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Abstract: Fundamental identities characterizing a nearly cosymplectic structure and analytical
expressions for the first and second structural tensors are obtained in this paper. An identity that is
satisfied by the first structural tensor of a nearly cosymplectic structure is proved as well. A contact
analog of nearly cosymplectic manifolds’ constancy of type is introduced in this paper. Pointwise
constancy conditions of the type of nearly cosymplectic manifolds are obtained. It is proved that
for nearly cosymplectic manifolds of dimension greater than three, pointwise constancy of type is
equivalent to global constancy of type. A complete classification of nearly cosymplectic manifolds of
constant type is obtained. It is also proved that a nearly cosymplectic manifold of dimension less
than seven is a proper nearly cosymplectic manifold.
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1. Introduction

The concept of a nearly cosymplectic structure is one of the most interesting general-
izations of the concept of cosymplectic structure and is a contact analog of the concept of
an approximate Kähler structure in Hermitian geometry.

It seems that nearly cosymplectic structures were first considered by H. Proppe [1]. He
showed that the structure tensors Φ and η of the induced almost contact metric structure
S = (Φ, ξ, η, g) on totally geodesic hypersurfaces of nearly Kähler manifolds are Killing
tensors, and the second fundamental form of the structure Ω is proportional to η⊗ η. In [2],
Blair proved that Φ is Killing if and only if the second fundamental form of the structure Ω
is proportional to η ⊗ η.

Blair also showed that if Ω is proportional to η ⊗ η, then η is Killing. Almost contact
metric structures whose structural tensors Φ and η are Killing were called nearly cosym-
plectic ones by Blair D. E. [2]. Blair gave an example of a nearly cosymplectic structure
which differs from cosymplectic structure on a five-dimensional sphere S5 embedded in a
six-dimensional sphere S6 ⊂ O as a totally geodesic submanifold [2]. Blair and Showers [3]
introduced the notion of a closely cosymplectic structure, as a nearly cosympectic one
with a closed contact form η, and studied these structures from a topological point of view.
In particular, it was shown that every five-dimensional closest cosymplectic manifold is
cosymplectic. It was also proved that there are no nearly cosymplectic structures that
are contact metric structures. The above example of a nearly cosymplectic structure on a
five-dimensional sphere is neither a cosymplectic nor closest cosymplectic one (we get back
to this example in our further discussion).

In [4], Kirichenko V. F. introduced the concept of a generalized nearly cosymplectic
structure including the classical case of a nearly cosymplectic structure (with a Riemannian
metric). A local structure of a pseudosplit reductive generalized nearly cosymplectic
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manifold was obtained. In the case of a classical nearly cosymplectic, closest cosymplectic
and cosymplectic structure, the result obtained was expressed as in [5].

Any nearly cosymplectic manifold M is locally equivalent either to the product of a
nearly Kähler manifold and the real line, or to the product of a nearly Kähler manifold and
a five-dimensional sphere provided with a canonical nearly cosymplectic structure. If M is
simply connected, then these local equivalences can be chosen as global ones.

Every closest cosymplectic manifold is locally equivalent to the product of a nearly
Kähler manifold and the real line. If M is simply connected, then these local equivalences
can be chosen to be global ones.

Every cosymplectic manifold is locally equivalent to the product of a Kähler manifold
and a real line. If M is simply connected, then these local equivalences can be chosen to be
global ones.

The work in [6] proves that a pseudosplit, reductive, generalized, nearly cosymplectic
manifold satisfies the axiom of Φ-holomorphic planes if and only if it is a generalized,
nearly cosymplectic manifold (a generalized cosymplectic manifold in the case of m > 1) of
pointwise constant Φ-holomorphic sectional curvature of a dimension surpassing three.
Any such manifold is locally equivalent to one of the following manifolds provided with
a canonical, nearly cosymplectic structure of classical or hyperbolic type: 1. Cn

k × R1;
2. CPn

k × R1; 3. CDn
k × R1; 4. (Rm on Rm)× R1; 5. (RPn ÷ RPn)× R1; 6. Cn

k × (Rm on Rm)×
R1; 7. S6

k ×R1; 8. S5
k . If m > 1, cases 7 and 8 are excluded. In the case of completeness, simply

connectedness, and sign-definiteness of the metric of the manifold, these equivalences are
defined globally. Here, the symbol RPn ÷ RPn denotes the variety of zero-pairs of the
real projective space RPn, and the symbol Rm on Rm denotes the double Euclidean space
equipped with the canonical para-Kähler structure [6].

We also highlight the works of Smolensk geometers Banaru M. B. and Stepanova L. V.,
in which there is a connection between nearly cosymplectic and nearly Kählerian manifolds.
In [7], Banaru M. B. proved that if (N, {Φ, ξ, η, g}) is a nearly cosymplectic hypersurface of
the approximate Kähler manifold M2n, σ is the second quadratic form of the immersion
of N in M2n, then N is minimal if and only if σ(ξ, ξ) = 0. In addition, it was established
in [7] that for a nearly cosymplectic hypersurface N of the nearly Kähler manifold M2n,
the following statements are equivalent: (1) N is a minimal submanifold of the manifold
M2n; (2) N is a geodesic submanifold of the manifold M2n; (3) the type number of the
hypersurface N is identically equal to zero. It was proved in [8] that the type number
of a nearly cosymplectic hypersurface in an almost Kähler manifold is not greater than
one. It was also proved that such a hypersurface is minimal if and only if it is completely
geodesic. Almost contact metric structures on hypersurfaces of quasi-Kähler manifolds
were considered by Stepanova and Banaru [9].

It was proved that if a η-quasi-umbilical quasi-Sasakian hypersurface passes through
every point of a quasi-Kähler manifold M, then M is a Kähler manifold, and the structure
induced on the hypersurface is either cosymplectic or homothetic to the Sasakian structure.
It was proved in [10] that for an almost contact metric hypersurface of an nearly Kähler
manifold, the condition that its type number is equal to zero or one is not only necessary
but also sufficient for this almost contact metric structure to be nearly cosymplectic. Here, it
is necessary to point out the works of J. Mikes [11–13]. A more detailed analysis of papers
on almost contact manifolds can be found in [13,14].

In her thesis [15], as well as in the series of works [16–21], Kusova E. V. studied
aspects of the geometry of nearly cosymplectic manifolds. In particular, contact analogs
of Gray’s identities were pointed out, additional identities for the Riemannian curvature
tensor were obtained, and on their basis, subclasses of nearly cosymplectic manifolds
were distinguished and their local structure was studied. On the space of the adjoint
G-structure, the components of the Weyl tensor of conformal curvature were calculated and
five subclasses of nearly cosymplectic manifolds corresponding to the reduction to zero
of the nonzero components of the Weyl tensor were identified. Conformally flat, nearly
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cosymplectic manifolds were studied. The question of integrability of nearly cosymplectic
structures was investigated.

It can be seen from the above analysis that the study of the geometry of cosymplectic
manifolds attracts the attention of geometers. However, there are still many problems to be
solved. One such problem is the study of the geometry of nearly cosymplectic manifolds
of constant type. In this paper, we introduce a contact analog of type constancy for nearly
cosymplectic manifolds and study the geometry of this class of manifolds.

2. Fundamental Definitions of a Nearly Cosymplectic Structure and Its
Structural Equations

Let M be a smooth manifold of dimension 2n + 1, X (M) be the C∞-module of smooth
vector fields on the manifold M. In what follows, all manifolds, tensor fields, etc., objects
are assumed to be smooth ones belonging to the class C∞.

An almost contact structure on the manifold M is a triple (η, ξ, Φ) of tensor fields on
this manifold, where η is a differential 1-form, called the contact form of the structure, ξ is
a vector field, called the characteristic one and Φ is an endomorphism of the module X (M),
called a structural endomorphism, where

(1) η(ξ) = 1; (2) η ◦Φ = 0; (3) Φ(ξ) = 0; (4) Φ2 = −id + η ⊗ ξ. (1)

If, in addition, a Riemannian structure g = 〈·, ·〉 is fixed on M such as

〈ΦX, ΦY〉 = 〈X, Y〉 − η(X)η(Y), X, Y ∈ X (M), (2)

the quadruple (η, ξ, Φ, g = 〈·, ·〉) is called an almost contact metric (in short, AC) structure.
A manifold on which an almost contact (metric) structure is fixed is called an almost contact
(metric (in short, AC)) manifold [5,22].

The skew-symmetric tensor Ω(X, Y) = 〈X, ΦY〉, X, Y ∈ X (M) is called the fundamental
form of the AC-structure [5,22].

As is well known [5,22], specifying an almost contact metric structure (η, ξ, Φ, g) on
the manifold M2n+1 is equivalent to specifying an adjoint G-structure on M2n+1 with
structure group {1} ×U(n). The elements of this G-structure are called A-benchmarks and
are characterized by the fact that the matrices of the components of the tensors Φp and gp
in the A-benchmark have the form, respectively:

(Φj
i) =

 0 0 0
0
√
−1In 0

0 0 −
√
−1In

, (gij) =

 1 0 0
0 0 In
0 In 0

, (3)

where In is the identity matrix of order n.
Let (M2n+1, η, ξ, Φ, g = 〈·, ·〉) be an almost contact metric manifold. Let us agree that

throughout the whole work, unless otherwise stated, the values of the indices i, j, k, . . . run
from 0 to 2n, and the indices a, b, c, . . . run from 1 to n, and let us assign â = a + n, ˆ̂a = a,
0̂ = 0.

An almost contact metric structure S = (η, ξ, Φ, g) is said to be nearly cosymplectic (in
short, (nearly cosymplectic) NCS) if ∇X(Φ)X = 0; X ∈ X (M), that is,

∇X(Φ)Y +∇Y(Φ)X = 0; X, Y ∈ X (M), (4)

A nearly cosymplectic structure with a closed contact form is called closely (in short,
CCS) cosymplectic structure. An almost contact metric manifold equipped with a closely
cosymplectic structure is called a closely cosymplectic manifold [5].
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The first group of structural equations of NCS-manifolds takes the following shape [5]:

(1) dω = Fabωa ∧ωb + Fabωa ∧ωb;

(2) dωa = −θa
b ∧ωb + Cabcωb ∧ωc +

3
2 Fabωb ∧ω; (5)

(3) dωa = θb
a ∧ωb + Cabcωb ∧ωc + 3

2 Fabωb ∧ω.

where:

Cabc =
√
−1
2 Φa

b̂,ĉ
; Cabc = −

√
−1
2 Φâ

b,c; C[abc] = Cabc; C[abc] = Cabc;

Cabc = Cabc; Fab =
√
−1Φ0

â,b̂
; Fab = −

√
−1Φ0

a,b;

Fab + Fba = 0; Fab + Fba = 0; Fab = Fab. (6)

Definition 1 ([21]). A nearly cosymplectic structure is called a proper nearly cosymplectic struc-
ture if Cabc = 0 and Fab 6= 0.

An example of a proper nearly cosymplectic structure is the nearly cosymplectic
structure on the five-dimensional sphere mentioned in the introduction. This structure is
neither cosymplectic nor closely cosymplectic.

The standard procedure for the differential continuation of relations (5) allows us to
obtain the second group of structural equations of the NCS structure:

dθa
b = −θa

c ∧ θc
b + (Aad

bc − 2CadhChbc −
3
2

FadFbc)ω
c ∧ωd, (7)

where
Aad
[bc] = A[ad]

bc = 0, Aad
bc = Abc

ad. (8)

In addition,

(1) dCabc + Cdbcθa
d + Cadcθb

d + Cabdθc
d = Cabcdωd;

(2) dCabc − Cdbcθd
a − Cadcθd

b − Cabdθd
c = Cabcdωd;

(3) dFab + Fcbθa
c + Facθb

c = 0; (9)

(4) dFab − Fcbθc
a − Facθc

b = 0,

where

Ca[bcd] = 3
2 Fa[bFcd], Ca[bcd] =

3
2 Fa[bFcd], C[abc]d = Cabcd,

C[abc]d = Cabcd, Cabcd = Cabcd, FadCdbc = FadCdbc = 0. (10)

By differentiating Equation (7) externally, we obtain:

dAad
bc + Ahd

bc θa
h + Aah

bc θd
h − Aad

hcθh
b − Aad

bhθh
c = Aad

bchωh + Aadh
bc ωh, (11)

where

(1) Aad
b[ch] = 0; (2) Aa[dh]

bc = 0; (3) CabcgCgdh = CabcgCgdh = 0;

(4) CabchFhd = CabchFhd = 0; (5)
(

Aag
b[c − 2Cag f C f b[c

)
C|g|dh] = 0;

(6)
(

Aa[c
bg − 2Ca[c| f |C f bg

)
C|g|dh] = 0; (7)

(
Aah

b[c −
3
2 FahFb[c

)
F|h|d] = 0;

(8)
(

Aa[d
bh −

3
2 Fa[dFbh

)
F|h|c] = 0. (12)

The identity CabcgCgdh = CabcgCgdh = 0 is called the first fundamental identity of the
NCS-manifold [21].
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The identity
(

Aag
b[c − 2Cag f C f b[c

)
C|g|dh] = 0 is called the second fundamental identity

of an NCS-manifold [15].
The identity

(
Aah

b[c −
3
2 FahFb[c

)
F|h|d] = 0 is called the third fundamental identity of the

NCS-manifold.
The identity FadCdbc = FadCdbc = 0 is called the fourth fundamental identity of the

NCS-manifold.

3. The Structural Tensors of the NCS-Structure

The system of functions
(

Cabc, Cabc

)
defines a tensor of type(2,0), called the first

structural tensor of the NCS-manifold and the system of functions
(

Cabc, Cabc

)
defines a

tensor of type (1,0), called the second structural tensor of NCS-manifold.
Let us obtain an analytic expression for the structural tensors of the NCS-structure.

In [23,24], explicit expressions for structural tensors are given.
Since the first and fourth structural tensors of the AC-structure are equal to zero, the

expressions for the structural tensors take the form:

(1) C(X, Y) = − 1
2 Φ ◦ ∇ΦY(Φ)ΦX; (13)

(2) F(X) = Φ ◦ ∇Φ2X(Φ)ξ = −Φ ◦ ∇X(Φ)ξ = −∇Xξ; ∀X, Y ∈ X (M).

Theorem 1. The structural tensors of a nearly cosymplectic structure have the following properties:

(1) C(ξ, X) = C(X, ξ) = 0; (2) C(X, Y) = −C(Y, X);

(3) C(ΦX, Y) = C(X, ΦY) = −Φ ◦ C(X, Y); (4) F(ξ) = 0; (5) 〈F(X), Y〉 = −〈X, F(Y)〉;
(6) Φ ◦ F = −F ◦Φ; (7) η ◦ F = 0; ∀X, Y ∈ X (M) (14)

Proof. (1) C(ξ, X) = − 1
2 Φ ◦ ∇ΦX(Φ)Φξ = 0, C(X, ξ) = − 1

2 Φ ◦ ∇Φξ(Φ)ΦX = 0.
(2) From (9), taking into account (1), we have C(X, Y) = − 1

2 Φ ◦ ∇ΦY(Φ)ΦX = 1
2 Φ ◦

∇ΦX(Φ)ΦY = −C(Y, X); ∀X, Y ∈ X (M).
(3) By covariantly differentiating the equality Φ2 = −id + η ⊗ ξ, we obtain

∇Y(Φ)ΦX + Φ ◦ ∇ΦY(Φ)X = ξ∇Y(η)X + η(X)∇Yξ.
In the last equality, first we make the replacement X → ΦX, then we act on the

resulting identity with the operator Φ2, and finally we obtain Φ ◦ ∇Y(Φ)ΦX = Φ2 ◦
∇Y(Φ)Φ2X. In the obtained set, we make a replacement Y → ΦY, then

Φ ◦ ∇ΦY(Φ)ΦX = Φ2 ◦ ∇ΦY(Φ)Φ2X; ∀X, Y ∈ X (M). (15)

In the resulting identity, we make the replacement X −→ ΦX, then we get
Φ ◦ ∇ΦY(Φ)Φ2X = −Φ2 ◦ ∇ΦY(Φ)ΦX; ∀X, Y ∈ X (M). Taking into account the obtained
result, from (9), taking into account (15), we obtain Φ ◦ C(X, Y) = − 1

2 Φ2 ◦ ∇ΦY(Φ)ΦX =
1
2 Φ ◦ ∇ΦY(Φ)Φ2X = −C(ΦX, Y) and C(ΦX, Φ) = − 1

2 Φ ◦ ∇ΦY(Φ)Φ2X = 1
2 Φ ◦

∇Φ2X(Φ)ΦY = 1
2 Φ2 ◦ ∇Φ2X(Φ)Φ2Y = − 1

2 Φ2 ◦ ∇Φ2Y(Φ)Φ2X = − 1
2 Φ ◦ ∇Φ2Y(Φ)ΦX =

C(X, ΦY).
(4) Since Φ(ξ) = 0, then F(ξ) = ∇Φξ(Φ)ξ = 0.
(5) 〈F(X), Y〉 = −〈∇Xξ, Y〉 = −∇X(η)Y = ∇Y(η)X = 〈∇Yξ, X〉 = −〈X, F(Y)〉.
(6) From the analytical expression of the second structural tensor we have Φ ◦ F(X) =

−Φ ◦ ∇Xξ = ∇ΦXξ = −(F ◦Φ)(X); ∀X ∈ X (M), that is, Φ ◦ F = −F ◦Φ.
(7) Since the identities η ◦Φ = 0 and η(∇Xξ) = 0 hold on an almost contact metric

manifold, then η(F(X)) = η(∇ΦX(Φ)ξ) = 0, i.e., η ◦ F = 0.

4. Q-Algebras of Nearly Cosymplectic Manifolds

In this section, we consider a Q-algebra attached to a nearly cosymplectic manifold.
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Definition 2 ([25,26]). A Q-algebra is a triple {V, 〈〈·, ·〉〉, ∗}, where V is a module over a commu-
tative associative ring K with a (nontrivial) involution; 〈〈·, ·〉〉 is a nondegenerate Hermitian form
on V; “∗" is a binary operation ∗ : V × V −→ V, antilinear in each argument, for which the
Q-algebra axiom 〈〈X ∗Y, Z〉〉+ 〈〈Y, X ∗ Z〉〉 = 0, X, Y, Z ∈ V is completed.

If K = C, then the Q-algebra V is called complex.

Definition 3 ([25]). The Q-algebra V is called:
- Abelian or commutative Q-algebra if X ∗Y = 0, (X, Y ∈ V);
- K-algebra, or anticommutative Q-algebra, if X ∗Y = −Y ∗ X, (X, Y ∈ V);
- A-algebra, or pseudocommutative Q-algebra, if 〈X ∗Y, Z〉+ 〈Y ∗ Z, X〉+ 〈Z ∗ X, Y〉 = 0,

(X, Y, Z ∈ V).

Let us recall from [27] that the module X (M) of an almost contact metric manifold
naturally introduces the structure of a Q-algebra < over the ring of complex-valued smooth
functions with the operation

X ∗Y = T(X, Y) =
1
4

{
Φ∇ΦX(Φ)ΦY−Φ∇Φ2X(Φ)Φ2Y

}
; X, Y ∈ X (M) (16)

and metric
〈〈X, Y〉〉 = 〈X, Y〉+

√
−1〈X, ΦY〉; X, Y ∈ X (M). (17)

This Q-algebra is called an adjoint one.
Let M be an NCS-manifold. In the C∞(M)-module X (M) of smooth vector fields of

the manifold M, the binary operation “∗" is introduced by the formula X ∗Y = T(X, Y) =
1
4
{

Φ∇ΦX(Φ)ΦY−Φ∇Φ2X(Φ)Φ2Y
}

; X, Y ∈ X (M).

Theorem 2 ([25]). The NCS-structure has an anticommutative adjoint Q-algebra, i.e., K-algebra.

Proof. From (4) we can easily derive that
X ∗Y = T(X, Y) = 1

4
{

Φ∇ΦX(Φ)ΦY−Φ∇Φ2X(Φ)Φ2Y
}

;
X, Y ∈ X (M), that is, Φ∇ΦX(Φ)ΦY = −Φ∇ΦY(Φ)ΦX; X, Y ∈ X (M). This

means that Φ∇Φ2X(Φ)Φ2Y = −Φ∇Φ2Y(Φ)Φ2X; X, Y ∈ X (M). Then, T(X, Y) =
1
4
{

Φ∇ΦX(Φ)ΦY−Φ∇Φ2X(Φ)Φ2Y
}

= − 1
4
{

Φ∇ΦY(Φ)ΦX−Φ∇Φ2Y(Φ)Φ2X
}

=
−T(Y, X); X, Y ∈ X (M). The associated Q-algebra of an NCS-structure is a K-algebra.

Corollary 1. CCS-manifolds have an Abelian associated Q-algebra.

Theorem 3. The first structural tensor of the NCS-structure satisfies the identity:

〈〈C(X, Y), Z〉〉+ 〈〈Y, C(X, Z)〉〉 = 0; (18)

Proof. Considering (9) and (17), we obtain

〈〈C(X, Y), Z〉〉 = 〈C(X, Y), Z〉+
√
−1〈C(X, Y), ΦZ〉 =

=
〈
− 1

2 Φ ◦ ∇ΦY(Φ)ΦX, Z
〉
+
√
−1
〈
− 1

2 Φ ◦ ∇ΦY(Φ)ΦX, ΦZ
〉
=

= − 1
2 〈ΦX,∇ΦY(Φ)ΦZ〉+ 1

2

√
−1
〈
ΦX,∇ΦY(Φ)Φ2Z

〉
=

= 1
2 〈X, Φ ◦ ∇ΦY(Φ)ΦZ〉 − 1

2

√
−1
〈

X, Φ ◦ ∇ΦY(Φ)Φ2Z
〉
=

= 1
2 〈X, Φ ◦ ∇ΦY(Φ)ΦZ〉 − 1

2

√
−1
〈

X, Φ2 ◦ ∇ΦY(Φ)ΦZ
〉
=

= −〈X, C(Y, Z)〉 −
√
−1〈X, ΦC(Y, Z)〉 = −〈〈X, C(Y, Z)〉〉.
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5. Nearly Cosymplectic Manifolds of Constant Type

In this section, we consider the contact analog of type constancy and study it in detail
for nearly cosymplectic manifolds.

Definition 4 ([28]). A complex K-algebra < is called a K-algebra of constant type if ∃c ∈ C
∀X, Y ∈ < : 〈〈X, Y〉〉 = 0 =⇒ ‖X ∗Y‖2 = c‖X‖2‖Y‖2.

Definition 5. An NCS-manifold M is called a manifold of pointwise constant type if its associated
K-algebra has a constant type at every point of the manifold M. The function c, if it exists, is called
a constant of the type of the NCS-manifold. If c = const, then M is called an NCS-manifold of
globally constant type.

Theorem 4. An NCS-manifold M is a manifold of pointwise constant type c if and only if

∀X, Y ∈ X (M)〈〈X, Y〉〉 = 0 =⇒ ‖C(X, Y)‖2 = c‖X‖2‖Y‖2. (19)

Proof. Let M be an NCS-manifold. Let us consider a Q-algebra < attached to a manifold
M with the operation ∗ : X (M) × X (M) → X (M) defined by the identity X ∗ Y =
1
4
{

Φ∇ΦX(Φ)ΦY−Φ∇Φ2X(Φ)Φ2Y
}

; X, Y ∈ X (M). It follows from (1) that on an NCS-
manifold X ∗Y = 1

4
{

Φ∇ΦX(Φ)ΦY−Φ∇Φ2X(Φ)Φ2Y
}

; X, Y ∈ X (M). Therefore X ∗Y =
1
2 Φ∇ΦX(Φ)ΦY = − 1

2 Φ∇Φ2X(Φ)Φ2Y; X, Y ∈ X (M). Due to (1) of (13) and (16) we have
C(X, Y) = − 1

2 Φ ◦ ∇ΦY(Φ)ΦX = 1
2 Φ ◦ ∇ΦX(Φ)ΦY = X ∗ Y; X, Y ∈ X (M). Due to (17),

the condition 〈X, Y〉 = 〈X, ΦY〉 = 0 is equivalent to the condition 〈〈X, Y〉〉 = 0.

Theorem 5. An NCS-manifold is a manifold of point constant type c if and only if

C(X, Y, Z, W) = 〈〈C(X, Y), C(Z, W)〉〉 = c{〈〈W, Y〉〉〈〈Z, X〉〉 − 〈〈W, X〉〉〈〈Z, Y〉〉}.

Proof. Let us introduce the four-form C(X, Y, Z, W) = 〈〈X ∗Y, Z ∗W〉〉 =
〈〈C(X, Y), C(Z, W)〉〉 It is directly verified that it possesses the properties:

(1) Antilinearity in the first pair of arguments
√
−1C(X, Y, Z, W) = −C(ΦX, Y, Z, W)

= −C(X, ΦY, Z, W).
(2) Linearity in the second pair of arguments

√
−1C(X, Y, Z, W) = C(X, Y, ΦZ, W) =

−C(X, Y, Z, ΦW).
(3) Skew symmetry in the first and second pairs of arguments C(X, Y, Z, W) =

−C(Y, X, Z, W) = −C(X, Y, W, Z).
(4) C(X, Y, Z, W) = C(Z, W, X, Y), X, Y, Z, W ∈ X (M) is Hermitian.
Since C(X, Y, X, Y) = 〈〈X ∗Y, X ∗Y〉〉 = 〈〈C(X, Y), C(X, Y)〉〉 = ‖C(X, Y)‖2, then a

GK-manifold M is of pointwise constant type c if and only if

C(X, Y, X, Y) = c‖X‖2‖Y‖2, X, Y ∈ X (M), 〈〈X, Y〉〉 = 0. (20)

We polarize this identity by replacing Y by Y + Z, where Z ∈ X (M), 〈〈X, Z〉〉 =

0 : C(X, Y + Z, X, Y + Z) = c‖X‖2‖Y + Z‖2. Expanding it by linearity and making the
necessary reductions, by taking into account (20), we obtain

C(X, Y, X, Z) + C(X, Z, X, Y) = c‖X‖2(〈〈Y, Z〉〉+ 〈〈Z, Y〉〉). (21)

Replacing Z here by ΦZ, and taking into account property (1) and the nondegeneracy
of the endomorphism Φ, we obtain:

C(X, Y, X, Z) + C(X, Z, X, Y) = c‖X‖2(−〈〈Y, Z〉〉+ 〈〈Z, Y〉〉). (22)
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By adding in an element-wise manner (21) to (22) we obtain:

C(X, Y, X, Z) = c‖X‖2〈〈Z, Y〉〉. (23)

Let now Y, Z ∈ X (M) be arbitrary vectors. Let us expand them in terms
of the linear shell of the vector X and its orthogonal complement: Y = 〈〈Y,X〉〉

‖X‖2 X +

Y′; Z = 〈〈Z,X〉〉
‖X‖2 X + Z′. Taking into account (23) and properties (3), after the nec-

essary reductions we obtain: C(X, Y, X, Z) = C(X, Y′, X, Z′) = c‖X‖2〈〈Z′, Y′〉〉 =

c‖X‖2
〈〈

Z− 〈〈Z,X〉〉
‖X‖2 X, Y− 〈〈Y,X〉〉

‖X‖2 X
〉〉

= c
{
〈〈Z, Y〉〉‖X‖2 − 〈〈Z, X〉〉〈〈X, Y〉〉

}
.

As a result:

C(X, Y, X, Z) = c
{
〈〈Z, Y〉〉‖X‖2 − 〈〈Z, X〉〉〈〈Z, X〉〉

}
. (24)

Let us replace Z by W in the resulting equality, then we get C(X, Y, X, W) =

c
{
〈〈W, Y〉〉‖X‖2 − 〈〈W, X〉〉〈〈X, Y}〉

〉
. In the last identity, we replace X by X + Z, and af-

ter expansion by linearity and the necessary reductions, taking into account (24), we obtain:

C(X, Y, X, Z) = c{〈〈W, Y〉〉〈〈W, Y〉〉 − 〈〈Z, X〉〉 − 〈〈W, X〉〉〈〈Z, Y〉〉}. (25)

Conversely, it is obvious that, on the basis of (25), (20) is fulfilled and hence M is an
NCS-manifold of pointwise constant type c.

Theorem 6. Let M be an NCS-manifold. Then, the following statements are equivalent:
(1) M is an NCS-manifold of pointwise constant type c.
(2) The first structure tensor of an NCS-manifold satisfies the identity

〈〈C(X, Y), C(Z, W)〉〉 = c{〈〈W, Y〉〉〈〈Z, X〉〉 − 〈〈W, X〉〉〈〈Z, Y〉〉}.

(3) On the space of the associated G-structure, the following relation is fair

CabhChcd =
c
2

δab
cd . (26)

Proof. The equivalence of the first and second statements was proved in the
previous theorem.

Let us find a representation of the identity (25) on the space of the associated G-
structure. We fix a point p ∈ M, an orthonormal frame r = (p, e1, . . . , en) of the space Tp(M)
considered as a C-module and the corresponding A-frame r = (p, ε0, ε1, . . . , εn, ε1̂, . . . , εn̂),
where εa =

√
2σp(ea), εâ =

√
2σp(ea), ε0 = ξp. Setting (25) as X = ea, Y = eb, Z = ec,

W = ed we obtain the equivalent (at the point p) identity

C(ea, eb, ec, ed) = 〈〈C(ea, eb), C(ec, ed)〉〉 = c{〈〈ed, eb〉〉〈〈ec, ea〉〉 − 〈〈ed, ea〉〉〈〈ec, eb〉〉}. (27)

Since 〈〈ea, eb〉〉 = 〈σea, σeb〉 +
√
−1〈σea, σeb〉 = 2〈σea, σeb〉 =

〈
εa, εb

〉
= δb

a

which also follows from benchmark orthonormality r = (p, e1, . . . , en). Since Cabc =
1
2 C(εb̂, εĉ)

a, then 〈〈C(ea, eb), C(ec, ed)〉〉 = 〈C(ea, eb), C(ec, ed)〉+
√
−1〈C(ea, eb), C(ec, ed)〉 =

2〈σC(ea, eb), σC(ec, ed)〉 = 2〈C(σea, σeb), C(σec, σed)〉 = 1
2
〈
C(εâ, εb̂), C(εc, εd)

〉
=

2
〈

Chabεh, Cgcdεg
〉
= 2ChabCgcd〈εh, εg〉 = 2ChabCgcd = 2CabhChcd. Then relations (26) are

written down in the form of CabhChcd = c
2 δab

cd , where δab
cd = δa

c δb
d − δd

c δa
b is a second-order

Kronecker delta.

Theorem 7. The point constancy of the type of a connected NCS-manifold of dimension greater
than three is equivalent to the global constancy of its type.
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Proof. We differentiate the identity (26) externally in an element-wise way: dCabhChcd +
CabhdChcd = 1

2 δab
cd dc. Taking into account the structural equations of NCS-manifolds,

we have (−Cgbhθa
g − Caghθb

g − Cabgθh
g + Cabhgωg)Chcd + Cabh(Cgcdθ

g
h + Chgdθ

g
c + Chcgθ

g
d +

Chcdgωg) = 1
2 δab

cd dc. Opening the brackets and bringing similar terms together, taking into
account (26), (1) of (9), (2) of (9), (3) of (12), we obtain 1

2 δab
cd dc = 0. Therefore, if dimM > 3,

then dc = 0, and if M is connected, then c = const.

Theorem 8. The class of zero constant-type NCS-manifolds coincides with the class of proper
nearly cosymplectic manifolds or with the class of cosymplectic manifolds.

Proof. We perform a complete convolution (26):

∑
abc

∣∣∣Cabc
∣∣∣2 = CabcCabc =

c
2

n(n− 1), (28)

where 2n + 1 = dimM. This implies that c ≥ 0, and c = 0 → Cabc = 0, i.e., M is either a
proper nearly cosymplectic manifold or a cosymplectic manifold.

Theorem 9. The class of NCS-manifolds of nonzero constant type coincides with the class of
seven-dimensional proper nearly cosymplectic manifolds.

Proof. It remains for us to study NCS-manifolds of nonzero constant type. Let M2n+1 be
an NCS-manifold of nonzero constant type c. Let us consider the expanded notation of the
second fundamental identity, taking into account (26)

Had
bc Cg f d + Had

bgC f cd + Had
b f Ccgd = 0, (29)

where Hag
bc = Aad

bc − cδad
bc . We convolve Equality (29) with the object Cgc f , taking into

account (26) and c 6= 0 we get:
Aac

bc = c(n− 1)δa
b . (30)

Further, convolving (29) with the object Cgch and taking into account (26) and (30), we
obtain:

(3− n)(Aad
bc − cδad

bc ) = 0. (31)

For n = 3, this relation is fulfilled identically. If n 6= 3, it follows from (31) that
Aad

bc = cδad
bc . Alternating this relation with respect to the indices a and d, we obtain that

cδad
bc = 0. Furthermore, after a complete convolution of the resulting equality, we get:

cn(n− 1) = 0, i.e., c = 0, which contradicts the condition of nonzero type constancy. Hence,
this case is impossible, i.e., n = 3, and dimM = 7.

Conversely, let n = 3. Then, the eigendistributions of the endomorphism Φ are three-
dimensional, which means that in each A-frame Cabc = Cεabc, Cabc = C̄εabc, where εabc and
εabc are the Kronecker symbols, εabc = (ω1 ∧ω2 ∧ω3)abc, εabc = (ω1 ∧ω2 ∧ω3)

abc, where
ωa, ωa = ω â are the elements of the dual cobenchmark. Bearing this in mind, ωa, ωa = ω â .
On the basis of Theorem 6, M is an NCS-manifold of constant type c = |C|2.

Let us consider the three-form C(X, Y, Z) = 〈〈X, C(Y, Z)〉〉, X, Y, Z ∈ X (M). Since the
first structure tensor of the NCS-structure is skew-symmetric, this form is a skew-symmetric
three-form, C-linear in each argument. Therefore, it is identically equal to zero if dimM < 7.
Since the Hermitian metric 〈〈·, ·〉〉 is nondegenerate, it follows that C = 0, and hence M is a
proper nearly cosymplectic manifold. Thus, we get the following theorem.

Theorem 10. An NCS-manifold of dimension less than seven is a proper nearly
cosymplectic manifold.
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6. Conclusions

In this paper, we have introduced the notion of nearly cosymplectic manifolds of
constant type. The introduced notion turned out to be very useful in the study of the
geometry of nearly cosymplectic manifolds. Furthermore, we have obtained a complete
classification of nearly cosymplectic manifolds of constant type.
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