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Abstract: We consider analytic functions in tubes Rn + iB ⊂ Cn with values in Banach space or
Hilbert space. The base of the tube B will be a proper open connected subset of Rn, an open connected
cone in Rn, an open convex cone in Rn, and a regular cone in Rn, with this latter cone being an
open convex cone which does not contain any entire straight lines. The analytic functions satisfy
several different growth conditions in Lp norm, and all of the resulting spaces of analytic functions
generalize the vector valued Hardy space Hp in Cn. The analytic functions are represented as the
Fourier–Laplace transform of certain vector valued Lp functions which are characterized in the
analysis. We give a characterization of the spaces of analytic functions in which the spaces are in fact
subsets of the Hardy functions Hp. We obtain boundary value results on the distinguished boundary
Rn + i{0} and on the topological boundary Rn + i∂B of the tube for the analytic functions in the
Lp and vector valued tempered distribution topologies. Suggestions for associated future research
are given.
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1. Introduction

In [1] and related work, we defined and analyzed vector-valued Hardy Hp(TB,X )
functions on tubes TB = Rn + iB ⊂ Cn with values in Banach space X . We showed that any
Banach space X vector-valued analytic function on TB which obtained a X vector-valued
distributional boundary value was a Hp(TB,X ), 1 ≤ p ≤ ∞, function with values in
Banach space X if the X vector-valued boundary value was a Lp(Rn,X ), 1 ≤ p ≤ ∞,
function. We showed that the Hp(TB,X ), 1 ≤ p ≤ ∞, functions admitted a representation
by the Poisson integral of Lp(Rn,X ), 1 ≤ p ≤ ∞, functions if the values of the analytic
functions were in a certain type of Banach space and then obtained a pointwise growth
estimate for the Hp(TB,X ) functions for this Banach space. In additional analysis, we
have obtained many general results concerning Hp(TB,X ) functions with values in Banach
space including representations as Fourier–Laplace, Cauchy, and Poisson integrals and the
existence of boundary values.

Previously, we defined generalizations of Hp(TB) functions in the scalar-valued case
by using several more general growth conditions on the Lp norm of the analytic functions.
Some of these scalar-valued results are contained in [2] (Chapter 5); other such results
in the scalar-valued case are contained in papers listed under the author’s name in the
references in [1,2]. In this paper, we build upon these scalar-valued generalizations of
Hp(TB) functions by considering the vector-valued case of functions and distributions
with values in Banach or Hilbert space. The generalizations of the vector-valued analytic
functions in Hp(TB,X ), X being a Banach space, which we consider here are defined in
Section 4 of this paper. Our results are obtained for the base B of the tube TB successively
being a proper open connected subset of Rn, an open connected cone in Rn, an open
convex cone in Rn, and a regular cone in Rn, with this latter cone being an open convex
cone which does not contain any entire straight lines; as the base B of the tube TB is
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specialized, increasingly precise results are obtained in the analysis. For B being a proper
open connected subset of Rn we show, for example, that the growth condition that defines
the functions which generalize the Hardy functions can, in certain circumstances, be
extended to the boundary of the base B of the tube TB. At the open convex cone stage in
our analysis we are able to show the equivalence of two types of vector-valued functions
which generate Hp(TB,X ) functions. In the cone setting for base B we show that certain
elements of the defined analytic functions are in fact Hp(TB) functions which leads to the
representation of these functions as Fourier–Laplace, Cauchy, and Poisson integrals. In the
case that B is a regular cone we study the boundary values on the topological boundary
of the tube defined by the cone as points in B approach a point on its boundary through
circular bands within B. In general, our goal in this paper is to obtain results for the
functions defined in Section 4 treated as generalizations of Hp(TB,X ) functions and as
generalizations of the scalar-valued functions noted in [2] (Chapter 5) and in some of our
papers referenced in [2] and hence to generalize results concerning Hp(TB,X ) spaces and
concerning the scalar-valued functions noted in [2] (Chapter 5) and in certain references
of [2] to these new spaces of analytic functions. Additionally, our goal is to obtain additional
new results for the analytic functions of Section 4 which we accomplish.

As noted above, the vector-valued analytic functions considered in this paper are
defined in Section 4. In Section 5, we show that certain vector-valued measurable functions
generate the analytic functions by the Fourier–Laplace transform; conversely, in Section 6,
we generate the measurable functions from the analytic functions and show that the analytic
functions are representable through the generated measurable functions. As the base B of
the tube TB is made more specific the analytic functions and measurable functions obtain
more specific properties. In Section 7, we show that under specified conditions the analytic
functions considered are in fact vector-valued Hardy H2 functions which immediately
results in Cauchy and Poisson integral representations. Section 8 concerns the existence
of boundary values of the analytic functions in vector-valued Lp and in vector-valued S ′
topologies on both the distinguished boundary and the topological boundary of the tube.
Problems for future research are considered in Section 9, and conclusions are provided in
Section 10.

2. Definitions and Notation

Throughout, X will denote a Banach space, H will denote a Hilbert space, N will
denote the norm of the specified Banach or Hilbert space, and Θ will denote the zero vector
of the specified Banach or Hilbert space. We reference Dunford and Schwartz [3] for integra-
tion of vector-valued functions and for vector-valued analytic functions. For foundational
information concerning vector-valued distributions we refer to Schwartz ([4,5]).

The n-dimensional notation used in this paper will be the same as that in [1,2]. The
information concerning cones in Rn needed here is contained in [2] (Chapter 1). We recall
some very important notation and concepts of cones here that are necessary for this paper.
C ⊂ Rn is a cone (with vertex at 0 = (0, 0, ..., 0) ∈ Rn) if y ∈ C implies λy ∈ C for all
positive scalars λ. The intersection of C with the unit sphere |y| = 1 is called the projection
of C and is denoted pr(C). A cone C′ such that pr(C′) ⊂ pr(C) is a compact subcone of C
which we will denote as C′ ⊂⊂ C. The function

uC(t) = sup
y∈pr(C)

(−〈t, y〉), t ∈ Rn,

is the indicatrix of C. The dual cone C∗ of C is defined as

C∗ = {t ∈ Rn : 〈t, y〉 ≥ 0 for all y ∈ C}

and satisfies C∗ = {t ∈ Rn : uC(t) ≤ 0}. An open convex cone which does not contain any
entire straight lines will be called a regular cone. See [2] (Section 1.2) for examples of cones
in Rn. In this paper, we will be concerned with the distance from a point in a cone to the
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boundary of the cone; for C being an open connected cone in Rn, the distance from y ∈ C
to the topological boundary ∂C of C is

d(y) = inf{|y− y1| : y1 ∈ ∂C}.

For an open connected cone C ⊂ Rn, we know from [2] (p. 6, (1.14)) that

d(y) = inf
t∈pr(C∗)

〈t, y〉, y ∈ C,

and 0 < d(y) ≤ |y|, y ∈ C. Additionally, d(λy) = λd(y), λ > 0.
The Lp(Rn,X ) functions, 1 ≤ p ≤ ∞, with values in X and their norm |h|p are noted

in [3] (Chapter III). The Fourier transform on L1(Rn) or L1(Rn,X ) is given in [2] (p. 3). All
Fourier (inverse Fourier) transforms on scalar or vector-valued functions will be denoted
φ̂ = F [φ(t); x] (F−1[φ(t); x]). As stated in [6] the Plancherel theory is not true for vector-
valued functions except when X = H, a Hilbert space. The Plancherel theory is complete
in the L2(Rn,H) setting in that the inverse Fourier transform is the inverse mapping of the
Fourier transform with F−1F = I = FF−1 with I being the identity mapping.

As usual, we denote S(Rn) as the tempered functions with associated distributions
being S ′(Rn) or associated vector-valued distributions being S ′(Rn,X ). The Fourier
transform on S ′(Rn) and on S ′(Rn,X ) is the usual such definition and is given in [4]
(p. 73).

Let B be an open subset of Rn and X be a Banach space. The Hardy space Hp(TB,X ),
0 < p < ∞, consists of those analytic functions f(z) on the tube TB = Rn + iB ⊂ Cn with
values in the Banach space X such that for some constant M > 0 and every y ∈ B∫

Rn
(N (f(x + iy)))pdx ≤ M;

the usual modification is made for the case p = ∞.

3. Cauchy and Poisson Kernels and Integrals

Let C be a regular cone in Rn. C∗ is the dual cone of C. The Cauchy kernel correspond-
ing to TC = Rn + iC is

K(z− t) =
∫

C∗
e2πi〈z−t,η〉dη, t ∈ Rn, z ∈ TC.

The Poisson kernel corresponding to TC is

Q(z; t) =
K(z− t)K(z− t)

K(2iy)
=
|K(z− t)|2

K(2iy)
, t ∈ Rn, z ∈ TC.

Referring to [2] (Chapters 1 and 4) for details, we know for z ∈ TC that K(z− ·) ∈
D(∗, Lp) ⊂ DLp , 1 < p ≤ ∞; and Q(z; ·) ∈ D(∗, Lp) ⊂ DLp , 1 ≤ p ≤ ∞, where ∗ is
Beurling (Mp) or Roumieu {Mp}. These ultradifferentiable functions are contained in the
Schwartz space DLp = D(Lp,Rn). Because of the combined properties of the Cauchy and
Poisson kernels from [2], we know that the Cauchy and Poisson integrals∫

Rn
h(t)K(z− t)dt, z ∈ TC,

and ∫
Rn

h(t)Q(z; t)dt, z ∈ TC,

are well defined for h ∈ Lp(Rn,X ), 1 ≤ p < ∞, and h ∈ Lp(Rn,X ), 1 ≤ p ≤ ∞,
respectively, for X being a Banach space.
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We conclude this section with a boundary value calculation concerning the integral
which defines the Cauchy kernel. Our calculations here provide motivation and guidance
for boundary value results concerning the analytic functions considered in this paper which
we obtain subsequently. Let C be a regular cone and put

K(z) =
∫

C∗
e2πi〈z,t〉dt, z ∈ TC.

We know that K(z) is analytic in TC and is a bounded function of x ∈ Rn for y ∈ C.
Thus, K(x + iy) ∈ S ′(Rn) as a function of x ∈ Rn for y ∈ C. Let IC∗(t) denote the
characteristic function of C∗. We have the following result concerning points on the
boundary of C, ∂C.

Theorem 1. Let yo ∈ ∂C. We have

lim
y→yo ,y∈C

K(x + iy) = F [IC∗(t)e−2π〈yo ,t〉]

in the strong topology of S ′(Rn).

Proof. For yo ∈ ∂C, choose a sequence of points {ym}, m = 1, 2, ..., in C which converges
to yo. We have

〈yo, t〉 = lim
ym→yo

〈ym, t〉 ≥ 0, t ∈ C∗.

Thus, e−2π〈yo ,t〉 IC∗(t) ∈ S ′(Rn) and F [e−2π〈yo ,t〉 IC∗(t)] ∈ S ′(Rn). Let φ ∈ S(Rn) and
y ∈ C.

〈K(x + iy)−F [e−2π〈yo ,t〉 IC∗(t)], φ(x)〉
= 〈F [(e−2π〈y,t〉 − e−2π〈yo ,t〉)IC∗(t)], φ(x)〉
= 〈(e−2π〈y,t〉 − e−2π〈yo ,t〉)IC∗(t), φ̂(t)〉.

Now

|(e−2π〈y,t〉 − e−2π〈yo ,t〉)IC∗(t)φ̂(t)| ≤ (e−2π〈y,t〉) + e−2π〈yo ,t〉)IC∗(t)|φ̂(t)| ≤ 2|φ̂(t)|.

By the Lebesgue dominated convergence theorem, we have

lim
y→yo ,y∈C

K(x + iy) = F [IC∗(t)e−2π〈yo ,t〉]

in the weak topology of S ′(Rn). Since S(Rn) is a Montel space we have this convergence
in the strong topology of S ′(Rn) also.

In Theorem 1, notice that 0 is on the boundary of C. Thus, for yo = 0,

lim
y→0,y∈C

K(x + iy) = F [IC∗(t)]

in the strong topology of S ′(Rn) in the conclusion of Theorem 1.

4. The Analytic Functions

As previously noted, we have studied vector-valued Hardy spaces in [1]; previous to
this analysis we had generalized scalar-valued Hardy spaces by placing a more general
bound on the Lp norm of the scalar-valued analytic function. These main scalar-valued
generalizations are contained in [2] with other related work referenced in [2]. In the
scalar-valued generalizations, we obtained Fourier–Laplace transform representation of
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the analytic functions and characterized the measurable function which generated this
representation along with related results.

Given our recent work in studying vector-valued Hardy spaces, we now desire to
study vector-valued generalizations of vector-valued Hardy spaces.

In this section, we introduce and define the vector-valued analytic functions that we
study here. Throughout this section, B will denote a proper open connected subset of Rn

unless stated otherwise; and, as previously stated, X will denote a Banach space with
norm N .

Definition 1. Hp
A(T

B,X ), 1 ≤ p < ∞, is the set of analytic functions f(z) on TB with values in
X such that

|f(x + iy)|p = (
∫
Rn
(N (f(x + iy)))pdx)1/p ≤ M(1 + (d(y))−r)se2πA|y|, y ∈ B,

where r ≥ 0, s ≥ 0, A ≥ 0, and M = M(f, p, A, r, s) > 0.

Definition 2. Rp
A(T

B,X ), 1 ≤ p < ∞, is the set of analytic functions f(z) on TB with values in
X such that

|f(x + iy)|p ≤ M(1 + |y|−r)se2πA|y|, y ∈ B,

where r ≥ 0, s ≥ 0, A ≥ 0, and M = M(f, p, A, r, s) > 0.

Definition 3. Vp
A(T

B,X ), 1 ≤ p < ∞, is the set of analytic functions f(z) on TB with values in
X such that

|f(x + iy)|p ≤ Me2πA|y|, y ∈ B,

were A ≥ 0 and M = M(f, p, A) > 0.

We consider situations and examples which help emphasize containment of these
spaces although the definitions of these sets of functions show the containment in many
cases. If B is an open connected cone we know from Section 2 that d(y) ≤ |y|, y ∈ B; thus,
Rp

A(T
B,X ) ⊆ Hp

A(T
B,X ) in general in this case. For specific examples which help show

proper containment let us just consider scalar-valued analytic functions in half planes in
C1. Let B = (0, ∞); thus, T(0,∞) = R1 + i(0, ∞). We have

f (z) =
e−2πiz

z(i + z)
∈ R2

1(T
(0,∞),C1) ∩ H2

1(T
(0,∞),C1), y = Im(z) ∈ (0, ∞),

as
|| f (x + iy||L2(R1) ≤ π1/2(1 + y−1)e2πy, y = Im(z) > 0;

but this f (z) is not in V2
1 (T

(0,∞),C1). We have

f (z) =
e−2πiz

i + z
∈ V2

1 (T
(0,∞),C1)

but is not in H2(T(0,∞),C1). Of course f (z) = 1/(i + z) ∈ H2(T(0,∞),C1) and hence is
in all of V2

1 (T
(0,∞),C1), R2

1(T
(0,∞),C1), and H2

1(T
(0,∞),C1). These examples help to see

the containment of the defined spaces and the Hardy functions for most of the specified
conditions on the base B of the tube TB in our analysis in this paper.

For our next set of analytic functions, we must remember properties of sequences
Mp, p = 0, 1, 2, ..., with which ultradifferentiable functions and ultradistributions are
defined. These sequences and properties are discussed in [2] (Section 2.1). In this pa-
per, we are principally concerned with the properties (M.1) and (M.3′) and with the
associated function
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M∗(ρ) = sup
p

log(ρp p!M0/Mp), 0 < ρ < ∞.

With these facts in mind we define additional vector-valued analytic functions.

Definition 4. For B, being a proper open connected subset of Rn which does not contain 0,
Hp
∗ (TB,X ), 1 ≤ p < ∞, is the set of analytic functions f(z) on TB with values in X such that

|f(x + iy)|p ≤ K(1 + (d(y))−r)seM∗(w/|y|), y ∈ B,

where r ≥ 0, s ≥ 0, w > 0, and K = K(f, p, r, s, w) > 0.

With Definition 4 in place, we can now state definitions for Rp
∗(TB,X ) and Vp

∗ (TB,X )
from Definition 4 similarly as we did for Rp

A(T
B,X ) and Vp

A(T
B,X ) from Definition 1.

In the scalar-valued case, we have proved that the Cauchy integral of ultradistributions
U ∈ D′(∗, Lp), where ∗ is Beurling (Mp) or Roumieu {Mp}, is analytic in TC and satisfies
the growth of Definition 4 where C is a regular cone in Rn; see [2] (Section 4.2). Addition-
ally, we have obtained boundary value results for scalar-valued functions of the type in
Definition 4 in [2] (Chapter 5).

Throughout this paper, results concerning Hp
∗ (TB,X ) and its subsets and associated

norm growth bounds are obtained under the assumption that the sequence of positive
numbers Mp, p = 0, 1, 2, ..., from which the associated function M∗(ρ) is defined, will
always be assumed to satisfy properties (M.1) and (M.3′) in [2] (p. 13).

5. Measurable Functions Generating Analytic Functions

The results which we will prove in this paper are obtained for functions in Hp
A(T

B,X )

of Definition 1 and for functions in Hp
∗ (TB,X ) of Definition 4 by very similar methods.

The results corresponding to Hp
A(T

B,X ) however are somewhat more general in nature
than the corresponding ones for Hp

∗ (TB,X ). Thus, we will concentrate our proofs on the
results corresponding to Hp

A(T
B,X ) and subsequently state the corresponding results for

Hp
∗ (TB,X ) which will be denoted by a * next to the result number.

We begin by obtaining properties on measurable functions which we will use to
generate analytic functions in Hp

A(T
B,X ). Let B be a proper open connected subset of Rn

and let X be a Banach space. Let 1 ≤ p < ∞ and g(t) be a X valued measurable function
on Rn such that

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−r)se2πA|y|, y ∈ B, (1)

where r ≥ 0, s ≥ 0, A ≥ 0, and M = M(g, p, A, r, s) > 0 do not depend on y ∈ B.

Theorem 2. For B, being a proper open connected subset of Rn and X being a Banach space let
g(t) be a X valued measurable function on Rn such that (1) holds for y ∈ B and for 1 ≤ p < ∞.
We have

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z = x + iy ∈ TB, (2)

is a X valued analytic function of z ∈ TB.

Proof. Let yo ∈ B. Choose an open neighborhood N(yo; r), r > 0, and a compact subset
S ⊂ B such that yo ∈ N(yo; r) ⊂ S ⊂ B. Decompose Rn into a union of a finite number of
non-overlapping cones C1, C2, ..., Ck each having vertex at 0 and such that whenever two
points y1 and y2 belong to one of these cones the angle between the rays from 0 to y1 and
from 0 to y2 is less than π/4 radians; and hence 〈y1, y2〉 = |y1||y2|cos(θ) > |y1||y2|21/2/2
where θ is the angle between the two rays. There is a δ > 0 such that 0 < δ < r and
{y : |y− yo| = δ} ⊂ N(yo; r). Put ε = 2πpδ/21/2 > 0. For each j = 1, 2, ..., k choose a fixed
yj such that yo − yj ∈ Cj and |yj − yo| = δ. For each j = 1, 2, ..., k let t ∈ Cj; we have
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〈yo − yj, t〉 ≥ |yo − yj||t|/21/2, t ∈ Cj, j = 1, 2, ..., k.

Thus, for t ∈ Cj, j = 1, 2, ..., k,,

ε|t| = (2πpδ/21/2)|t| = 2πp|yo − yj||t|/21/2 ≤ 2πp〈yo − yj, t〉 = −2πp〈yj − yo, t〉.

Hence, for each j = 1, 2, ..., k, using (1) we have∫
Cj

e−2πp〈yo ,t〉eε|t|(N (g(t)))pdt

≤
∫

Cj

e−2πp〈yo ,t〉e−2πp〈yj−yo ,t〉(N (g(t)))pdt =
∫

Cj

e−2πp〈yj ,t〉(N (g(t)))pdt

≤
∫
Rn
(N (e−2π〈yj ,t〉g(t)))pdt ≤ Mp(1 + (d(yj))

−r)spe2πpA|yj |

and ∫
Rn

e−2πp〈yo ,t〉eε|t|(N (g(t)))pdt =
k

∑
j=1

∫
Cj

e−2πp〈yo ,t〉eε|t|(N (g(t)))pdt

≤ Mp
k

∑
j=1

(1 + (d(yj))
−r)spe2πpA|yj | (3)

for arbitrary yo ∈ B. For p = 1 and the fact that (ε|t|/2) ≤ ε|t|, t ∈ Rn, we have from
(3) that ∫

Rn
e−2π〈yo ,t〉eε|t|/2N (g(t))dt ≤ M

k

∑
j=1

(1 + (d(yj))
−r)se2πA|yj |. (4)

For 1 < p < ∞, Hölder’s inequality, the identity eε|t|/2p = eε|t|/pe−ε|t|/2p and (3) yield∫
Rn

e−2π〈yo ,t〉eε|t|/2pN (g(t))dt ≤ ||e−ε|t|/2p||Lq(Rn)|e−2π〈yo ,t〉eε|t|/pg(t)|p

≤ M||e−ε|t|/2p||Lq(Rn)

(
k

∑
j=1

(1 + (d(yj))
−r)spe2πpA|yj |

)1/p

(5)

where 1/p + 1/q = 1. If |y− yo| < ε/4πp, y = Im(z), 1 ≤ p < ∞, then for z = x + iy

N (g(t)e2πi〈z,t〉) = e−2π〈y,t〉N (g(t)) = e−2π〈y−yo ,t〉e−2π〈yo ,t〉N (g(t))

≤ e2π|y−yo ||t|e−2π〈yo ,t〉N (g(t)) ≤ e−2π〈yo ,t〉eε|t|/2pN (g(t)) (6)

for all t ∈ Rn. (4) and (5) now show that the right side of (6) is a L1(Rn) function which
is independent of y = Im(z) such that |y− yo| < ε/4πp for all cases 1 ≤ p < ∞. Since
yo ∈ B is arbitrary we conclude from (6) that f (z) defined by (2) is a X valued analytic
function of z ∈ TB. Further, (6) proves that e−2π〈y,t〉g(t) ∈ L1(Rn,X ), y ∈ B, for all cases
1 ≤ p < ∞ in addition to the fact that e−2π〈y,t〉g(t) ∈ Lp(Rn,X ), y ∈ B, for each of the
specific cases for p, 1 ≤ p < ∞, because of the assumption (1). The proof is complete.

The exact same method of proof used for Theorem 2 yields the following result
corresponding to the growth for Hp

∗ (TB,X ).

Theorem 3. Let B be a proper open connected subset of Rn which does not contain 0 ∈ Rn, and let
X be a Banach space. Let 1 ≤ p < ∞ and g(t) be a X valued measurable function on Rn such that

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−r)seM∗(w/|y|), y ∈ B,
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where r ≥ 0, s ≥ 0, w > 0, and M = M(g, p, r, s, w) > 0 are independent of y ∈ B. We have

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z ∈ TB,

is a X valued analytic function of z ∈ TB.

The Fourier transform of vector-valued functions Lp(Rn,X ) with the Plancherel theory
and Parseval identity holding occurs only if p = 2 and X = H, a Hilbert space. For
p = 2 in order to have an isomorphism of the Fourier transform of L2(Rn,X ) onto itself
with the Parseval identity holding it is necessary and sufficient that X = H, a Hilbert
space [6] (pp. 45, 61). We use the Fourier transform considerably in this paper, and its use
is the reason we sometimes restrict the result to p = 2 and X = H. We obtain a corollary to
Theorem 2.

Corollary 1. Let B be a proper open connected subset of Rn andH be a Hilbert space. Let g(t) be a
H valued measurable function on Rn such that (1) holds for p = 2. We have f(z) ∈ H2

A(T
B,H)

for f(z) defined in (2).

Proof. f(z) is analytic in TB by Theorem 2. By the assumption (1) for p = 2 and the
proof of Theorem 2, e−2π〈y,t〉g(t) ∈ L1(Rn,H) ∩ L2(Rn,H) for y ∈ B. Thus, f(x + iy) =
F [e−2π〈y,t〉g(t); x], y ∈ B, with the Fourier transform being in the L1(Rn,H) and the
L2(Rn,H) cases. By the Parseval equality |f(x + iy)|2 = |e−2π〈y,t〉g(t)|2 for y ∈ B. From (1)
the desired growth on f(x + iy) of Definition 1 is obtained, and f(z) ∈ H2

A(T
B,H).

Under certain circumstances, the growth on the L2(Rn,H) function e−2π〈y,t〉g(t), y ∈
B, in Corollary 1 can be extended to hold for y ∈ B.

Corollary 2. Assume the hypotheses of Corollary 1 with the addition that (1) holds for p = 2 with
r = 0 or s = 0. We have f(z) ∈ V2

A(T
B,H) for f(z) defined in (2) and

|e−2π〈y,t〉g(t)|2 ≤ Me2πA|y|, y ∈ B.

Further if 0 ∈ ∂B then g ∈ L2(Rn,H).

Proof. From the proof of Corollary 1 and Definition 3, we have f(z) ∈ V2
A(T

B,H) for r = 0
or s = 0 in (1). Let yo ∈ ∂B and let {ym} be a sequence of points in B which converges to yo.
By Fatou’s lemma we have∫

Rn
e−4π〈yo ,t〉(N (g(t)))2dt ≤ lim sup

m→∞

∫
Rn

e−4π〈ym ,t〉(N (g(t)))2dt

≤ lim sup
m→∞

M2e4πA|ym | = M2e4πA|yo |

and
|e−2π〈yo ,t〉g(t)|2 ≤ Me2πA|yo |.

Thus, (1) holds with r = 0 or s = 0 for y ∈ B. If 0 ∈ ∂B then g(t) ∈ L2(Rn,H) from
the above inequality for yo = 0.

For B being a proper open connected subset of Rn and X being a Banach space, assume
(1) holds for 1 ≤ p < ∞ with r = 0 or s = 0 and for g having values in X . The proof of
Corollary 2 shows that (1) will hold for y ∈ B in this situation.

We study the extension of f(z) or e−2π〈y,t〉g(t), y ∈ B, in norm to the ∂B in greater
detail later in this paper in section 8.

The proof of the following result is the same as that of Corollary 1 using Theorem 3.
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Corollary 3. Let B be a proper open connected subset of Rn which does not contain 0 ∈ Rn, and let
H be a Hilbert space such that the growth of Theorem 3 holds for p = 2. We have f(z) ∈ H2

∗(TB,H)
for f(z) defined in (2).

In several following results, we restrict the base B of the tube TB to cones and obtain
additional properties of the function g(t) in the results. Throughout supp(g) denotes the
support of g.

Theorem 4. Let C be an open connected cone in Rn and 1 ≤ p < ∞. Let g(t) be a Banach space
X valued measurable function on Rn such that (1) holds for y ∈ C. We have supp(g) ⊆ {t ∈ Rn :
uC(t) ≤ A} almost everywhere (a.e.).

Proof. Assume g(t) 6= Θ on a set of positive measure in {t ∈ Rn : uC(t) > A}; there
is a point to ∈ {t ∈ Rn : uC(t) > A} such that g(t) 6= Θ on a set of positive measure
in the neighborhoods N(to, η) = {t ∈ Rn : |t − to| < η} for arbitrary η > 0. Since
to ∈ {t ∈ Rn : uC(t) > A} there is a point yo ∈ pr(C) ⊂ C such that (−〈to, yo〉) > A ≥ 0.
Using the continuity of (−〈t, yo〉) at to as a function of t, there is a fixed σ > 0 and a fixed
neighborhood N(to; η′) such that −〈t, yo〉) > A + σ > 0 for all t ∈ N(to; η′). Choose η
above to be η′. For any λ > 0 we have

− 〈λyo, t〉 = −λ〈yo, t〉 > λA + λσ > 0, t ∈ N(to; η′), λ > 0. (7)

yo ∈ pr(C) ⊂ C and C being a cone imply λyo ∈ C, λ > 0. From (7) and (1) with y = λyo
we have for all λ > 0 that

e2πp(λA+λσ)
∫

N(to ;η′)
(N (g(t)))pdt ≤

∫
N(to ;η′)

e−2π〈λyo ,t〉(N (g(t)))pdt

≤
∫
Rn

e−2πp〈λyo ,t〉(N (g(t)))pdt ≤ Mp(1 + (d(λyo))
−r)spe2πpA|λyo |

= Mp(1 + λ−r(d(yo))
−r)spe2πpλA (8)

since yo ∈ pr(C) and d(λyo) = λd(yo). The integral on the left of (8) is finite. From (8)
we have

(1 + λ−r(d(yo))
−r)−spe2πpλσ

∫
N(to ,η′)

(N (g(t)))pdt ≤ Mp (9)

for all λ > 0 with σ > 0 being fixed and independent of λ. Recall that yo depends only
on to. The constants d(yo), r, s, p, σ, η′, and M are all independent of λ > 0. We have
(1 + λ−r(d(yo))−r)−sp = 1 if r = 0 or s = 0, and (1 + λ−r(d(yo))−r)−sp → 1 as λ → ∞ if
r > 0 and s > 0. We let λ → ∞ in (9) and conclude that g(t) = Θ almost everywhere in
N(to; η′) which contradicts the fact that g(t) 6= Θ on a set of positive measure in N(to, η′).
Thus, g(t) = Θ a.e. in {t ∈ Rn : uC(t) > A}, and supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e.
since {t ∈ Rn : uC(t) ≤ A} is a closed set in Rn.

The proof of the corresponding result for the growth of Theorem 3 can be obtained by
similar techniques as in Theorem 4.

Theorem 5. Let C be an open connected cone in Rn and 1 ≤ p < ∞. Let g(t) be a Banach space
X valued measurable function on Rn such that the growth of Theorem 3 holds for y ∈ C. We have
supp(g) ⊆ C∗ a.e.

In [7,8], Vladimirov introduced a space of measurable functions on Rn, denoted S ′0,
which when multiplied by a polynomial raised to a suitable negative power become L2(Rn)
functions. Analysis concerning the space S ′0 can also be found in [9,10]. We now extend this
space to the vector-valued case and for p such that 1 ≤ p < ∞. We then show that these
new spaces of functions become equivalent to the measurable functions g of the preceding
results in this section for each p and for the base of the tube being open convex cones in Rn.
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Definition 5. Let X be a Banach space. S ′p(Rn,X ), 1 ≤ p < ∞, is the set of all measurable
functions g(t), t ∈ Rn, with values in X such that there exists a real number m ≥ 0 for which
(1 + |t|p)−mg(t) ∈ Lp(Rn,X ).

First note that S ′p(Rn,X ) ⊂ S ′(Rn,X ), 1 ≤ p < ∞. In our first result concerning the
spaces S ′p(Rn,X ) the base of the tube TC will be an open connected cone.

Theorem 6. Let C be an open connected cone in Rn and 1 ≤ p < ∞. Let g(t) be a measurable func-
tion on Rn with values in a Banach space X such that (1) holds for y ∈ C. We have g ∈ S ′p(Rn,X )
and supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e.

Proof. The support property of g has been proved in Theorem 4. We now prove that
g ∈ S ′p(Rn,X ). Choose a fixed point yo ∈ pr(C) and put Y = {y : y = λyo, 0 < λ ≤ 1} ⊂ C;
choose a fixed compact subcone C′ ⊂⊂ C such that yo ∈ C′. We have Y ⊂ C′ ⊂⊂ C. Let
y ∈ Y be arbitrary; using (1) we have∫

Rn
e−2πp〈y,t〉(N (g(t)))pdt ≤ Mp(1 + (d(y))−r)spe2πpA|y|, y ∈ C,

and hence

(d(y))rsp
∫
Rn

e−2πp〈y,t〉(N (g(t)))pdt ≤ Mp(1 + (d(y))r)spe2πpA|y|, y ∈ C. (10)

(10) holds in particular for y ∈ Y for which |y| = λ|yo| = λ, 0 < λ ≤ 1, since yo ∈ pr(C);
and 〈y, t〉 ≤ |y||t|, t ∈ Rn, implies (−|y||t|) ≤ −〈y, t〉, t ∈ Rn. Corresponding to C′ ⊂⊂ C
we use [7] (p. 6, (1.14)) and obtain δ = δ(C′) > 0 depending only on C′ and not on y ∈ C′

such that
0 < δ|y| ≤ d(y) ≤ |y|, y ∈ C′ ⊂⊂ C. (11)

Using (11) and (10), we have

(δλ)rsp
∫
Rn

e−2πpλ|t|(N (g(t)))pdt ≤ (d(y))rsp
∫
Rn

e−2πp〈y,t〉(N (g(t)))pdt

≤ Mp(1 + (d(y)))r)spe2πpA|y| ≤ Mp(1 + λr)e2πpλA (12)

for y = λyo ∈ Y ⊂ C′ ⊂⊂ C, 0 < λ ≤ 1, with δ being independent of C′ and hence
independent of y ∈ Y and independent of λ, 0 < λ ≤ 1. Let ε > 1 be fixed. Multiply both
sides of (12) by λ−1+ε and integrate the result from (12) over 0 < λ ≤ 1 with respect to λ
to obtain∫ 1

0
λ−1+ε(δλ)rsp

∫
Rn

e−2πpλ|t|(N (g(t)))pdtdλ ≤ Mp
∫ 1

0
λ−1+ε(1 + λr)spe2πpλAdλ.

Now multiply this inequality by δ−rsp and use Fubini’s theorem on the left to obtain∫
Rn
(N (g(t)))p

∫ 1

0
λrsp−1+εe−2πpλ|t|dλdt ≤ Mpδ−rsp

∫ 1

0
λ−1+ε(1 + λr)pse2πpλAdλ. (13)

We note that all constants M, δ, r, s, p, ε, and A are independent of y = λyo ∈ Y and
hence independent of λ, 0 < λ ≤ 1. Using the change of variable u = 2πpλ|t| in the inner
integral on the left of (13) and considering the cases 0 < |t| ≤ 1/2πp and |t| > 1/2πp
we obtain ∫ 1

0
λrsp−1+εe−2πpλ|t|dλ = (2πp|t|)−rsp−ε

∫ 2πp|t|

0
ursp−1+εe−udu ≥ (14)
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{
(ersp + εe)−1(1 + |t|p)−rs−ε/p for 0 < |t| ≤ 1/2πp

(2πp)−rsp−ε
∫ 1

0 ursp−1+εe−udu(1 + |t|p)−rs−ε/p for |t| > 1/2πp
.

}

Put

K = min {(ersp + εe)−1, (2πp)−rsp−ε
∫ 1

0 ursp−1+εe−udu} > 0.

From (14), we have∫ 1

0
λrsp−1+εe−2πpλ|t|dλ ≥ K(1 + |t|p)−rs−ε/p, |t| > 0, (15)

with this inequality holding also at t = 0 by adjusting the constant K if needed. Putting
(15), which holds for all t ∈ Rn now, into (13) and recalling ε > 1, we have

K
∫
Rn
(1 + |t|p)−rs−ε/p(N (g(t)))pdt ≤ Mpδ−rsp

∫ 1

0
λ−1+ε(1 + λr)pse2πpλAdλ

≤ Mpδ−rsp2pse2πpA

with the right side being a fixed constant. Thus, (1 + |t|p)−rs/p−ε/p2
g(t) ∈ Lp(Rn,X ), and

g ∈ S ′p(Rn,X ) since (rs/p + ε/p2) ≥ 0.

We similarly obtain the following result from Theorem 5.

Theorem 7. Let C be an open connected cone in Rn and 1 ≤ p < ∞. Let g(t) be a Banach space
X valued measurable function on Rn such that the growth of Theorem 3 holds for y ∈ C. We have
g ∈ S ′p(Rn,X ) and supp(g) ⊆ C∗ a.e.

In order for the converse implication of Theorem 6 to hold we need the cone C to be
convex as well as open.

Theorem 8. Let C be an open convex cone in Rn, 1 ≤ p < ∞, and A ≥ 0. Let g ∈ S ′p(Rn,X )
with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. where X is a Banach space. We have g is a measurable
function with values in X such that (1) holds for all y ∈ C.

Proof. From [9] (p. 74, Lemma 3), {t ∈ Rn : uC(t) ≤ A} = C∗ + N(0; A), N(0; A) = {t ∈
Rn : |t| < A}, since the cone C is open and convex here. Thus, t ∈ {t ∈ Rn : uC(t) ≤ A}
yields t = t1 + t2, t1 ∈ C∗, t2 ∈ N(0; A). Since g ∈ S ′p(Rn,X ), g is measurable on Rn and
(1 + |t|p)−mg(t) ∈ Lp(Rn,X ) for some m ≥ 0; thus∫

Rn
(1 + |t|p)−mp(N (g(t)))pdt ≤ K < ∞

for a constant K > 0. Let y ∈ C be arbitrary. We have∫
Rn

e−2πp〈y,t〉(N (g(t)))pdt

=
∫

C∗+N(0;A)
e−2πp〈y,t〉(1 + |t|p)mp(1 + |t|p)−mp(N (g(t))))pdt

≤ sup
t∈C∗+N(0;A)

((1 + |t|p)mpe−2πp〈y,t〉)
∫
Rn
(1 + |t|p)−mp(N (g(t)))pdt

≤ K sup
t∈C∗+N(0;A)

(1 + |t|p)mpe−2πp〈y,t〉 (16)

≤ K sup
t1∈C∗ ,t2∈N(0;A)

(1 + (|t1|+ |t2|)p)mpe−2πp〈y,t1+t2〉.
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For t2 ∈ N(0; A), we have |t2| ≤ A and

e−2πp〈y,t2〉 ≤ e2πp|t2||y| ≤ e2πpA|y|, t2 ∈ N(0; A), y ∈ C. (17)

For t1 ∈ C∗, we have t1 = λ1t∗1 where λ1 ≥ 0 and t∗1 ∈ pr(C∗). From Section 2 we have

d(y) = inf
u∈pr(C∗)

〈u, y〉 = − sup
u∈pr(C∗)

(−〈u, y〉), y ∈ C. (18)

For y ∈ C, using (17) and (18) we continue (16) as∫
Rn

e−2πp〈y,t〉(N (g(t)))pdt

≤ Ke2πpA|y| sup
λ1≥0,t∗1∈pr(C∗)

((1 + (λ1 + A)p)mpe−2πpλ1〈t∗1 ,y〉)

≤ Ke2πpA|y| sup
λ1≥0

((1 + (λ1 + A)p)mpe−2πpλ1d(y)) (19)

≤ K(1 + (1 + A)p)mpe2πpA|y| sup
λ1≥0

((1 + λ
p
1 )

mpe−2πpλ1d(y))

≤ K(1 + (1 + A)p)mpe2πpA|y| sup
λ1≥0

((1 + λ1)
mp2

e−2πpλ1d(y)).

The supremum in the last line of (19) is a maximum which can be obtained using
the first derivative test. If (mp2 − 2πpd(y)) > 0 then m > 0 and the supremum occurs at
λ1 = (mp2 − 2πpd(y))/2πpd(y), and in this case

sup
λ1≥0

((1 + λ1)
mp2

e−2πpλ1d(y)) ≤
(

1 +
mp2 − 2πpd(y)

2πpd(y)

)mp2

≤
(

1 +
mp2

2πpd(y)

)mp2

=
(mp

2π

)mp2( 2π

mp
+

1
d(y)

)mp2

≤ max{1,
(mp

2π

)mp2

}(1 + (d(y))−1)mp2
.

If (mp2 − 2πpd(y)) ≤ 0, the supremum in the last line of (19) occurs at λ1 = 0 and

sup
λ1≥0

((1 + λ1)
mp2

e−2πpλ1d(y)) = 1 ≤ (1 + (d(y))−1)mp2
.

Combining (19) with the above two estimates on the supremum over λ1 ≥ 0 we have
for y ∈ C ∫

Rn
e−2πp〈y,t〉(N (g(t)))pdt

≤ K(1 + (1 + A)p)mpmax{1,
(mp

2π

)mp2

}(1 + (d(y))−1)mp2
e2πpA|y|.

Taking the pth root of this inequality, we obtain (1) holding for all y ∈ C with r = 1
and s = mp.

For C being an open convex cone in Rn Theorems 6 and 8 show that g being a Banach
space X valued measurable function with (1) holding for y ∈ C, A ≥ 0, and 1 ≤ p < ∞ is
an equivalent statement to g ∈ S ′p(Rn,X ) with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. for
A ≥ 0 and 1 ≤ p < ∞. Thus, for any future result concerning open convex cones C, these
two statements are interchangeable in hypotheses.
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If A = 0, {t ∈ Rn : uC(t) ≤ 0} = C∗. In this case we have the following corollary to
Theorem 8.

Corollary 4. Let C be an open convex cone in Rn and 1 ≤ p < ∞. Let g ∈ S ′p(Rn,X ) for X
being a Banach space and supp(g) ⊆ C∗ a.e. We have

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−1)mp, y ∈ C,

for constants M > 0 and m ≥ 0.

6. Analytic Functions Generating Measurable Functions

In this section, we consider generalized vector-valued Hardy functions and construct
measurable functions which yield Fourier–Laplace transform representations. This material
is followed in Section 7 by representing the analytic functions, in particular cases, by Cauchy
and Poisson integrals.

We use the Fourier transform on L2(Rn,H) considerably in this section and in Section 7.
This causes us to restrict the results to p = 2 and functions having values in Hilbert space
H as previously discussed in Section 2 in relation to the function Fourier transform.

To prove the Fourier–Laplace representation of functions in H2
A(T

B,H) in terms of a
constructed measurable function we first need the following lemma.

Lemma 1. Let B be a proper open connected subset of Rn. Let f(z) ∈ H2
A(T

B,H)),where H is
Hilbert space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of B. Let
ε > 0. Put

gε,y(t) =
∫
Rn

e−ε ∑n
j=1 z2

j f(x + iy)e−2πi〈x+iy,t〉dx, y ∈ B, (20)

and
gy(t) = F

−1[e2π〈y,t〉f(x + iy); t], y ∈ B, t ∈ Rn, (21)

in L2(Rn,H). We have gε,y(t) is independent of y ∈ B for any ε > 0;

lim
ε→0+

|gε,y(t)− gy(t)|2 = 0, y ∈ B; (22)

and gy(t) is independent of y ∈ B.

Proof. For y ∈ B and t ∈ Rn, f(x + iy) ∈ L2(Rn,H) and e2π〈y,t〉f(x + iy) ∈ L2(Rn,H)

as functions of x ∈ Rn. Further, (e2π〈y,t〉e−ε ∑n
j=1 z2

j f(x + iy)) ∈ L1(Rn,H) ∩ L2(Rn,H) for
y ∈ B and t ∈ Rn. Thus, both gε,y(t) and gy(t) are well defined for y ∈ B and both are in
L2(Rn,H). We assume here that 0 < ε ≤ 1 since we are letting ε→ 0+ in (22). We have for
y ∈ B

|gε,y(t)− gy(t)|2 = |F−1[e2π〈y,t〉(e−ε ∑n
j=1 z2

j − 1)f(x + iy); t]|2

= |e2π〈y,t〉(e−ε ∑n
j=1 z2

j − 1)f(x + iy)|2. (23)

For 0 < ε ≤ 1

(N (e2π〈y,t〉(e−ε ∑n
j=1 z2

j − 1)f(x + iy)))2

= |e−ε ∑n
j=1 z2

j − 1|2e4π〈y,t〉(N (f(x + iy)))2

≤ (|e−εz2
1 |...|e−εz2

n |+ 1)2e4π〈y,t〉(N (f(x + iy)))2

≤ (e|y|
2
+ 1)2e4π〈y,t〉(N (f(x + iy)))2,
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and the right side of this inequality is independent of 0 < ε ≤ 1 and is integrable as
a function of x ∈ Rn. By the Lebesgue dominated convergence theorem (22) follows
from (23).

To show that gε,y(t) is independent of y ∈ B let S be any compact subset of B, and let
y ∈ S ⊂ B. We have

|e−ε ∑n
j=1 z2

j | ≤ eεna2
e−ε|x|2 , x ∈ Rn, y ∈ S,

where a = maxy∈S{|y1|, |y2|, ..., |yn|}. For y ∈ S ⊂ B and t ∈ Rn

∫
S
N (e−ε ∑n

j=1 z2
j f(x + iy)e−2πi〈x+iy,t〉dy

=
∫

S
|e−ε ∑n

j=1 z2
j ||e−2πi〈x+iy,t〉|N (f(x + iy))dy

≤ ASeεna2
e−ε|x|2

∫
S

e2π|y||t|dy (24)

where AS is a bound on N (f(x + iy)) for x ∈ Rn and y ∈ S; and the right side of (24)
approaches 0 as |x| → ∞. An application of the Caucyh-Poincare theorem yields gε,y is
independent of y ∈ S for any ε > 0 and hence independent of y ∈ B for any ε > 0 since S
is any arbitrary compact subset of B. In the future we refer to gε,y, y ∈ B, as gε since this
function is independent of y ∈ B for any ε > 0.

Now to prove that gy(t) ∈ L2(Rn,H) is independent of y ∈ B let y1 and y2 both be
points of B. Since gε = gε,y is independent of y ∈ B, for any ε > 0 we have

|gy1
(t)− gy2

(t)|2 = |gy1
(t)− gε,y1

(t) + gε,y2
(t)− gy2

(t)|2
≤ |gy1

(t)− gε,y1
(t)|2 + |gy2

(t)− gε,y2
(t)|2. (25)

Letting ε→ 0+ in (25) and using (22), the right side of (25) approaches 0 while the left
side is independent of ε > 0. Thus, gy1

(t) = gy2
(t) a.e., t ∈ Rn, and gy(t) defined in (21) is

independent of y ∈ B. We write gy(t) defined in (21) as g(t), y ∈ B, t ∈ Rn, in the future;
and recall that g(t) ∈ L2(Rn,H).

We obtain a Fourier–Laplace representation of elements in H2
A(T

B,H) now.

Theorem 9. Let B be a proper open connected subset of Rn. Let f(z) ∈ H2
A(T

B,H), where H is
Hilbert space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of B.
There is a measurable function g(t) ∈ L2(Rn,H) for which

|e−2π〈y,t〉g(t)|2 ≤ M(1 + (d(y))−r)se2πA|y|, y ∈ B, (26)

where r ≥ 0, s ≥ 0, A ≥ 0, and M = M(g, r, s, A) > 0 are independent of y ∈ B; and

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z ∈ TB. (27)

Proof. From Lemma 1 the function g(t) = gy(t) defined in (21) is independent of y ∈ B
and is in L2(Rn,H). From (21)

e−2π〈y,t〉g(t) = F−1[f(x + iy); t], y ∈ B, (28)

and by the Parseval equality

|e−2π〈y,t〉g(t)|2 = |f(x + iy)|2, y ∈ B,
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where e−2π〈y,t〉g(t) ∈ L2(Rn,H), y ∈ B. Thus, (26) holds from the norm growth on
f(z) ∈ H2

A(T
B,H). Using the now obtained Equation (26), by the proof of Theorem 2 for

p = 2 we have e−2π〈y,t〉g(t) ∈ L1(Rn,H) ∩ L2(Rn,H), y ∈ B, and∫
Rn

g(t)e2πi〈z,t〉dt = F [e−2π〈y,t〉g(t); x], z = x + iy ∈ TB,

is analytic in TB with the Fourier transform being the L1(Rn,H) transform. Thus, from (28),

f(z) = F [e−2π〈y,t〉g(t); x] =
∫
Rn

g(t)e2πi〈z,t〉dt, z = x + iy ∈ TB,

with the Fourier transform being in both the L1(Rn,H) and L2(Rn,H) sense, and (27) is
obtained.

The structure of the proofs of Lemma 1 and Theorem 9 can be used to prove a result
like Theorem 9 for functions in H2

∗(TB,H); we state this result now.

Theorem 10. Let B be an open connected subset of Rn which does not contain 0 ∈ Rn. Let
f(z) ∈ H2

∗(TB,H), whereH is Hilbert space, and be bounded for x = Re(z) ∈ Rn and y = Im(z)
in any compact subset of B. There is a measurable function g(t) ∈ L2(Rn,H) for which

|e−2π〈y,t〉g(t)|2 ≤ M(1 + (d(y))−r)seM∗(w/|y|), y ∈ B,

where r ≥ 0, s ≥ 0, w > 0, andM = M(g, r, s, w) > 0 are independent of y ∈ B; and

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z ∈ TB.

By restricting the base B in Theorem 9, further information is obtained.

Corollary 5. Let C be an open connected cone in Rn. Let f(z) ∈ H2
A(T

C,H), whereH is Hilbert
space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of C. There is
a measurable function g ∈ L2(Rn,H) ∩ S′2(Rn,H) with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e.
such that (26) and (27) hold. Further, if C is an open convex cone in Rn we have

lim
y→0,y∈C

|f(x + iy)−F [g(t); x]|2 = 0, (29)

and
lim

y→0,y∈C
f(x + iy) = F [g(t); x] (30)

in the strong topology of S ′(Rn,H).

Proof. The existence of g ∈ L2(Rn,H) such that (26) and (27) hold follow from Theorem 9.
The facts that g ∈ S ′2(Rn,H) with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. now follow by
Theorem 6. Let us further assume that the cone C is open and convex. From the proof
of Theorem 8 we know that {t ∈ Rn : uC(t) ≤ A} = C∗ + N(0; A) where C∗ is the dual
cone of C and N(0; A) = {t ∈ Rn : |t| < A} since C is assumed to be convex now. Thus,
t ∈ {t ∈ Rn : uC(t) ≤ A} yields t = t1 + t2, t1 ∈ C∗, t2 ∈ N(0; A) as in the proof of
Theorem 8. Returning to the proof of Theorem 9 we have for y ∈ C

|f(x + iy)−F [g(t); x]|2 = |F [e−2π〈y,t〉g(t); x]−F [g(t); x]|2
= |F [(e−2π〈y,t〉 − 1)g(t); x]|2 = |(e−2π〈y,t〉 − 1)g(t)|2. (31)
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In (29) and (30), we prove limit properties as y → 0, y ∈ C; so we assume that
|y| ≤ 1, y ∈ C, in the remainder of this proof. For t = t1 + t2 ∈ C∗ + N(0; A) we have

(N ((e−2π〈y,t〉 − 1)g(t)))2 = |e−2π〈y,t〉 − 1|2(N (g(t)))2 (32)

≤ (e−2π〈y,t〉 + 1)2(N (g(t)))2 = (e−2π〈y,t1〉e−2π〈y,t2〉 + 1)2(N (g(t)))2

≤ (1 + e2πA)2(N (g(t)))2

for |y| ≤ 1, y ∈ C, where 〈y, t1〉 ≥ 0, y ∈ C and t1 ∈ C∗, and |t2| ≤ A for t2 ∈ N(0; A).
Since g ∈ L2(Rn,H) and supp(g) ⊆ C∗ + N(0; A), (32) and the Lebesgue dominated
convergence theorem combined with (31) prove (29). For (30), let φ ∈ S(Rn). Using the
Hölder inequality we have

N (〈f(x + iy), φ(x)〉 − 〈F [g(t); x], φ(x)〉

≤
∫
Rn
N ((f(x + iy)−F [g(t); x])φ(x))dx

≤ |f(x + iy)−F [g(t); x]|2||φ||L2(Rn),

and the use of (29) now shows (30) in the weak topology of S ′(Rn,H). But S(Rn) is a
Montel space; thus, (30) also holds in the strong topology of S ′(Rn,H).

We now desire a converse result to Corollary 5 in the setting of tubes TC where C is an
open connected cone in Rn.

Corollary 6. Let C be an open connected cone in Rn and H be a Hilbert space. Let g(t) be
a H valued measurable function on Rn such that (26) holds. We have g ∈ S ′2(Rn,H) with
supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e., and f(z) ∈ H2

A(T
C,H) for f(z)defined as in (27) for

z ∈ TC. Further, if C is an open convex cone in Rn we have (30) holding in the strong topology of
S ′(Rn,H).

Proof. We apply Theorem 6 and Corollary 1 to obtain g ∈ S ′2(Rn,H) with supp(g) ⊆
{t ∈ Rn : uC(t) ≤ A} a.e. and to obtain that f(z) defined as in (27) for z ∈ TC is an
element of H2

A(T
C,H). Now assume that C is an open convex cone in the remainder of

this proof to obtain (30) here. Since g ∈ S ′2(Rn,H) ⊂ S ′(Rn,H), the Fourier transform
F [g] is well defined in S ′(Rn,H). From the proof of Corollary 1 we have e−2π〈y,t〉g(t) ∈
L1(Rn,H) ∩ L2(Rn,H) for y ∈ C. Thus, f(x + iy) = F [e−2π〈y,t〉g(t); x], y ∈ C, with
the Fourier transform being in the L1(Rn,H), the L2(Rn,H), and the S ′(Rn,H) cases.
Recalling that supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. and referring to [9] (p. 119), we
choose a function λ(t) ∈ C∞, t ∈ Rn, such that for any n-tuple α of nonnegative integers
|Dαλ(t)| ≤ Mα, t ∈ Rn, where Mα is a constant which depends only on α; and for
ε > 0, λ(t) = 1 for t on an ε neighborhood of {t ∈ Rn : uC(t) ≤ A}, and λ(t) = 0 for
t ∈ Rn but not on a 2ε neighborhood of {t ∈ Rn : uC(t) ≤ A}. For φ ∈ S(Rn) we have for
y ∈ C

〈f(x + iy), φ(x)〉 = 〈F [e−2π〈y,t〉g(t); x], φ(x)〉 = 〈λ(t)e−2π〈y,t〉g(t),F [φ(x); t]〉.

For C being convex we apply [9] (p. 74, Lemma 3) as in our proof of Theorem 8 to
obtin {t ∈ Rn : uC(t) ≤ A} = C∗ + N(0; A). The result (30) in this corollary now follows
from the above equality, φ ∈ S(Rn), by the same analysis in [9] (p. 119, lines 2–22) in the
weak topology of S ′(Rn,H) as y → 0, y ∈ C; and the weak topology implies the strong
topology of S ′(Rn,H) as in the proof of (30) in Corollary 5. The proof is complete.

Note that we can not say that g ∈ L2(Rn,H) in Corollary 6 and hence can not obtain
the convergence (29) in this converse of Corollary 5.

For B being a proper open connected subset of Rn and X being a Banach space,
the spaces Vp

A(T
B,X ) follow as subspaces of Hp

A(T
B,X ) (or appropriately of Rp

A(T
B,X ))
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by letting either r = 0 or s = 0 in the norm growth defining these other spaces. Thus,
Theorem 9 holds for f(z) ∈ V2

A(T
B,H); and by the proof of Theorem 9, (26) will hold for

the obtained function g in the form

|e−2π〈y,t〉g(t)|2 ≤ e2πA|y|, y ∈ B.

Using the same proof as in Corollary 2 we then can extend the norm growth on
e−2π〈y,t〉g(t) to hold for y ∈ B. This is stated in the following corollary to Theorem 9.

Corollary 7. Let B be a proper open connected subset of Rn. Let f(z) ∈ V2
A(T

B,H), where H is
Hilbert space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of B.
There is a measurable function g(t) ∈ L2(Rn,H) for which

|e−2π〈y,t〉g(t)|2 ≤ Me2πA|y|, y ∈ B,

where A ≥ 0 and M = M(g, A) > 0 are independent of y ∈ B; and

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z ∈ TB.

For the base of the tube being an open connected cone in Rn we have the following
corollary of Theorem 10 by combining Theorems 7 and 10. The limit properties in the
following corollary will hold for C being an open connected cone inRn by similar techniques
as in the proof of Corollary 5; C does not need to be convex here for these limit properties
to hold because the support of g is in C∗.

Corollary 8. Let C be an open connected cone in Rn. Let f(z) ∈ H2
∗(TC,H), whereH is Hilbert

space, and be bounded for x = Re(z) ∈ Rn and y = Im(z) in any compact subset of C. There is a
measurable function g(t) ∈ L2(Rn,H) ∩ S ′2(Rn,H) with supp(g) ⊆ C∗ a.e. such that the norm
inequality for e−2π〈y,t〉g(t) and the representation of f(z) hold as in the conclusions of Theorem 10.
Further we have

lim
y→0,y∈C

|f(x + iy)−F [g(t); x]|2 = 0

and
lim

y→0,y∈C
f(x + iy) = F [g(t); x]

in the strong topology of S ′(Rn,H).

7. Subsets of H2(TC,H)

Let C be an open connected cone in Rn, and 1 ≤ p < ∞. Let g(t) be a measurable
function on Rn with values in a Banach space X such that

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−r)se2πA|y|, y ∈ C, (33)

where A ≥ 0, r ≥ 0, s ≥ 0, and M = M(g, p, r, s, A) > 0, or

|e−2π〈y,t〉g(t)|p ≤ M(1 + (d(y))−r)seM∗(w/|y|), y ∈ C, (34)

where w > 0, r ≥ 0, s ≥ 0, and M = M(g, p, w, r, s) > 0 with all constants being
independent of y ∈ C. We have from Theorems 4 and 5 that supp(g) ⊆ {t ∈ Rn : uC(t) ≤
A} a.e. and supp(g) ⊆ C∗ a.e. respectively. Restricting to p = 2 and letting X = H, a
Hilbert space, now we have from Corollarys 1 and 3 that the function

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z ∈ TC,
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is an element of H2
A(T

C,H) or H2
∗(TC,H), respectively. Conversely, we have proved in

Corollary 5 or Corollary 8 that if f(z) ∈ H2
A(T

C,H) or f(z) ∈ H2
∗(TC,H) and in each case

f(z) is bounded for x = Re(z) and y = Im(z) in any compact subset of C then in each case
there exists a measurable function g ∈ L2(Rn,H) ∩ S ′2(Rn,H) with supp(g) ⊆ {t ∈ Rn :
uC(t) ≤ A} a.e. and (33) holds for p = 2 or supp(g) ⊆ C∗ a.e. and (34) holds for p = 2 with

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z ∈ TC,

in each case.
We will now show from these results that both spaces H2

0(T
C,H), A = 0, and

H2
∗(TC,H) are subsets of the Hardy space H2(TC,H) and obtain immediate results from

these subset properties.

Theorem 11. Let C be an open connected cone in Rn and H be a Hilbert space. Let f(z) ∈
H2

0(T
C,H) or f(z) ∈ H2

∗(TC,H) and in either case be bounded for x = Re(z) ∈ Rn and y =
Im(z) in any compact subset of C. In either case there is a measurable function g(t) ∈ L2(Rn,H)∩
S ′2(Rn,H) with supp(g) ⊆ C∗ a.e. such that

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z ∈ TC;

sup
y∈C
|f(x + iy)|2 = sup

y∈C
|e−2π〈y,t〉g(t)|2 = |g|2;

and f(z) ∈ H2(TC,H).

Proof. As noted previously in this section a function g ∈ L2(Rn,H)∩S ′2(Rn,H) is obtained
from previous results such that

f(z) =
∫
Rn

g(t)e2πi〈z,t〉dt, z ∈ TC.

Further from the analysis leading to Corollarys 5 and 8 we know e−2π〈y,t〉g(t) ∈
L1(Rn,H) ∩ L2(Rn,H), y ∈ C, in both cases. If A = 0, {t ∈ Rn : uC(t) ≤ 0} = C∗; thus, in
both cases supp(g) ⊆ C∗ a.e. In both cases we have

|f(x + iy)|2 = |e−2π〈y,t〉g(t)|2, y ∈ C.

In both cases∫
Rn
(N (e−2π〈y,t〉g(t)))2dt =

∫
C∗
(e−4π〈y,t〉(N (g(t)))2dt ≤

∫
C∗
(N (g(t)))2dt = |g|22

for all y ∈ C. We thus have for all y ∈ C

|f(x + iy)|2 = |e−2π〈y,t〉g(t)|2 ≤ |g|2, y ∈ C,

which yields f(x + iy) ∈ H2(TC,H). Further,

sup
y∈C
|f(x + iy)|2 = sup

y∈C
|e−2π〈y,t〉g(t)|2 ≤ (

∫
C∗
(N (g(t)))2dt)1/2 = |g|2. (35)

But 0 ∈ C∗ = {t ∈ Rn : 〈t, y〉 ≥ 0 for all y ∈ C}. Hence, the inequality in (35) is
an equality.

Because of this result we have immediate consequences for f(x + iy) in either space
in Theorem 11 from previously proven results. If C is an open convex cone in Rn which
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contains an entire straight line then f(z) = Θ, z ∈ TC, for both cases of f(z) in Theorem 11.
If C is a regular cone in Rn then

f(z) =
∫
Rn
F [g(u); t]K(z− t)dt =

∫
Rn
F [g(u); t]Q(z; t)dt, z ∈ TC,

for the function g(t) in Theorem 11 and for both cases of f(z) in Theorem 11. Further, we
note that Vindas has proved using functional analysis techniques in [1] that for C being a reg-
ular cone in Rn and X being a dual Banach space having the Radon-Nikodým property, any
f(z) ∈ Hp(TC,X ), 1 ≤ p ≤ ∞, is the Poisson integral of some h ∈ Lp(Rn,X ), 1 ≤ p ≤ ∞.
We say more about the use of functional analysis techniques in obtaining results corre-
sponding to those of this paper and those of [1] in Section 9 below.

8. Boundary Values on the Topological Boundary

In Corollary 5 we obtained boundary value properties of H2
A(T

C,H) functions on
the distinguished boundary of the tube TC where C is an open convex cone in Rn. The
boundary values were obtained in the L2(Rn,H) and S ′(Rn,H) topologies. We now inves-
tigate boundary value properties of a subset of H2

A(T
C,H) on the topological boundary of

the tube.
Our basic result in this section depends on the cone C being regular. We consider the

subset R2
A(T

C,H) of H2
A(T

C,H) consisting of analytic functions f(z) in TC with values in
H such that

|f(x + iy)|2 ≤ M(1 + |y|−r)se2πA|y|, y ∈ C, (36)

where A ≥ 0, r ≥ 0, s ≥ 0, and M = M(f, A, r, s) > 0 are all independent of y ∈ C.
We prove that R2

A(T
C,H) functions have boundary values on the topological boundary

of TC again in the L2(Rn,H) and S ′(Rn,H) topologies. We have R2
A(T

C,H) ⊆ H2
A(T

C,H)
since 0 < d(y) ≤ |y| for y in any open connected cone in Rn from [2] (p. 6, (1.14)); recall
Section 2 above.

Before proving our main result in this section we focus on the growth bound as in
(36). If we had used this growth bound of (36) in the inequality (1) for e−2π〈y,t〉g(t) and
in the inequality for |f(x + iy)|p which defines Hp

A(T
B,X ), that is if we replace d(y) by |y|

in the growth bound, then the results, proofs, and conclusions from Theorem 2 through
Theorem 11 in Sections 5–7 will all hold as before. In any conclusion in these results that
contains the growth bound, the growth bound in the conclusion will be that of (36). We
state this to emphasize the content of our proofs in this section which deal with R2

A(T
C,H)

instead of H2
A(T

C,H).

Theorem 12. Let C be a regular cone in Rn. Let f(z) ∈ R2
A(T

C,H) and be bounded for
x = Re(z) ∈ Rn and y = Im(z) in any compact subset of C. Let yo ∈ ∂C, yo 6= 0. There
exists a function F(x + iyo) ∈ L2(Rn,H) such that

lim
y→yo

|f(x + iy)− F(x + iyo)|2 = 0 (37)

for y ∈ {y ∈ C : 0 < a < |y| < b} where a and b are any constants such that 0 < a < |yo| < b; and

lim
y→yo

f(x + iy) = F(x + iyo) (38)

in the strong topology of S ′(Rn,H) with y ∈ {y ∈ C : 0 < a < |y| < b} again where a and b are
any constants such that 0 < a < |yo| < b.

Proof. As noted previously the growth (36) for R2
A(T

C,H) functions is a special case of the
growth for H2

A(T
C,H) functions since 0 < d(y) ≤ |y|, y ∈ C. Thus, f(z), z ∈ TC, in this

theorem satisfies the hypotheses of Corollary 5; and the conclusions of Corollary 5 follow
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for the f(z), z ∈ TC, here. In fact the construction of proofs above leading to Corollary 5 for
the growth bound of type

M(1 + (d(y))−r)se2πA|y|, y ∈ C,

would be the same for the growth of type (36) with d(y) replaced by |y| in the analysis of
the proofs as noted before. Thus, there is a measurable function g ∈ L2(Rn,H)∩ S ′2(Rn,H)
with supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} a.e. such that (26) and (27) hold with d(y) replaced
by |y| in (26), and z = x + iy ∈ TC. From the construction of g in Lemma 1 and the proof of
Theorem 2, e−2π〈y,t〉g(t) ∈ L1(Rn,H) ∩ L2(Rn,H), y ∈ C. Let yo ∈ ∂C, the boundary of C,
yo 6= 0. Since |yo| > 0 choose constants a and b such that 0 < a < |yo| < b and consider the
band {y ∈ C : 0 < a < |y| < b} ⊂ C. Let {ym}, m = 1, 2, ..., be a sequence of points in this
band which converges to yo. For each ym, m = 1, 2, ..., in this band∫

Rn
(N (e−2π〈ym ,t〉g(t)))2dt ≤ M2(1 + |ym|−r)2se4πA|ym | ≤ M2(1 + a−r)2se4πbA.

Using Fatou’s lemma we have∫
Rn
(N (e−2π〈yo ,t〉g(t)))2dt ≤ lim sup

ym→yo

∫
Rn
(N (e−2π〈ym ,t〉g(t)))2dt

≤ M2(1 + a−r)2se4πbA;

and e−2π〈yo ,t〉g(t) ∈ L2(Rn,H) for yo ∈ ∂C; further e−2π〈yo ,t〉g(t) ∈ L2(Rn,H) even if yo =
0 since g ∈ L2(Rn,H). Recall g ∈ L2(Rn,H) ∩ S ′2(Rn,H) and e−2π〈y,t〉g(t) ∈ L1(Rn,H) ∩
L2(Rn,H), y ∈ C. Form

F(x + iyo) = F [e−2π〈yo ,t〉g(t); x], yo ∈ ∂C, yo 6= 0;

thus, F(x + iyo) ∈ L2(Rn,H), yo ∈ ∂C, yo 6= 0. From the definition of F(x + iyo) and
Corollary 5 we have

|f(x + iy)− F(x + iyo)|2 = |F [(e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t); x]|2
= |(e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t)|2, (39)

for y ∈ C and yo ∈ ∂C, yo 6= 0. We consider∫
Rn
(N ((e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t)))2dt

and want to show that this integral approaches 0 as y→ yo, y ∈ {y ∈ C : 0 < a < |y| < b}.
We have supp(g) ⊆ {t ∈ Rn : uC(t) ≤ A} = C∗ + N(0; A) since C is open and convex as
noted before in the proof of Theorem 8; thus, t ∈ {t ∈ Rn : uC(t) ≤ A} implies t = t1 + t2

where t1 ∈ C∗ and t2 ∈ N(0, A). For y ∈ {y ∈ C : 0 < a < |y| < b} with 0 < a < |yo| < b
by definition of a and b we have for almost all t ∈ Rn

(N ((e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t)))2 = |e−2π〈y,t1+t2〉 − e−2π〈yo ,t1+t2〉|2(N (g(t)))2.

Since t1 ∈ C∗, 〈y, t1〉 ≥ 0 for all y ∈ C which implies 〈yo, t1〉 ≥ 0 also. Continuing the
preceding inequality we have for t1 ∈ C∗, t2 ∈ N(0, A), and all y ∈ {y ∈ C : 0 < a < |y| < b}

(N ((e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t)))2 ≤ (e−2π〈y,t2〉 + e−2π〈yo ,t2〉)2(N (g(t)))2

≤ (e2π|y||t2 + e2π|yo ||t2|)2(N (g(t)))2 ≤ 4e4πbA(N (g(t)))2

with the bound being independent of y ∈ {y ∈ C : 0 < a < |y| < b} and being in L1(Rn)
since g ∈ L2(Rn,H). Since (e−2π〈y,t〉 − e−2π〈yo ,t〉)g(t) → Θ as y → yo, y ∈ {y ∈ C : 0 <
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a < |y| < b} with 0 < a < |yo| < b, the Lebesgue dominated convergence theorem and (39)
yield (37).

To prove (38) let φ ∈ S(Rn) and yo ∈ ∂C, yo 6= 0. As before choose constants a and b
such that 0 < a < |yo| < b. For y ∈ {y ∈ C : 0 < a < |y| < b} we have

N (〈f(x + iy), φ(x)〉 − 〈F(x + iyo), φ(x)〉)

≤
∫
Rn
N ((f(x + iy)− F(x + iyo))φ(x))dx

≤ |f(x + iy)− F(x + iyo)|2||φ||L2(Rn).

Using (37) we obtain (38) in the weak topology of S ′(Rn,H) as y→ yo, y ∈ {y ∈ C :
0 < a < |y| < b} with 0 < a < |yo| < b. Now (38) is obtained in the strong topology of
S ′(Rn,H) since S(Rn) is a Montel space. The proof is complete.

Since both R2
A(T

C,H) and V2
A(T

C,H) are subsets of H2
A(T

C,H), functions in both
of these subset spaces satisfy (29) and (30) on the distinguished boundary of TC with C
being a regular cone. Also V2

A(T
C,H) functions will have the results of Theorem 12 since

V2
A(T

C,H) ⊆ R2
A(T

C,H).
Boundary value results for the analytic functions on the topological boundary of the

tube may be able to be obtained for various types of base sets C of the tube TC. For example
one could consider C to be an open polyhedron in Rn as defined in [11] and [12] (p. 97).
One could follow this situation by considering an open convex subset B of Rn with yo
being a point on its boundary; consideration could be given then to constructing an open
polyhedron in B with yo as boundary point and approaching yo within the open polyhedron
as Stein and Weiss have done in [12] (p. 98) for functions in H2(TB). Clearly the types of
boundary values available will depend on the specifics of the analytic functions and on the
base of the tube if boundary values exist at all. More will be stated in Section 9 concerning
boundary values.

We have previously obtained boundary value results on the distinguished boundary
of the tube for functions of type Vp

∗ (TC), 1 < p ≤ 2, in the scalar-valued ultradistribution
sense where C is a regular cone in Rn. That is, the norm growth on the analytic functions
on TC is

||f(x + iy)||Lp(Rn) ≤ KeM∗(w/|y|), y ∈ C,

where w > 0 and K = K(f, p, w) are independent of y ∈ C. We have proved that such
functions obtain a boundary value at 0 in the ultradistribution space D′((Mp), L1(Rn)). We
refer to [2] (p. 106, Theorem 5.2.1) and the preceding analysis in [2] (Section 5.2).

9. Suggested Research

In this section, we suggest problems to consider in future research which are associated
with the analysis of this paper.

Let B be an open connected subset of Rn. Stein and Weiss use a bound condition on
Hp(TB) obtained in [12] (p. 99, Lemma 2.12) to prove [12] (p. 93, Theorem 2.3), the represen-
tation theorem for functions in H2(TB). The bound condition holds for z in a tube whose
base is restricted uniformly away from the complement of B. We have used a similarly
needed growth condition, obtained in [2] (p. 87, Lemma 5.1.3), on the analytic functions
studied in [2] (Chapter 5) in relation to boundary values in ultradistribution spaces.

Starting with Lemma 1 in Section 6 of this paper we have used the following assump-
tion on f(z) ∈ H2

A(T
B,H) to obtain several results; the assumption on f(z) is that it "be

bounded for x = Re(z) ∈ Rn and y =Im(z) in any compact subset of B". We conjecture
that a bound condition like [12] (p. 99, Lemma 2.12) holds for f(z) ∈ Hp

A(T
B,X ); such a

result will allow us to delete the above quoted assumption used in Sections 6–8.
Additionally we suggest research to obtain a bound condition like [12] (p. 99, Lemma 2.12)

for functions in Hp(TB,X ).
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Throughout this paper we have obtained boundary value results both on the distin-
guished boundary of the tube and on the topological boundary of the tube. In every case a
question that had to be considered was the method to approach a point on the boundary by
points in the base in order to obtain a desired result. Our results before Section 8 concerned
tubes with base being a regular cone, an open connected cone in Rn, or a proper open
connected subset of Rn. In these cases we could approach a considered boundary point yo
on the boundary of the base by a sequence of points within the base. Because of the nature
of the analytic functions considered in Section 8 we needed to approach any boundary
point yo, yo 6= 0, on the boundary of the base, a regular cone, by a sequence of points inside
a band contained in the cone in order to obtain the desired result. Indications of other
boundary point approaches for consideration were stated at the end of Section 8.

Stein and Weiss [12] (pp. 94–98) discuss situations in which boundary values on the
boundary of tubes can not be obtained as points within the base arbitrarily approach the
point yo on the boundary of the base. In the first case a specific type of analytic function was
constructed in order to show the non-existence of a boundary value for arbitrary approach
to a point on the boundary by points within the base. In the second case a H2(TB) function
was constructed for which no limit in the L2 norm existed for arbitrary approach to 0 within
B; but if the base B was suitably restricted, any function in H2(TB) for the restricted base B
was shown to have a boundary value at any point on ∂B. Considerations of the approach
to the boundary by points within bases B of other types than those of this paper could be
made concerning the types of analytic functions defined in this paper. Are there base sets B
in which an analytic function will not have a boundary value at a specified point yo ∈ ∂B
or such that there could be a boundary value if the base B is specialized?

The basic results of Section 5, Theorems 2, 4, 6 and 8, have all been proved for the most
general appropriate situation. B was an open connected subset of Rn or open (or convex)
connected cone in Rn; values were in Banach space X ; results held for all p, 1 ≤ p < ∞, in
Section 5. In Sections 6–8, the base B of the tube remained an open connected subset of Rn

or a cone in Rn as appropriate; but all of the main results of these sections were proved for
values in Hilbert spaceH with p = 2.

Of course the reason for the restrictions in these sections to p = 2 and values inH is
that the primary tool in our proofs was the Fourier transform which, as previously noted,
is available in its desired completeness to the specific cases of p = 2 and values inH. We
desire to extend the results of Sections 6–8 to 1 ≤ p < ∞ and values in Banach space X
as appropriate by using different techniques. This has been done by Vindas in [1] where
functional analysis techniques have been used to extend the Poisson integral representation
of functions in Hp(TC,H) from p = 2 with values in H to 1 ≤ p ≤ ∞ with values in
X . See [1] (Theorem 2); similarly see also [1] (Theorem 1). Use of functional analysis
techniques and accumulated knowledge related to vector-valued fuctions to obtain the
desired extensions of the results noted in this paragraph should be considered. Extensions
of results from p = 2 to 1 ≤ p < ∞ could possibly also be obtained here for Hilbert space
H by applying limit processes using the p = 2 case. We believe that the basic results of
Sections 6–8 can be extended to 1 ≤ p < ∞ and values in Banach space X as appropriate.
We suggest consideration of this extension in future research.

For p = 2 we have proved in previous work that the S ′(Rn) Fourier transform maps
the distribution spaceD′L2(Rn)

one-one and onto S ′2; further we have proved that the S ′(Rn)

Fourier transform maps D′Lp(Rn), 1 ≤ p < 2, one-one and into S ′q, (1/p) + (1/q) = 1.
The proofs are obtained using the characterization results for the form of elements in
D′Lp(Rn), 1 ≤ p ≤ 2. With knowledge of a characterization of elements in the vector-valued
distribution space equivalent toD′L2(Rn)

we conjecture that the S ′(Rn,H) Fourier transform

maps this vector-valued distribution space one-one and onto S ′2(Rn,H). Of course the
values of the vector-valued distributions would need to be in Hilbert spaceH because of
the probable use of the function Fourier transform on L2(Rn,H) functions.
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Results similar to those of this paper may be in order concerning the functions defined
as H(C) in [7]. We leave this for future research.

10. Conclusions

As stated in Section 1 our goal in this paper was to obtain results for the analytic
functions defined in Section 4 treated as generalizations of Hp(TB,X ) functions and as
generalizations of the scalar-valued functions noted in [2] (Chapter 5) and in some of
our papers referenced in [2] and hence to generalize results concerning Hp(TB,X ) spaces
and concerning the functions of [2] (Chapter 5) to these new spaces of analytic functions.
Additionally, we stated that our goal also was to obtain additional new results for the
analytic fuctions of Section 4.

We were successful in our goals in Section 5 for all of the results there that had as
assumption that g(t) was a X valued measurable function for which the growth (1) held
and for all of the results that had as assumption that g ∈ S ′p(Rn,X ); these results held for
X being a Banach space and for all p, 1 ≤ p < ∞.

We were partially successful in our goals in Section 6 where the results depended
on hypotheses on the analytic function concerning X and p. Because our proofs of these
results depended on the Fourier transform we had to restrict X to H, a Hilbert space,
and p = 2 as described previously. But under these restrictions in Section 6 we were
able to obtain Fourier–Laplace integral representation and boundary value results on the
distinguished boundary of the tube for the analytic functions. In Section 7, we were able to
prove containment of certain analytic functions from Definitions 1–4 in the Hardy space
H2(TC,H). In Section 8, we were able to obtain boundary value results on the topological
boundary of the tube domain for the functions considered there. We desire to have the
results of Sections 6–8 holding as well for X being a Banach space and for 1 ≤ p < ∞.

In our previous work concerning scalar-valued generalizations of Hp(TB) functions
we have been able to obtain results under the assumption on the analytic functions of
the type in Sections 6–8 for all p, 1 ≤ p < ∞. That is we have obtained Fourier–Laplace
integral representation and boundary value results for all p, 1 ≤ p < ∞, on the assumed
scalar-valued analytic function. Additionally, we have obtained Cauchy and Poisson
integral representations as appropriate. Because of the existence of these results for all p
in the scalar-valued case we have emphasized in Section 9 our belief that the basic results
of Sections 6–8 can be extended to 1 ≤ p < ∞ and to values in Banach space X under
assumption on the analytic function in the results. We believe that new techniques apart
from the Fourier transform will be used to obtained these desired results as described in
Section 9. We pursue the analysis of these topics for the generalized setting in the future.

The author believes that there is considerable additional interesting analysis in the
generalized format of the results in this paper that can be obtained in regards to integral
representation, boundary values, and applications for the functions of Definitions 1–4.
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Birkhäuser: Basel, Switzerland, 2019; in press.
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