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Abstract: As an application of the well-known Sălăgean differential operator, a new operator is
introduced and, using this, a new class of functions Sn(α) is defined, which has the classes of starlike
and convex functions of order α as special cases. Original results related to the newly defined class
are obtained using the renowned Jack–Miller–Mocanu lemma. A relevant example is given regarding
the applications of a new proven result concerning interesting properties of class Sn(α).

Keywords: analytic function; starlike function of order α; convex function of order α; Sălăgean
differential operator; Alexander integral operator

1. Introduction and Preliminaries

Many operators have been used since the beginning of the study of analytic functions.
The most interesting of these are the differential and integral operators. Since the beginning
of the 20th century, many mathematicians, especially J.W. Alexander [1], S.D. Bernardi [2]
and R.J. Libera [3], have worked on integral operators. It has become easier to introduce
new classes of univalent functions with the use of operators. In his article, published in
1983, Sălăgean introduced differential and integral operators, which bear his name. Those
operators were very inspiring and many mathematicians have obtained new, interesting
results using these operators. In particular, researchers have introduced many new opera-
tors, examined their properties, and further used the newly defined operators to introduce
classes of univalent functions with remarkable properties. At the same time, some mathe-
maticians obtained interesting results in different lines of research by combining differential
and integral operators, where Sălăgean differential operator was involved, as is seen, for
example, in very recent papers [4–6]. The topic of strong differential subordination was
also approached recently using Sălăgean differential operator in [7], and new operators
were introduced using a fractional integral of Sălăgean and Ruscheweyh operators in [8].
The operators introduced using the Sălăgean differential operator were also recently used
to obtain results related to the celebrated Fekete–Szegö inequality [9].

In this work, we introduce a new class as an application of the Sălăgean operator and
discuss some interesting problems with this class.

Let A be the class of functions f of the form

f (z) = z +
∞

∑
k=2

akzk (1)
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which are analytic in the open unit disc U = {z ∈ C : |z| < 1} and S be the subclass of A
consisting of univalent functions. Also,

S∗(α) =
{

f ∈ A : Re
(

z f ′(z)
f (z)

)
> α, z ∈ U, 0 ≤ α < 1

}
is the class of starlike functions of order α and

K(α) =
{

f ∈ A : Re
(

1 +
z f ′′(z)
f ′(z)

)
> α, z ∈ U, 0 ≤ α < 1

}
is the class of convex functions of order α.

Let us start by recalling the well-known definitions for the Sălăgean differential and
integral operators.

Definition 1 (Sălăgean [10]). For f ∈ A, the Sălăgean differential operator Dn is defined by
Dn : A→ A,

D0 f (z) = f (z) = z +
∞

∑
k=2

akzk, (2)

D1 f (z) = D f (z) = z f ′(z) = z +
∞

∑
k=2

kakzk, (3)

Dn f (z) = D(Dn−1 f (z)) = z +
∞

∑
k=2

knakzk (n = 1, 2, 3, · · · ), (4)

and Sălăgean integral operator D−n is defined by

D−1 f (z) =
∫ z

0

f (t)
t

dt = z +
∞

∑
k=2

1
k

akzk (5)

and

D−n f (z) = D−1(D−n+1 f (z)) = z +
∞

∑
k=2

1
kn akzk (n = 1, 2, 3, · · · ). (6)

In view of Definition 1, the following new operator is introduced:

Definition 2. For f ∈ A

Dj f (z) = z +
∞

∑
k=2

kjakzk (j = · · · ,−2,−1, 0, 1, 2, · · · ). (7)

With the above operator Dj f , we introduce the subclass Sn(α).

Definition 3. The subclass Sn(α) of A consists of functions f , which satisfy

Re
(

Dn+1 f (z)
Dn f (z)

)
> α (n = · · · ,−2,−1, 0, 1, 2, · · · ) (8)

for z ∈ U, where 0 ≤ α < 1.

Remark 1. Since D0 f (z) = f (z), D1 f (z) = z f ′(z) and D2 f (z) = z f ′(z) + z2 f ′′(z), f ∈
S0(α) satisfies

Re
(

z f ′(z)
f (z)

)
> α (z ∈ U), (9)
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and f ∈ S1(α) satisfies

Re
(

1 +
z f ′′(z)
f ′(z)

)
> α (z ∈ U). (10)

Therefore, f ∈ S0(α) = S∗(α) is starlike of order α in U, and f ∈ S1(α) = K(α) is convex of order
α in U (cf. Robertson [11]). Since D−1 f is Alexander integral operator, D−n f (n = 1, 2, 3, · · · ) is
the generalization for Alexander integral operator (cf. Alexander [1]).

For a function f ∈ A, we introduce

Mp(r, f ) =


(

1
2π

∫ 2π
0 | f (reiθ)|pdθ

) 1
p , (0 < p < ∞)

max|z|≤r| f (z)| , (p = ∞).

(11)

For the above Mp(r, f ), we define

Hp =
{

f ∈ A : ‖ f ‖p = limr→1−Mp(r, f ) < ∞
}

. (12)

To discuss our problems, we have to introduce the following lemmas.

Lemma 1 (Wilken and Feng [12]). If f ∈ S1(α), then f ∈ S0(β), where

β = β(α) =


2α−1

2(1−21−2α)
, (α 6= 1

2 )

1
2log2 = 0.7213 . . . , (α = 1

2 ).
(13)

The result is sharp.

Lemma 2 (Eenigenburg and Keogh [13]). If f ∈ S0(α) and

f (z) 6= z
(1− zeiθ)2 , (14)

then there exists δ = δ( f ) > 0 such that f (z)
z ∈ H

δ+ 1
2(1−α) .

Lemma 3 (Nunokawa [14]). Let a function p be analytic in U with p(0) = 1. If p satisfies

Re(p(z) + zp′(z)) >
1− 2log2

2(1− log2)
= −0.629 . . . (z ∈ U) (15)

then Rep(z) > 0 (z ∈ U).

Lemma 4 (Duren [15]). If a function p is analytic in U and Rep(z) > 0 (z ∈ U), then p ∈ Hp

(0 < p < 1).

Lemma 5 (Kim, Lee and Srivastava [16]). If f ∈ A satisfies zγ f (z) ∈ Hp (0 < p < ∞) for
some real γ, then f ∈ Hp (0 < p < ∞).

Lemma 6 (Duren [15]). If f ∈ A satisfies f ′ ∈ Hp (0 < p < 1), then f ∈ H
p

1−p .

Discussing our problems for Sălăgean operator, we need to introduce the following
lemma due to Miller and Mocanu [17,18] (also, by Jack [19]).

Lemma 7 (Miller and Mocanu [17,18]). Let the function w given by

w(z) = bnzn + bn+1zn+1 + bn+2zn+2 + . . . , n ∈ N (16)
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be analytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at a point
z0 ∈ U, then a real number k ≥ n exists, such that

z0w′(z0)

w(z0)
= k (17)

and

Re
(

1 +
z0w′′(z0)

w′(z0)

)
≥ k. (18)

The original results obtained by the authors and presented in this paper are contained
in the next section. A new operator is introduced with Sălăgean differential operator as
the inspiration. Using this newly introduced operator, a new class of functions denoted
by Sn(α) is defined, with known classes as particular cases. Certain properties involving
the applications of Sălăgean differential operator related to class Sn(α) are discussed in
the theorems and corollaries. Examples are also included to prove the applications of the
proved results.

2. Main Results

Now, we derive the following result.

Theorem 1. If f ∈ Sn(α), then f ∈ Sn−j(αj), where n > j ≥ 0 and

αj =


2αj−1−1

2(1−2
1−2αj−1 )

, (αj 6= 1
2 )

1
2log2 = 0.7213 . . . , (αj =

1
2 ).

(19)

Further, if
Dn−j f (z) 6= z

(1− zeiθ)2(1−αj)
, (20)

then there exists δ > 0, such that Dn−j f ∈ H
δ+ 1

2(1−αj) .

Proof. We note that if f ∈ Sn(α), then

Re
(

Dn+1 f (z)
Dn f (z)

)
> α0 (z ∈ U), (21)

where α0 = α. Since

Dn+1 f (z) = z(Dn f (z))′ = z(Dn−1 f (z))′ + z2(Dn−1 f (z))′′ (22)

and
Dn f (z) = z(Dn−1 f (z))′, (23)

we see that

Re

(
Dn+1 f (z)

Dn f (z)

)
= Re

(
1 +

z(Dn−1 f (z))′′

(Dn−1 f (z))′

)
> α0 (z ∈ U). (24)
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Applying Lemma 1, we say that

f ∈ Sn(α0)⇔ Dn−1 f ∈ S1(α0)

⇒ Dn−1 f ∈ S0(α1)

⇔ Dn−2 f ∈ S1(α1)

⇒ Dn−2 f ∈ S0(α2)

⇔ Dn−3 f ∈ S1(α2)

...

⇔ Dn−j f ∈ S0(αj−1)

⇒ Dn−j f ∈ S1(αj).

(25)

This implies that

Re
(

z(Dn−j f (z))′

Dn−j f (z)

)
= Re

(
Dn−j+1 f (z)

Dn−j f (z)

)
> αj (z ∈ U), (26)

that is, that f ∈ Sn−j(αj). Further, applying Lemma 2, we see that if

Dn−j f (z) 6= z

(1− zeiθ)2(1−αj)
, (27)

then there exists δ > 0, such that Dn−j f ∈ H
δ+ 1

2(1−αj) .

Example 1. Let us consider a function f belonging to the class S3(α). Then f ∈ S2(α1) with
(19), where

α1 =


2α−1

2(1−21−2α)
, (α 6= 1

2 )

1
2log2 = 0.7213 . . . , (α = 1

2 ).
(28)

Further, f ∈ S1(α2), where

α2 =


2α1−1

2(1−21−2α1 )
, (α1 6= 1

2 )

1
2log2 = 0.7213 . . . , (α1 = 1

2 ).
(29)

Also, f ∈ S0(α3), where

α3 =


2α2−1

2(1−21−2α2 )
, (α2 6= 1

2 )

1
2log2 = 0.7213 . . . , (α2 = 1

2 ).
(30)

If we consider the case of α = 1
4 , then we have

α1 =
1

4(
√

2− 1)
.
= 0.60355, (31)

α2 =
3− 2

√
2

4(
√

2− 1)(1− 2
1−
√

2
2 )

.
= 0.77436, (32)

and
α3

.
= 0.8672. (33)
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Further, if we consider the case of α = 1
8 , then

α1 =
3

8( 4
√

8− 1)
.
= 0.55002, (34)

and

α2 =
7− 4 4

√
8

8( 4
√

8− 1)(1− 2
4 4√8−7

4( 4√8−1) )

.
= 0.60607. (35)

Remark 2. For some positive integer j, we know that

αj+1 =
2αj − 1

2(1− 21−2αj)
, (αj 6= 1

2 ). (36)

If we consider

g(αj) = αj+1 − αj =
2αj − 1

2(1− 21−2αj)
− αj , (αj 6= 1

2 ), (37)

g(0) = 1
2 and g(1) = 0. From this fact, we know that αj < αj+1 for 0 ≤ αj < 1. This implies that

0 ≤ α < α1 < α2 < · · · < αj < · · · < 1. (38)

Letting j = n in Theorem 1, we see

Corollary 1. If f ∈ Sj(α), then f ∈ S0(αj). If

f (z) 6= z

(1− zeiθ)2(1−αj)
, (39)

then there exists δ > 0, such that f ∈ H
δ+ 1

2(1−αj) .

Next we have

Theorem 2. If f ∈ A satisfies

Re
(

Dn+1 f (z)
z

)
=

1− 2log2
2(1− log2)

= −0.629 . . . (z ∈ U) (40)

for some n ∈ N, then there exists pj, such that Dn−j+1 f ∈ Hpj , where

pj >
1

j− k + 1
(k = 1, 2, 3, · · · , j) (41)

and j ≤ n + 1.

Proof. If we define p by

p(z) =
Dn f (z)

z
, (42)

then p is analytic in U with p(0) = 1. Since

p(z) + zp′(z) =
Dn+1 f (z)

z
, (43)

we see that

Re
(

Dn+1 f (z)
z

)
= Re

(
p(z) + zp′(z)

)
>

1− 2log2
2(1− log2)

(z ∈ U). (44)
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Applying Lemma 3, we have that

Rep(z) = Re
(

Dn f (z)
z

)
> 0 (z ∈ U). (45)

Using Lemma 4, we know that

Dn f (z)
z

∈ Hp1 (0 < p1 <
1
j
), (46)

that is, that (Dn−1 f (z))′ ∈ Hp1 . By Lemma 6, we have that

Dn−1 f ∈ Hp2 (0 < p2 =
p1

1− p1
<

1
j− 1

). (47)

Noting that
Dn−1 f (z) = z(Dn−2 f (z))′, (48)

we obtain that
Dn−2 f ∈ Hp3 (0 < p3 =

p2

1− p2
<

1
j− 2

). (49)

Repeating the above, we have that

Dn−j+2 f ∈ Hpj−1 (0 < pj−1 <
1
2
). (50)

Finally, we get
Dn−j+1 f ∈ Hpj (0 < pj < 1). (51)

Making j = n + 1 in Theorem 2, we have

Corollary 2. If f ∈ A satisfies

Re
(

Dn+1 f (z)
z

)
>

1− 2log2
2(1− log2)

= −0.629 . . . (z ∈ U), (52)

then, there exists pn+1 such that f ∈ Hpn+1 (0 < pn+1 < 1).

Next, we derive

Theorem 3. If f ∈ A satisfies∣∣∣∣Dn+2 f (z)
Dn+1 f (z)

− 1
∣∣∣∣ < 5α− 2α2 − 1

2α
(z ∈ U), (n ∈ N) (53)

for some real α ( 1
3 ≤ α ≤ 1

2 ), or∣∣∣∣Dn+2 f (z)
Dn+1 f (z)

− 1
∣∣∣∣ < α− 2α2 + 1

2α
(z ∈ U), (n ∈ N) (54)

for some real α ( 1
2 ≤ α < 1), then Dn f ∈ S0(α), that is, Dn f is starlike of order α in U. Further, if

Dn−j f (z) 6= z

(1− zeiθ)2(1−αj)
, (55)
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then, there exists δ > 0 such that Dn−j f ∈ H
δ+ 1

2(1−αj) , where

αj =


2αj−1−1

2(1−2
1−2αj−1 )

, (αj−1 6= 1
2 )

1
2log2 = 0.7213 . . . , (αj−1 = 1

2 )

(56)

and j ≤ n.

Proof. Define a function w by

Dn+1 f (z)
Dn f (z)

=
1 + (1− 2α)w(z)

1− w(z)
(w(z) 6= 1). (57)

It follows from the above that

Dn+2 f (z)
Dn+1 f (z)

− Dn+1 f (z)
Dn f (z)

=
(1− 2α)zw′(z)

1 + (1− 2α)w(z)
+

zw′(z)
1− w(z)

. (58)

Therefore, we have that

Dn+2 f (z)
Dn+1 f (z)

− 1 =

(
w(z)

1− w(z)

){
2(1− α) +

zw′(z)
w(z)

(
1 +

(1− 2α)(1− w(z))
1 + (1− 2α)w(z)

)}
. (59)

Suppose that there exists a point z0 ∈ U, such that

max|z|≤|z0||w(z)| = |w(z0)| = 1 (w(z0) 6= 1). (60)

Then, Lemma 7 say that w(z0) = eiθ and z0w′(z0) = kw(z0) (k ≥ 1). This implies that∣∣∣∣Dn+2 f (z0)

Dn+1 f (z0)
− 1
∣∣∣∣ = ∣∣∣∣ eiθ

1− eiθ

∣∣∣∣∣∣∣∣2(1− α) + k
(

1 +
(1− 2α)(1− eiθ)

1 + (1− 2α)eiθ

)∣∣∣∣
≥ 2(1− α0) + k∣∣1− eiθ

∣∣ − k|1− 2α|∣∣1 + (1− 2α)eiθ
∣∣

≥ 2(1− α0) + k
2

− k|1− 2α|
2α

.

(61)

If 1
3 ≤ α < 1

2 , then ∣∣∣∣Dn+2 f (z0)

Dn+1 f (z0)
− 1
∣∣∣∣ ≥ 5α− 2α2 − 1

2α
(62)

and if 1
2 ≤ α < 1, then ∣∣∣∣Dn+2 f (z0)

Dn+1 f (z0)
− 1
∣∣∣∣ ≥ α− 2α2 + 1

2α
. (63)

This contradicts our condition of the theorem. Thus we say that |w(z)| < 1 for all z ∈ U.
From the definition (57) for w, we obtain that

Re
(

Dn+1 f (z)
Dn f (z)

)
> α (z ∈ U). (64)

This means that Dn f ∈ S0(α). Letting α = α0 and using Lemma 1, we obtain Dn−j f ∈
S0(αj), where αj is given by (56). Applying Lemma 2, we know that if

Dn−j f (z) 6= z

(1− zeiθ)2(1−αj)
, (65)
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then, there exists δ > 0 such that Dn−j f ∈ H
δ+ 1

2(1−αj) .

Making j = n in Theorem 3, we have

Corollary 3. If f ∈ A satisfies∣∣∣∣Dn+2 f (z)
Dn+1 f (z)

− 1
∣∣∣∣ < 5α− 2α2 − 1

2α
(z ∈ U), (66)

for some real α ( 1
3 ≤ α ≤ 1

2 ), or∣∣∣∣Dn+2 f (z)
Dn+1 f (z)

− 1
∣∣∣∣ < α− 2α2 + 1

2α
(z ∈ U), (67)

for some real α ( 1
2 ≤ α < 1), then Dn f ∈ S0(α). If

f (z) 6= z
(1− zeiθ)2(1−αn)

, (68)

then, there exists δ > 0, such that f ∈ Hδ+ 1
2(1−αn) .

3. Conclusions

Inspired by the classic and well-known Sălăgean differential operator, a new operator
is introduced in Definition 2. By applying this operator, a new class of functions is defined,
denoted by Sn(α). It is shown that classes of starlike and convex functions of the order α
are obtained for specific values of n. Some interesting problems concerning the class Sn(α)
are discussed in the theorems and corollaries. One example is given as an application for
special cases of n for the class Sn(α). The new operator defined in this paper can be used
to introduce other certain subclasses of analytic functions. Quantum calculus can be also
associated for future studies, as can be seen in paper [20] regarding the Sălăgean differential
operator and involving symmetric Sălăgean differential operator in paper [21]. Symmetry
properties can be investigated for this operator, taking the symmetric Sălăgean derivative
investigated in [22] as inspiration.
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