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Abstract: This paper deals with the (ω, c)-periodic solutions to impulsive fractional differential
equations with Caputo fractional derivative with a fixed lower limit. Firstly, a necessary and sufficient
condition of the existence of (ω, c)-periodic solutions to linear problem is given. Secondly, the
existence and uniqueness of (ω, c)-periodic solutions to semilinear problem are proven. Lastly, two
examples are given to demonstrate our results.
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1. Introduction

Alvarez et al. [1] introduced a new concept of (ω, c)-periodic functions: a continuous
function f : R → X, where X is a complex Banach space, is (ω, c)-periodic if f (t + ω) =
c f (t) holds for all t ∈ R, where ω > 0, c ∈ C \ {0}. Then, Alvarez et al. [2] proved the
existence and uniqueness of (N, λ)-periodic solutions to a a class of Volterra difference
equations. For more research on (ω, c)-period systems, we refer the readers to [3–6].

In recent years, impulsive fractional differential equations have attracted more and
more scholars’ attentions. For the existence of solutions and control problems, we refer
to [7–11]. Recently, Fečkan et al. [12] proved the existence of the periodic solutions of
impulsive fractional differential equations. However, to our knowledge, the existence of
(ω, c)-periodic solutions of impulsive fractional differential equations has not been studied.
Motivated by [1,7,12–14], we study the following impulsive fractional differential equations
with fixed lower limits{cDq

t0
u(t) = f (t, u(t)), q ∈ (0, 1), t 6= tk, t ∈ [t0, ∞),

u(t+k ) = u(t−k ) + ∆k, k ∈ N,

where cDq
t0

u(t) is the Caputo fractional derivative with the lower time at t0, and for any
k ∈ N, tk < tk+1, limk→∞ tk = ∞.

In this paper, we deal with the existence of (ω, c)-periodic solutions impulsive frac-
tional differential equations with fixed lower limit. We first study the existence of (ω, c)-
periodic solutions to the linear problem, i.e., f (t, u) = ρu. Then, we prove the existence
of (ω, c)-periodic solutions to the semilinear problem. Finally, we give two examples to
illustrate our results.

2. Preliminaries

We introduce a Banach space PC(R,Rn) = {x : R → Rn : x ∈ C((tk, tk+1],Rn), and
x(t−k ) = x(tk), x(t+k ) exists ∀k ∈ N} endowed with the norm ‖x‖∞ = supt∈R ‖x(t)‖.
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Definition 1. (see [15]) Let n ∈ N+ and u be a n time differentiable function. The Caputo
fractional derivative of order α > 0 with the lower limit zero for u is given by

cDα
0 u(t) =

1
Γ(n− α)

∫ t

0
(t− s)n−α−1u(n)(s)ds, n− 1 < α ≤ n.

Lemma 1. Assume that f : R×Rn is continuous. A solution u ∈ PC(R,Rn) of the following
impulsive fractional differential equations with fixed lower limit

cDq
t0

u(t) = f (t, u(t)), q ∈ (0, 1), t 6= tk, t ∈ [t0, ∞),

u(t+k ) = u(t−k ) + ∆k, k ∈ N,

u(t0) = ut0 ,

(1)

is given by

u(t) = u(t0) +
1

Γ(q)

∫ t

t0

(t− τ)q−1 f (τ, u(τ))dτ + ∑
t0<ti<t

∆i, t ≥ t0. (2)

Proof. From Lemma 3.2 in [7], a solution u of Equation (1) is given by

u(t) = u(t0) +
1

Γ(q)

∫ t

t0

(t− τ)q−1 f (τ, u(τ))dτ +
k

∑
i=1

∆i, t ∈ (tk, tk+1]. (3)

Using
k

∑
i=1

∆i = ∑
t0<ti<t

∆i, ∀t ∈ (tk, tk+1],

we get that (3) is equivalent to

u(t) = u(t0) +
1

Γ(q)

∫ t

t0

(t− τ)q−1 f (τ, u(τ))dτ + ∑
t0<ti<t

∆i (4)

on (tk, tk+1]. Using the arbitrariness of k, we obtain that (4) holds on
⋃∞

k=1(tk, tk+1]. Since
(4) is independent of k, we obtain that (2) holds on [t0, ∞).

Definition 2. (see [16], Theorem 2.4) A solution u ∈ PC(R,Rn) of following linear impulsive
fractional differential equations with fixed lower limit

cDq
t0

u(t) = ρu(t), ρ ∈ R, q ∈ (0, 1), t 6= tk, t ∈ [t0, ∞),

u(t+k ) = (1 + αk)u(t−k ), k ∈ N,

u(t0) = ut0 ,

is given by

u(t) =


ut0 Eq

(
ρ(t− t0)

q), t ∈ [t0, t1]

ut0

k

∏
i=1

(
1 + αiEq

(
ρ(ti − t0)

q))Eq
(
ρ(t− t0)

q), t ∈ (tk, tk+1], k ∈ N,

where Eq(·) is the Mittag–Leffler function.

Definition 3. (see [1]) Let c ∈ C \ {0}, ω > 0, X denote a complex Banach space with norm ‖ · ‖.
A continuous function f : R→ X is said to be (ω, c)-periodic if f (t + ω) = c f (t) for all t ∈ R.
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Lemma 2. (see [3], Lemma 2.2) Set Φω,c := {u : u ∈ PC(R,Rn)} and u(· + ω) = cu(·)}.
Then, u ∈ Φω,c if, and only if, it holds

u(ω) = cu(0). (5)

3. ((ω, c))-Periodic Solutions to Linear Problem

Set t0 = 0, we consider the following linear impulsive fractional differential equation
with fixed lower limit

cDq
0u(t) = ρu(t), ρ ∈ R, q ∈ (0, 1), t 6= tk, t ∈ [0, ∞),

u(t+k ) = (1 + αk)u(t−k ), k ∈ N,

u(0) = u0.

(6)

Theorem 1. Assume that there exists a constant N ∈ N such that

ω = tN , tk+N = tk + ω, ∀k ∈ N, and αi+N = αi, ∀i ∈ N.

Then, the linear impulsive fractional differential Equation (6) has a (ω, c)-periodic solution u ∈ Φω,c
if, and only if

u0

(
c−

N

∏
i=1

(
1 + αiEq

(
ρtq

i
))

Eq
(
ρωq)) = 0. (7)

Proof. “⇒” If (6) has a (ω, c)-periodic solution u ∈ Φω,c, i.e., u(· + ω) = cu(·), then
u(ω) = cu(0), i.e.,

u0

N

∏
i=1

(
1 + αiEq

(
ρtq

i
))

Eq
(
ρωq) = cu0

which implies that (7) holds.
“⇐” It follows from Definition 2 that Equation (7) has a solution u given by

u(t) =


u0Eq

(
ρtq), t ∈ [0, t1]

u0

k

∏
i=1

(
1 + αiEq

(
ρtq

i
))

Eq
(
ρtq), t ∈ (tk, tk+1], k ∈ N.

If (7) holds, we obtain u(tN) = u(ω) = cu0. Now, we prove that the solution u ∈ Φω,c.
Case 1: For t ∈ (0, t1], we have t + ω ∈ (tN , tN+1], then

u(t + ω) = utN Eq
(
ρ(t + ω− tN)

q)
= utN Eq

(
ρtq) = cu0Eq

(
ρtq) = cu(t).

Case 2: For t ∈ (tk, tk+1], k ∈ N, we have t + ω ∈ (tk+N , tk+N+1], then

u(t + ω) = utN

k

∏
i=1

(
1 + αi+N Eq

(
ρ(ti+N − tN)

q))Eq
(
ρ(t + ω− tN)

q)
= utN

k

∏
i=1

(
1 + αiEq

(
ρtq

i
))

Eq
(
ρtq)

= cu0

k

∏
i=1

(
1 + αiEq

(
ρtq

i
))

Eq
(
ρtq)

= cu(t).

So, we obtain that (6) has a (ω, c)-periodic solution u ∈ Φω,c.
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4. (ω, c)-Periodic Solutions to Semilinear Problem

Set t0 = 0, we consider the (ω, c)-periodic solutions of following impulsive fractional
differential equations with fixed lower limit

cDq
0u(t) = f (t, u(t)), q ∈ (0, 1), t 6= tk, t ∈ [0, ∞),

u(t+k ) = u(t−k ) + ∆k, k ∈ N,

u(0) = u0.

(8)

We assume the following conditions:
(I) f : R×Rn → Rn is continuous and

f (t + ω, cu) = c f (t, u), ∀t ∈ R, ∀u ∈ Rn.

(I I) There exists a constant A > 0 such that

‖ f (t, u)− f (t, v)‖ ≤ A‖u− v‖, ∀t ∈ R, ∀u, v ∈ Rn.

(I I I) There exist constant B > 0, P > 0 such that

‖ f (t, u)‖ ≤ B‖u‖+ P, ∀t ∈ R, ∀u ∈ Rn.

(IV) ∆k ∈ Rn and there exists a constant M ∈ N such that ω = tM, tk+M = tk + ω and
∆k+M = ∆k hold for any k ∈ N.

Lemma 3. Suppose that conditions (I), (IV) hold and c 6= 1. Then, the solution u ∈ Ψ :=
PC([0, ω],Rn) of Equation (8) satisfying (5) is given by

u(t) = (c− 1)−1 1
Γ(q)

∫ ω

0
(ω− τ)q−1 f (τ, u(τ))dτ +

1
Γ(q)

∫ t

0
(t− τ)q−1 f (τ, u(τ))dτ

+(c− 1)−1
M

∑
k=1

∆k + ∑
0<tk<t

∆k t ∈ [0, ω].

Proof. It follows from (2) that the solution u ∈ PC([0, ω],Rn) is given by

u(t) = u(0) +
1

Γ(q)

∫ t

0
(t− τ)q−1 f (τ, u(τ))dτ + ∑

t0<tk<t
∆k, t ∈ [0, ω]. (9)

So we get

u(ω) = u(0) +
1

Γ(q)

∫ ω

0
(ω− τ)q−1 f (τ, u(τ))dτ + ∑

t0<tk<ω

∆k = cu0

which is equivalent to

u0 = (c− 1)−1
( 1

Γ(q)

∫ ω

0
(ω− τ)q−1 f (τ, u(τ))dτ + ∑

t0<tk<ω

∆k

)
. (10)

By (9) and (10), we obtain

u(t) = (c− 1)−1 1
Γ(q)

∫ ω

0
(ω− τ)q−1 f (τ, u(τ))dτ +

1
Γ(q)

∫ t

0
(t− τ)q−1 f (τ, u(τ))dτ

+(c− 1)−1
M

∑
k=1

∆k + ∑
0<tk<t

∆k.

The proof is finished.
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Theorem 2. Suppose that conditions (I), (I I), (IV) hold and c 6= 1. If 0 < Aωq(|c−1|−1+1)
Γ(q+1) < 1,

then the impulsive fractional differential Equation (8) has a unique (ω, c)-periodic solution u ∈
Φω,c. Furthermore, we have

‖u‖∞ ≤
µωq(|c− 1|−1 + 1) + Γ(q + 1)(|c− 1|−1 + 1)∑M

k=1 ‖∆k‖
Γ(q + 1)− Aωq(|c− 1|−1 + 1)

,

where µ = supt∈[0,ω] ‖ f (t, 0)‖.

Proof. It follows from (I) that for any u ∈ Φω,c, we have

f (t + ω, u(t + ω)) = f (t + ω, cu(t)) = c f (t, u(t)), ∀t ∈ R

which implies that f (·, u(·)) ∈ Φω,c.
Define the operator F : Ψ→ Ψ by

(Fu)(t) = (c− 1)−1 1
Γ(q)

∫ ω

0
(ω− τ)q−1 f (τ, u(τ))dτ +

1
Γ(q)

∫ t

0
(t− τ)q−1 f (τ, u(τ))dτ

+(c− 1)−1
M

∑
k=1

∆k + ∑
0<tk<t

∆k. (11)

From Lemmas 2 and 3, we obtain that the fixed points of F determine the (ω, c)-
periodic solutions of Equation (8). It is easy to see that F(Ψ) ⊆ Ψ. For any u, v ∈ Ψ,
we have ∥∥(Fu)(t)− (Fv)(t)

∥∥
=

∥∥∥(c− 1)−1 1
Γ(q)

∫ ω

0
(ω− τ)q−1 f (τ, u(τ))dτ +

1
Γ(q)

∫ t

0
(t− τ)q−1 f (τ, u(τ))dτ

−(c− 1)−1 1
Γ(q)

∫ ω

0
(ω− τ)q−1 f (τ, v(τ))dτ − 1

Γ(q)

∫ t

0
(t− τ)q−1 f (τ, v(τ))dτ

∥∥∥
≤ |c− 1|−1 1

Γ(q)

∫ ω

0
(t− τ)q−1∥∥ f (τ, u(τ))− f (τ, v(τ))

∥∥dτ

+
1

Γ(q)

∫ t

0
(t− τ)q−1∥∥ f (τ, u(τ))− f (τ, v(τ))

∥∥dτ

≤ |c− 1|−1 A
Γ(q)

∫ ω

0
(ω− τ)q−1‖u(τ)− v(τ)‖dτ

+
A

Γ(q)

∫ t

0
(t− τ)q−1‖u(τ)− v(τ)‖dτ

≤ A
Γ(q)
‖u− v‖∞

(
|c− 1|−1

∫ ω

0
(ω− τ)q−1dτ +

∫ t

0
(t− τ)q−1dτ

)
≤ Aωq(|c− 1|−1 + 1)

Γ(q + 1)
‖u− v‖∞

which implies that

‖Fu− Fv‖∞ ≤
Aωq(|c− 1|−1 + 1)

Γ(q + 1)
‖u− v‖∞.

From the condition 0 < Aωq(|c−1|−1+1)
Γ(q+1) < 1, we obtain that F is a contraction mapping. So,

there exists a unique fixed point u of (11) satisfying u(ω) = cu(0). It follows from Lemma 2
that u ∈ Φω,c. Then, we obtain that Equation (8) has a unique (ω, c)-periodic solution
u ∈ Φω,c.
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Furthermore, we have

‖u(t)‖ ≤ |c− 1|−1 1
Γ(q)

∫ ω

0
(ω− τ)q−1‖ f (τ, u(τ))− f (τ, 0)‖dτ

+|c− 1|−1 1
Γ(q)

∫ ω

0
(ω− τ)q−1‖ f (τ, 0)‖dτ

+
1

Γ(q)

∫ t

0
(t− τ)q−1‖ f (τ, u(τ))− f (τ, 0)‖dτ

+
1

Γ(q)

∫ t

0
(t− τ)q−1‖ f (τ, 0)‖dτ

+|c− 1|−1
M

∑
k=1
‖∆k‖+ ∑

t0<tk<t
‖∆k‖

≤ |c− 1|−1 A
Γ(q)

∫ ω

0
(ω− τ)q−1‖u(τ)‖dτ + |c− 1|−1 µ

Γ(q)

∫ ω

0
(ω− τ)q−1dτ

+
A

Γ(q)

∫ t

0
(t− τ)q−1‖u(τ)‖dτ +

µ

Γ(q)

∫ t

0
(t− τ)q−1dτ

+
(
|c− 1|−1 + 1

) M

∑
k=1
‖∆k‖

≤ Aωq(|c− 1|−1 + 1)
Γ(q + 1)

‖u‖∞ +
µωq(|c− 1|−1 + 1)

Γ(q + 1)
+
(
|c− 1|−1 + 1

) M

∑
k=1
‖∆k‖,

which implies that

‖u‖∞ ≤
µωq(|c− 1|−1 + 1) + Γ(q + 1)(|c− 1|−1 + 1)∑M

k=1 ‖∆k‖
Γ(q + 1)− Aωq(|c− 1|−1 + 1)

.

The proof is completed.

Theorem 3. Suppose that conditions (I), (I I I), (IV) hold and c 6= 1. If Bωq(|c− 1|−1 + 1) <
Γ(q + 1), then the impulsive fractional differential Equation (8) has at least one (ω, c)-periodic
solution u ∈ Φω,c.

Proof. Let Br = {u ∈ Ψ : ‖u‖∞ ≤ r}, where

r ≥
Pωq(|c− 1|−1 + 1) + Γ(q + 1)(|c− 1|−1 + 1)∑M

k=1 ‖∆k‖
Γ(q + 1)− Bωq(|c− 1|−1 + 1)

.

We consider F defined in (11) on Br. For any t ∈ [0, ω] and any u ∈ Br

‖F(u)(t)‖ ≤ |c− 1|−1 B
Γ(q)

∫ ω

0
(ω− τ)q−1‖u(τ)‖dτ + |c− 1|−1 P

Γ(q)

∫ ω

0
(ω− τ)q−1dτ

+
B

Γ(q)

∫ t

0
(t− τ)q−1‖u(τ)‖dτ +

P
Γ(q)

∫ t

0
(t− τ)q−1dτ

+|c− 1|−1
M

∑
k=1
‖∆k‖+ ∑

0<tk<t
‖∆k‖ (12)

≤ Bωq(|c− 1|−1 + 1)
Γ(q + 1)

‖u‖∞ +
Pωq(|c− 1|−1 + 1)

Γ(q + 1)
+
(
|c− 1|−1 + 1

) M

∑
k=1
‖∆k‖

≤ r,

which implies ‖Fu‖∞ ≤ r. So, F(Br) ⊆ Br.
We prove that F is continuous on Br.
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Let {ui}i≥1 ⊆ Br and ui → u on Br as i → ∞. By the continuity of f , we get
f (τ, ui(τ))→ f (τ, u(τ)) as i→ ∞. Thus, we have

(ω− τ)q−1 f (τ, ui(τ)) → (ω− τ)q−1 f (τ, u(τ)) as i→ ∞,

(t− τ)q−1 f (τ, ui(τ)) → (t− τ)q−1 f (τ, u(τ)) as i→ ∞.

Using condition (I I I), we obtain that for any 0 ≤ τ ≤ t ≤ ω,∫ ω

0

∥∥(ω− τ)q−1 f (τ, ui(τ))− (ω− τ)q−1 f (τ, u(τ))
∥∥dτ

≤ 2(Br + P)
∫ ω

0
(ω− τ)q−1dτ ≤ 2(Br + P)q−1ωq < ∞,

and ∫ t

0

∥∥(t− τ)q−1 f (τ, ui(τ))− (t− τ)q−1 f (τ, u(τ))
∥∥dτ

≤ 2(Br + P)
∫ t

0
(t− τ)q−1dτ ≤ 2(Br + P)q−1ωq < ∞.

Then, by Lebesgue dominated convergence theorem, we get∫ ω

0

∥∥(ω− τ)q−1 f (τ, ui(τ))− (ω− τ)q−1 f (τ, u(τ))
∥∥dτ → 0 as i→ ∞,

and ∫ t

0

∥∥(t− τ)q−1 f (τ, ui(τ))− (t− τ)q−1 f (τ, u(τ))
∥∥dτ → 0 as i→ ∞.

So, for any t ∈ [0, ω], it holds

‖(Fui)(t)− (Fu)(t)‖

≤ (c− 1)−1 1
Γ(q)

∫ ω

0

∥∥(ω− τ)q−1 f (τ, ui(τ))− (ω− τ)q−1 f (τ, u(τ))
∥∥dτ

+
1

Γ(q)

∫ t

0

∥∥(t− τ)q−1 f (τ, ui(τ))− (t− τ)q−1 f (τ, u(τ))
∥∥dτ → 0 as i→ ∞.

Then, F is continuous on Br.
We prove that F is pre-compact.
For any ti < t ≤ s ≤ ti+1, i ∈ N0, we have

∥∥∥ ∑
0<tk<t

∆k − ∑
0<tk<s

∆k

∥∥∥ =
∥∥∥ i

∑
k=1

∆k −
i

∑
k=1

∆k

∥∥∥ = 0

which implies that ∥∥∥ ∑
0<tk<t

∆k − ∑
0<tk<s

∆k

∥∥∥ → 0, as t→ s.
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So, for any 0 ≤ s1 < s2 ≤ ω, and any u ∈ Br, it holds

‖(Fu)(s1)− (Fu)(s2)‖

≤
∥∥∥ 1

Γ(q)

∫ s1

0
(s1 − τ)q−1 f (τ, u(τ))dτ − 1

Γ(q)

∫ s2

0
(s2 − τ)q−1 f (τ, u(τ))dτ

∥∥∥
+
∥∥∥ ∑

0<tk<s1

∆k − ∑
0<tk<s2

∆k

∥∥∥
≤ 1

Γ(q)

∫ s1

0

(
(s1 − τ)q−1 − (s2 − τ)q−1)∥∥ f (τ, u(τ))

∥∥dτ

+
1

Γ(q)

∫ s2

s1

(s2 − τ)q−1∥∥ f (τ, u(τ))
∥∥dτ +

∥∥∥ ∑
0<tk<s1

∆k − ∑
0<tk<s2

∆k

∥∥∥
≤ Br + P

Γ(q)

∫ s1

0

(
(s1 − τ)q−1 − (s2 − τ)q−1)dτ +

Br + P
Γ(q)

∫ s2

s1

(s2 − τ)q−1dτ

+
∥∥∥ ∑

0<tk<s1

∆k − ∑
0<tk<s2

∆k

∥∥∥
≤ Br + P

Γ(q + 1)

((
sq

2 − sq
1
)
+ 2(s2 − s1)

q
)
+
∥∥∥ ∑

0<tk<s1

∆k − ∑
0<tk<s2

∆k

∥∥∥ → 0 as s1 → s2.

So, F(Br) is equicontinuous. By (12), we obtain that F(Br) is uniformly bounded. Using
Arzelà-Ascoli theorem, we obtain that F(Br) is pre-compact.

It follows from Schauder’s fixed point theorem that the impulsive fractional differential
Equation (8) has at least one (ω, c) periodic solution u ∈ Φω,c. The proof is finished.

Remark 1. If c = 1, (ω, c)-periodic solution is standard ω-periodic solution. If c = −1, (ω, c)-
periodic solution is ω-antiperiodic solution. Moreover, all results obtained in this paper are based on
the fixed lower limit of Caputo fractional derivative.

5. Examples

Example 1. We consider the following impulsive fractional differential equation:{
cD

1
2
0 u(t) = λ cos 2t sin u(t), t 6= tk, t ∈ [0, ∞),

u(t+k ) = u(t−k ) + cos kπ, k = 1, 2, 3, · · · ,
(13)

where λ ∈ R, tk = kπ
2 , ∆k = cos kπ, f (t, u) = λ cos 2t sin u(t). Set ω = π, c = −1. It is easy

to see that for any k ∈ N, tk+2 = tk + π, ∆k+2 = ∆k. So, we obtain M = 2, and (IV) holds. For
any t ∈ R and any u ∈ R, we have

f (t + ω, cu) = f (t + π,−u) = −λ cos 2t sin u(t) = − f (t, u) = c f (t, u)

which implies that (I) holds. For any t ∈ R and any u, v ∈ R, we have | f (t, u)− f (t, v)| ≤
|λ||u− v| which implies that A = |λ| and (I I) holds. Note that Aωq(|c−1|−1+1)

Γ(q+1) = 3|λ|
√

π

Γ( 1
2 )

. Letting

0 < |λ| < Γ( 1
2 )

3
√

π
, we obtain 0 < Aωq(|c−1|−1+1)

Γ(q+1) < 1. Then, all assumptions in Theorem 2 hold for
Equation (13).

Hence, if 0 < |λ| < Γ( 1
2 )

3
√

π
, (13) has a unique (π,−1)-periodic solution u ∈ Φπ,−1.

Furthermore, we have

‖u‖∞ ≤
µωq(|c− 1|−1 + 1) + Γ(q + 1)(|c− 1|−1 + 1)∑M

k=1 ‖∆k‖
Γ(q + 1)− Aωq(|c− 1|−1 + 1)

=
3Γ( 1

2 )

Γ( 1
2 )− 3|λ|

√
π

.
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Example 2. We consider the following impulsive fractional differential equation:{
cD

1
2
0 u(t) = λu(t) sin

(
3−tu(t)

)
, t 6= tk, t ∈ [0, ∞),

u(t+k ) = u(t−k ) + 2, k = 1, 2, 3, · · · ,
(14)

where λ ∈ R, tk = k
2 , ∆k = 2, f (t, u) = λu sin(3−tu). Set ω = 1, c = 3. Obviously,

tk+2 = tk + 1, ∆k+2 = ∆k hold for all k ∈ N. So we obtain M = 2, and (IV) holds. For any t ∈ R
and any u ∈ R, we have

f (t + ω, cu) = f (t + 1, 3u) = 3λu sin(3−tu) = 3 f (t, u) = c f (t, u)

which implies that (I) holds. For any t ∈ R and any u ∈ R, we have | f (t, u)| ≤ |λ||u| which
implies that B = |λ|, P = 0 and (I I I) holds. Note that Bωq(|c− 1|−1 + 1) = 3

2 |λ|. Letting
|λ| < 1

Γ( 5
2 )

, we get Bωq(|c− 1|−1 + 1) < Γ(q + 1). Then, all assumptions in Theorem 3 hold for

Equation (13).
Therefore, if |λ| < 1

Γ( 5
2 )

, Equation (14) has at least one (1, 3)-periodic solution u ∈ Φ1,3.

6. Conclusions

In this paper, we mainly study the existence of (ω, c)-periodic solutions for impulsive
fractional differential equations with fixed lower limits. In future work, we shall study the
(ω, c)-periodic solutions for impulsive fractional differential equations with varying lower
limits.
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