos (ut + 'an)du)

In view of the fact, that the function ¢(u) is downward closed on [%, oo) , the last
relation yields

(e )

/(p(u)cos(ut—l—ﬁz?-[)du <

0

WO+ | [+ [ |le"w]au | -

1

B

=g
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71_1—}—2(1’—1—1—7)5%_1—1—/ ¢ (u)du | =

1 r+l_q ’ 1 r+1_q 1
=0 () et

Here and below we denote by symbols K;,i = 1,2, ..., some positive constants.

From the inequalities (10) it follows that

/ /(p cos(uH—ﬁz >du

LERZRL
By virtue of the equality (4.16) from ([1], p. 69), we obtain

dt = o(ﬁ*l), 5 — co.

1

Vs Vo, W
cos(ut+‘8 )du dt = / /—l—/go Cos<ut+‘82 )du dt <
0 o lo 1L
Vs
1 1 qom 1 jom
Vs R Vs st
<5 / ) |du + / w)dudt < K357 '+ / / W dudt.
0 o L 0 1

Vs

(10)

(11)

(12)

Making a change of variables and integrating by parts in the last integral, we obtain

Vs vt I A ]
/ / u" "dudt = 27T/ / u“’_’du—;c =
X
0 1 ot 1
Vs Vs Vs
1
Ko © o -
17 1/ 1 7t
=2n| — = / uV "du —1—/7 — +x dx | =
X 1 21 27 X %
K Vo
1 (1427)
5 Qf Vs
= 27r< — lim = / u' Tdu 4+ — / u' "du+
X—00 X 2
1 1
s Vs

In view of )
%er
lim — / u" "du =0,
X—00 X
%

(13)
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r s — r ¢ y=r
5571/n1<1%—@@x)71ﬁx::§V71t/ e
21 X 142 y_ 1
Vs +2
r_q 7 . 1 1 r_q 7 T r_q
s /y7 1+ ——)dy < (14— )o7 /y7 dy = K565,
. y—1 27
1+2m 1+2m
from (13) and (12) we can write that
/1/go(u)cos<ut+ ﬁ;)du dt=0(57"), 6 o, (14)
010
One can analogously show that
0 | oo
/’/mmm%m+@vah4%M*)5%m. (15)
s 10

From the formulas (11), (14) and (15) we obtain
Alg) = o((s%*l), 5 — oo

Now we show the convergence of the integral

Integrating twice by parts and taking into account that #(0) = 3/(0) =0, lim p(u) =

U—00
lim y/(u) =0, we have

u—oo
T B _ 1 /oo " B
O/‘u(u)cos<ut+2 du = 2 /H (u) cos ut + - du,

and hence
Lo
[ee] o ) o0
1 1
/y(u)cos(ut—!—ﬁ;)du STZ/‘VN(”)W”:TZ (/+/+/>’y”(u}‘du . (16)
0 0 0 1 1
Vs

Further we use the notations

V(u) = (1 —e W — Lﬂ) u?=7, W(u) = (1 —e " — u"Y) ul=", (17)

Let us differentiate twice the functions V(u) and W (u):

Y

V') =qu(e™ —1)+ 2 —p)u 71— —u7),
W (u) =y ™ =1)+ (1 —y)u™" (1 —e " — u”),

V' (u) = 'y(e_’ﬂ(l —qu?) —1) +(2 —’y)((l —y)u" (1 —e " —u'y) (e — 1)),
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W (1) = =P te " —y(y = 1 (1 =e " =) ey (y = D e 1),

By virtue of the fact, that for u € [0, %}

W) = (v —r—1)87 W)+ @247 )T W (w), (18)
we obtain
1 1 1
T L L
/|y“(u)‘du <(r+1—9)57 * /|V”(u)|du+(2+r—'y)§7 /|W" u)|du.
0 0 0

Taking into account, that for u € {0, %{5} V"(u) <0, W’'(u) <0, and also the

inequalities
u2y

T—e ™ <u?, e +ur—1<

we have

)l < 1m0 T (Vi) - v () )+

=)

g

Y2 4r—n)sT ! (W’(O) W (W)) -

r+l 1-— 1
FQ24r—q)sT ! 'y(le_i")+77<e_§+51> <Ko % (20)

: 1
Noting, that for u > s

W) = r(r+ 1) (1= e —ut a2 = 2qut 2 (e - 1)+

+r((r =D 2™ = 1) =2 Yu

we can write

1
/ W (w)|du <r(r+1) [ (e +u” —1)u"2du+
%

g‘ﬂ\)#

1 1
+29r / (1 - e*”w)u%rfzdu + / ’(’y —Du" 2™ —1) —qu* 2 |u"du.

* b
The inequality (19) in combination with

<@y-1¥2 ue Do), (1)

’('y —Du 2" —1) — qur 27
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yields

u2'yfrf2du <

r(r+1)
2

" (u)|du é( +2W+7(27—1)>

g‘“\,_\
g‘“\,_\

1 1 _o
= (@ + 297+ (27 - 1)) Vo [ w2y = { Kgot wKeo 5 r £ 20 o)

Kgé% Iné, r =27,

§‘“\H

In the case u € [1,0) we obtain

[e9)

/| w)|du < r(r+1) / e Y = D)u " 2du+
1 1

(o)

+2'yr/(1 e ”y>u7 = 2du+'y/‘ Du" 2™ —1) — 4?72 % |u~"du.
1

Let 0 < v < 1, then using the inequalities (19) and (21), we obtain

e} e}
rir+1 —r—
/\y”(u)|du < ( ( 5 ) + 291+ v (2y — >/ 224y = Kyg. (23)
1 1
Let further 1 < « < 2. By virtue of the inequalities
(e*”’y +uV — 1)u*2 <1, (1 — e*ln)tﬂfz <1,

[y = Du" (e = 1) =2 <29 -1,

we have - -
1
[ wldu < (’(’j ) 4 290 4 (27— 1>) [urin =K. (1)
1 1
Therefore, combining the relations (23), (24), we obtain
/yy”(u)|du —0(1), 6 — co. (25)

1
In view of (16), taking into account (20), (22) and (25), we obtain

. 0 Oo(1), v<r<2y,
/ (u) cos (ut + = pr )du dt = { O(h}uS) r=2y, (26)
1> V5 T

O(6777), r>27.

Let us further consider

07[ /.”(u Cos<ut+’32ﬂ)d dt < f [V(M)Cos<ut+ﬁ )du dit
+ 073 jﬂ(u) cos (ut + ‘an>du dt. 27)
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By the inequality (19), one can easily verify that the following relations hold
1 1
Vo) s Vo s
/ 11(11) cos (ut + B ) / / |p(u0) |dudt = Kip67 2. (28)
0 0 0

The function |u(u)| is monotonically decreasing on the interval [ug, ], 119 > 1, non-

negative and tends to zero as u — co. Then, by the equality (4.16) from ([ ]_ p.- 69)

we obtain
/ u(u) cos (ut + >

1

o

i ) cos (ut + 7 ) aula

V5 up Ysuo+ 2 Y uo+ 3

<//\;4 \dudt—ir// u)|dudt < // ) |dudt. 29)
0 L

Let n € Nis such that

Vs

/

0

/

Vs

-/

dt <

7|y cos<ut+'8)du

1

v
pr
O/ /|y cos<ut+ )du

U

dt <

27‘[( 1)

\}+ <u0<\[+2”” then
Ysuo+ W
/ / ) |dudt < / / )| dudt. (30)
0 L 0 1

J

We transform the latter integral using a change of variable and integration by parts
(assume thatdé > (2w(n+1) 4+ 1)7)

Vs 7[+ rr(n+l) . %er
dx
/ / () |dudt = 270(n + 1) / / ()]
0 1 2r(n+1) 1
Vs Vs Vs
=t oo 0
1 v 1
=2n(n+1)| - < / [p(u)|du + / —|u %+x dx | =
2m(n+1) 5
1 Vs 2mt(n+1)
Vs Vs
%-ﬁ-x
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7
(1 v 1 Y —r
L (5+) — —1)( —
+ x(e +(w+x> 1)<Q[+x) dx+
27t(n+1)
Vs
[ (G ) ()
+ / (e Ve +(—=+x) —1)|—=—=+x) dx 31
s 7 7 (1)
=1
Obviously,
%er
. —u
lim — (7" 4+ w7 =1)p(Vou)du = o. (32)
%
Since the second inequality from (19) holds, then
1+27%g+1)
- - - Y _ —r <
2n(n+1) (e T 1)” du <
1
Vs
1+27;(/2+1) 1427(n+1)
] r+l Vs
w ! 2 5 r r_
[ — y—r < - 2y < 2.
= dn(n+1) 1/ WA S T ) 1 wdu < Ko (33)
K7 s
Using the second inequality from (19), we have
=
[
(T () ) ()
—le \W + +x) —1)(—=+x) dx<
! 7 7
27t(n+1)
T
1—-L 1—-L
Vs 20— g
1 L r_
< <1+x> A B (ER Y
A\ V3
2n(n+1) 2nt(n+1)
Vs Vs
Vs Vs
r_»n yZ’Y—V r_o 20 —1 1
=07 / —dy =07 / e e e T
1+27(n+1) 1427(n+1) y
1 g K 5772 v
< (1 5%72 / 2y=1-14,, — 14+ K567 5, r# 2y,
- ( +27‘c(n+1)> Y Y KigIng, r=27.

1427 (n+1)

Considering the inequality

we have
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-1 1-
0
r ¢ r=r r 7
— ! / }3//_ Ty =07 / y’”’(l + _)dy <
Ve Ve
< (1+ %1_1>591 /W’de < K767 /W’de:lﬁs-
Ve Vs

From (27), taking into account (28) and (29)—(35), we can write the estimation

Ve (1), Y<r<2y,
/ /y cos(ut—l—ﬁ )du dt = { O(Iné), r=2y,
0 O(67~ 2), r > 27.

Similarly, we can show that
/0

[ pr
. 0/y(u)cos(ut+ 5 )du

Combining formulas (26), (36) and (37), we obtain

0(1), v <r<27,
A(p) = { O(In¢), r=27,
0 -2

(677%), r>29.

0(1), v <r<2y,
dt={ O(Iné), r=2y,
2

), T>2.

Similarly to [27] we can show that the following equality holds

v <x + %) 2 (t)dt,

0]

F0) ~Brlo.1,2) = ;g)r

where
t(t) = t(t,B) = 71_[0/7 cos<ut—|—‘82 >d
Thence
17, t.
S(Wﬂoo;Py(é)) —f:%) (\/g)r_éfﬁ(x—i-%)rﬁ(t)dt C:
1 7. t,
e |y L (75 @)+ o) -
< sup || — /oofr(xJFt)(Pﬁ(t)df - ]oiﬁﬁwdt
fEWE (\/;5)’_00 g \7/3 c (W)r—oo
Therefore,

& (W‘E,OO; P7((5)>C = f:;lv};w

(35)

(36)

(37)

(38)
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Similarly to the work [28] , we can show that the Fourier series of the function f,(x) =

[e9)

_{o /s (x + %\/3) @p(t)dt has the form:

e}

kY .
S(fe] = k; W(ak coskx + by sinkx),

where gy, by are the Fourier coefficients of the function f. Therefore

T . 1
4 f3 (x + %) Pp(t)dt = ng(x), (40)

where f{ (x) is (r, B)—derivative in the Weyl-Nagy sense for r =, p = 0.
Substituting (40) into (39), we obtain

ro. _1 1
8(Wﬁ,oorp'y(5))c = 5fztvt5mufg()“c +O<W5)VA(]4)>, 5 — oo. (41)

Substituting (38) into (41), we obtain the equation (5). The theorem is proved. [

3. Conclusions

One of the extremal problems of approximation theory, namely the problem of study-
ing the asymptotic properties of linear summation methods of Fourier series, has been
considered in the paper. Among the linear summation methods, on the one hand, there are
methods that are defined by infinite numerical matrices, and on the other hand, methods
that are defined by the set of functions of the natural argument that depend on the real
parameter 6. This work is devoted to the study of the approximation properties of the meth-
ods of the last type, namely, generalized Poisson integrals. The Kolmogorov—-Nikol’skii
problem takes a special place among the extremal problems of the approximation theory.
We have considered the problem of asymptotic equalities finding for the value of the exact
upper limits of deviations of generalized Abel-Poisson integrals from functions of the
Weyl-Nagy classes in the uniform metric. In particular, the asymptotic equality (5) for
arbitrary r > 7, 0 < v < 2, has been written in the paper, providing the solution of the
corresponding Kolmogorov—Nikol’skii problem. The importance of this type of problems
in the theory of decision making, in signal transmission, in the study of mathematical
models and in the coding and reproduction of images has been noted. Regarding further
research in this direction, we note that similar problems can be considered in the broader
classes of functions, such as Stepanets classes and classes of non-periodic locally summable
functions.
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