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Abstract: The importance of counting data modeling and its applications to real-world phenomena
has been highlighted in several research studies. The present study focuses on a one-parameter
discrete distribution that can be derived via the survival discretization approach. The proposed
model has explicit forms for its statistical properties. It can be applied to discuss asymmetric “right
skewed” data with long “heavy” tails. Its failure rate function can be used to discuss the phenomena
with a monotonically decreasing or unimodal failure rate shape. Further, it can be utilized as a
probability tool to model and discuss over- and under-dispersed data. Various estimation techniques
are reported and discussed in detail. A simulation study is performed to test the property of the
estimator. Finally, three real data sets are analyzed to prove the notability of the introduced model.
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1. Introduction

The modeling of count data in recent years has been very complicated due to the
huge number of data sets generated from various fields over time, particularly in ecology,
renewable energy, engineering, and medicine. The main problem occurs when the data
suffer from excessive scattering with different types of dispersion forms. To solve this
problem, statisticians have introduced flexible probability models that have different types
of dispersions to model such data. The moment exponential (MEx) distribution is one of the
most popular models for this purpose, especially in the case of an over- or under-dispersed
shape for the hydrological processes. The random variable (RV) X is said to follow the MEx
distribution if its survival function (SF) is given by

S(x; λ) = (λx + 1)e−λx; x > 0, (1)

where λ > 0 is a scale parameter. The MEx model is flexible enough to accommodate
monotonic failure rates. On account of the resilience of the MEx model, many statisticians
have sought to derive many extension “modifications” from this distribution with its appli-
cations in diverse fields. Examples include: Burr XII-MEx (see Bhatti et al. [1]), generalized
exponentiated MEx (see Iqbal et al. [2]), Poisson MEx (see, Ahsan-ul-Haq [3]), Topp-Leone
MEx (see Abbas et al. [4]), order statistics of exponentiated MEx (see Akhter et al. [5]),
Weibull-MEx (see Hashmi et al. [6]), statistical inference of the lower record values based
on exponentiated MEx (see Kumar et al. [7]), slashed MEx (see Iriarte et al. [8]), and others.
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In many cases, the data need to be recorded or listed on a discrete scale rather than on
a continuous analog scale. Due to this reason, the discretization of continuous probability
models has received much attention as the census data produced from various regions
become more complex by the day. Therefore, to model these counting data, discrete
probability models are required for analytical studies of these multidimensional “complex”
phenomena. Discretization of a continuous probability model can be derived via different
techniques. The most widely utilized approach is the survival discretization method in
which the probability mass function (PMF) of the RV X can be formulated as

Pr(X = x) = S(x)− S(x + 1); x = 0, 1, 2, 3, . . . . (2)

Based on Equation (2), several discrete models have been reported and discussed, i.e.,
the discrete analog of the Weibull-G class (see Ibrahim et al. [9]), the discrete exponential
generalized-G family (see Eliwa et al. [10]), the discrete generalized Burr–Hatke (see
Yousof et al. [11]), the discrete Bilal (see Altun [12]), the discrete generalized Lindley (see
El-Morshedy [13]), the discrete alpha power inverse Lomax (see Almetwally [14]), the
discrete Perks (see Tyagi et al. [15]), the discrete Lindley (see Bakouch et al. [16]), and others.

Although the statistical literature contains a lot of discrete models, more and more
discrete probability distributions are needed to discuss complex phenomena with sparse
observations. In this paper, we propose the discrete analog of Equation (1). In this paper,
the discrete version of the MEx model is derived from the abbreviated version called DMEx.
The great advantage of the DMEx model is that it stands with one parameter that has been
listed to give a better alternative to some discrete distributions and reports another tribune
for statisticians working in the field of data analysis. Other interesting features of the DMEx
distribution can be reported as follows: Its distributive properties can be formulated in
explicit forms. It can be applied to discuss asymmetric “positively skewed” count data. It
can be utilized to discuss the dispersion of “over- and under-shaped” count data, and it
can be used to analyze count data that have a monotonic unimodal or increased hazard
rate shape.

2. The Structure of the DMEx Model

Using Equations (1) and (2), the SF of the DMEx distribution can be expressed as

S(x) = [−(x + 1) ln β + 1]βx+1; x ∈ N0, (3)

where 0 < β = e−λ < 1 and N0 = 0, 1, 2, 3, . . .. The corresponding CDF and PMF to
Equation (3) can be proposed as

F(x; β) = 1− [−(x + 1) ln β + 1]βx+1; x ∈ N0, (4)

and
Pr(X = x; β) = [−x ln β + β(x + 1) ln β− β + 1]βx; x ∈ N0, (5)

respectively, where β controls the shape of the distribution. Figure 1 shows the PMF plots
for various values of the parameter β.
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Figure 1. PMF visualization plots for the DMEx model.
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As can be seen, the PMF is unimodally shaped, and it can be applied to discuss the
positively skewed count data. The HRF can be proposed as

h(x; β) =
−x ln β + β(x + 1) ln β− β + 1

−x ln β + 1
; x ∈ N0. (6)

The reversed hazard rate function (RHRF) is given by

r(x; β) =
βx[−x ln β + β(x + 1) ln β− β + 1]

1− [−(x + 1) ln β + 1]βx+1 ; x ∈ N0. (7)

Figure 2 shows the HRF and RHRF plots for different values of the distribution parameter β.
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Figure 2. HRF and RHRF visualization plots for the DMEx model.

Both HRF and its reversed function can be effectively used to model decreasing or unimodal failure
modes.

2.1 Moments of a statistical distribution

Assume X be a DMEx RV, the probability generating function (PGF), say ΠX (s), can be derived in a
closed-form as

ΠX (s) =

∞∑
x=0

sx Pr (X = x;β)

=
∞∑
x=0

[−x lnβ + β(x+ 1) lnβ − β + 1] (sβ)x

=
−β (−1 + s) lnβ + (−1 + β) (βs− 1)

(βs− 1)
2 , (8)

where the power series converges at least for all complex numbers s with |s| ≤ 1. Equation (8) can be
derived utilizing Maple software program. Thus, the first four moments of the DMEx distribution can
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Both the HRF and its reversed function can be used effectively to model decreasing or
unimodal failure modes.

2.1. Moments of a Statistical Distribution

Assume X is a DMEx RV, the probability generating function (PGF), say ΠX(s), can be
derived in a closed form as

ΠX(s) =
∞

∑
x=0

sx Pr(X = x; β)

=
∞

∑
x=0

[−x ln β + β(x + 1) ln β− β + 1](sβ)x

=
−β(−1 + s) ln β + (−1 + β)(βs− 1)

(βs− 1)2 , (8)

where the power series converges at least for all complex numbers s with |s| ≤ 1. Equation (8)
can be derived utilizing the Maple software program. Thus, the first four moments of the
DMEx distribution can be expressed as
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E(X) =
−β(β− 1 + ln β)

(−1 + β)2 , (9)

E
(

X2
)
=

β
[
(3β + 1) ln β + β2 − 1

]
(−1 + β)3 , (10)

E
(

X3
)
=
−β
[(

7β2 + 10β + 1
)

ln β + β3 + 3β2 − 3β− 1
]

(−1 + β)4 , (11)

and

E
(

X4
)
=

β
[(

15β3 + 55β2 + 25β + 1
)

ln β + β4 + 10β3 − 10β− 1
]

(−1 + β)5 . (12)

Using Equations (9)–(12), the Var(X), Sk(X), and Ku(X) can be derived in closed forms
where

Var(X) = E(X2)− [E(X)]2, (13)

Sk(X) =
E(X3)− 3E(X2)E(X) + 2[E(X)]3

[Var(X)]3/2 ,

and

Ku(X) =
E(X4)− 4E(X)E(X3) + 6E(X2)[E(X)]2 − 3[E(X)]4

[Var(X)]2
. (14)

The moment generating function (MGF) can be expressed as

Π∗X(s) =
∞

∑
x=0

exs Pr(X = x; β)

=
∞

∑
x=0

[−x ln β + β(x + 1) ln β− β + 1](esβ)x

=
−β(−1 + es) ln β + (−1 + β)(βes − 1)

(βes − 1)2 .

Table 1 lists some computational statistics (CS) of the DMEx model based on various values
of the parameter β. All results given in Table 1 are reported in Figure 3.

b
0 0.2 0.4 0.6 0.8 1

E X

0

10

20

30

b
0 0.2 0.4 0.6 0.8 1

Var X

0

200

400

600

800

1000

b
0 0.2 0.4 0.6 0.8 1

Sk X

0

1

2

3

4

5

6

b
0 0.2 0.4 0.6 0.8 1

Ku X

0

10

20

30

40

50

Figure 3. The plots of descriptive measures of the DMEx distribution.

2.2 Dispersion and variation measures

The index of dispersion, say D(X), is related to the coeffi cient of variation, say C(X). The D(X) is also
referred to the coeffi cient of dispersion which can be utilized to decide the possible over "D(X) > 1" or
under "D(X) < 1" dispersion in the used data set. Whereas the C(X) measure is generally applied to
compare to independent samples based on their variability. The higher C(X) value indicates the higher
variability. Let X be a DMEx RV, then the D(X) and C(X) can be formulated as

D(X) =
− (3β + 1) ln(β)− β2 + 1

(−1 + β) (lnβ + β − 1)]
− β (lnβ + β − 1)

(−1 + β)
2 , (15)

and

C(X) =

√[
(3β + 1) ln(β) + β2 − 1

]
(−1 + β)

β (lnβ + β − 1)
2 − 1, (16)

respectively, where D(X) = V ar(X)
|E(X)| and C(X) = 1

|E(X)|
√
V ar(X). Table 2 shows some numerical

calculations for D(X) and C(X) of the DMEx model based on the different values of the parameter β.
All results given in Table 2 are reported in Figure 4.

Table 2. The D(X) and C(X) statistics of the DMEx distribution.

β −→
Measure ↓ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D(X) 0.9866 1.0810 1.2335 1.4543 1.7756 2.2669 3.0939 4.7559 9.7525
C(X) 1.5797 1.1982 1.0287 0.9291 0.8626 0.8147 0.7783 0.7497 0.7264

As can be seen, for β → 1, the D(X) of the DMEx distribution increases whereas the C(X) decreases.
Moreover, the DMEx model is appropriate for modelling over- and under-dispersed count data.

5

Figure 3. The plots of descriptive measures of the DMEx distribution.



Axioms 2022, 11, 737 5 of 18

Table 1. Some CS of the DMEx distribution.

β −→
Measure ↓ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E(X) 0.3954 0.7529 1.1657 1.6848 2.3863 3.4156 5.1075 8.4629 18.4824
Var(X) 0.3901 0.8139 1.4378 2.4502 4.2371 7.7429 15.802 40.249 180.2500
Sk(X) 1.6228 1.4038 1.3664 1.3697 1.3821 1.3943 1.4037 1.4099 1.4132
Ku(X) 9.8387 14.3813 19.6580 25.0539 30.3715 35.5222 40.4667 40.4667 49.7002

As can be seen, both the E(X) and Var(X) of the DMEx distribution increase when β
grows to one. Further, the DMEx model is capable of modeling positively skewed count
data under a leptokurtic shape.

2.2. Dispersion and Variation Measures

The index of dispersion, say D(X), is related to the coefficient of variation, say C(X).
The D(X) is also referred to as the coefficient of dispersion, which can be utilized to decide
the possible over “D(X) > 1” or under “D(X) < 1” dispersion in the used data set. The
C(X) measure is generally applied for comparison with independent samples based on
their variability. A higher C(X) value indicates a higher variability. Let X be a DMEx RV.
Then, the D(X) and C(X) can be formulated as

D(X) =
−(3β + 1) ln(β)− β2 + 1
(−1 + β)(ln β + β− 1)]

− β(ln β + β− 1)

(−1 + β)2 , (15)

and

C(X) =

√
[(3β + 1) ln(β) + β2 − 1](−1 + β)

β(ln β + β− 1)2 − 1, (16)

respectively, where D(X) = Var(X)
|E(X)| and C(X) = 1

|E(X)|
√

Var(X). Table 2 shows some
numerical calculations for D(X) and C(X) of the DMEx model based on the different
values of the parameter β. All results given in Table 2 are reported in Figure 4.
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D(X) 0.9866 1.0810 1.2335 1.4543 1.7756 2.2669 3.0939 4.7559 9.7525

C(X) 1.5797 1.1982 1.0287 0.9291 0.8626 0.8147 0.7783 0.7497 0.7264

As can be seen, for β → 1, the D(X) of the DMEx distribution increases whereas
the C(X) decreases. Moreover, the DMEx model is appropriate for modeling over- and
under-dispersed count data.
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2.3 L-moment statistics

Suppose that n random variables X1, X2, ..., Xn are ordered in non-decreasing magnitude and written as
X1:n ≤ X2:n ≤ ... ≤ Xn:n. In the definition of order statistics (OS), there is no restriction on whether
X ,
is are independent or identically distributed (IID). But many well-known results about OS are under

the classical assumption that X ,
is are IID. Let the RV X have the DMEx distribution, then the CDF of

the ith OS can be expressed as

Fi:n (x;β) =

n∑
k=i

(
n

k

)
[Fi (x;β)]

k
[1− Fi (x;β)]

n−k

=

n∑
k=i

n−k∑
j=0

Φ(n,k)m [Fi (x;β)]
k+j

, (17)

where Φ
(n,k)
m = (−1)

j (n
k

)(
n−k
j

)
. Furthermore, the corresponding PMF of the ith OS can be proposed as

fi:n (x;β) = Fi:n (x;β)− Fi:n (x− 1;β) =

n∑
k=i

n−k∑
j=0

Φ(n,k)m [fi (x;β)]
k+j

.

Thus, the rth moments of Xi:n, say E (Xr
i:n), can be expressed as

E (Xr
i:n) =

∞∑
x=0

n∑
k=i

n−k∑
j=0

Ψ(n,k)
m xr [fi (x;β)]

k+j
. (18)

The L-moments (L-M), say ϑτ , are summary statistics for probability models. They are analogous to
ordinary moments but are computed from linear functions of the ordered data values. The L-M of the
RV X can be proposed as

ϑτ =
1

τ

τ−1∑
i−0

(−1)
i

(
τ − 1

i

)
E (Xτ−i:τ ) . (19)

Using Equation (19), some statistical measures based on the L-M statistics can be computed like E(X) =
ϑ1, C(X) = ϑ2

ϑ1
, Sk(X) = ϑ3

ϑ2
, and Ku(X) = ϑ4

ϑ2
.

3 Different estimation techniques

3.1 Maximum likelihood estimation (MLE)

In this subsection, the estimation of the DMEx parameter is discussed using the method of maximum
likelihood based on a complete sample. Let X1, X2, . . . , Xn be a random sample (RS) from DMEx
distribution. Then the log-likelihood, say L, function of the DMEx may be expressed as

L = lnβ

n∑
i=1

xi +

n∑
i=1

ln [−xi lnβ + β (xi + 1) lnβ − β + 1] . (20)

6

Figure 4. Plots of the D(X) and C(X) statistics of the DMEx distribution.
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2.3. L-Moment Statistics

Suppose that n random variables X1, X2, . . . , Xn are ordered in non-decreasing magni-
tude and written as X1:n ≤ X2:n ≤ . . . ≤ Xn:n. In the definition of order statistics (OS), there
is no restriction on whether X,

is are independent or identically distributed (IID); however,
many well-known results about OS are under the classical assumption that X,

is are IID. Let
the RV X have the DMEx distribution. Then, the CDF of the ith OS can be expressed as

Fi:n(x; β) =
n

∑
k=i

(
n
k

)
[Fi(x; β)]k[1− Fi(x; β)]n−k

=
n

∑
k=i

n−k

∑
j=0

Φ(n,k)
m [Fi(x; β)]k+j, (17)

where Φ(n,k)
m = (−1)j(n

k)(
n−k

j ). Furthermore, the corresponding PMF of the ith OS can be
proposed as

fi:n(x; β) = Fi:n(x; β)− Fi:n(x− 1; β) =
n

∑
k=i

n−k

∑
j=0

Φ(n,k)
m [ fi(x; β)]k+j.

Thus, the rth moments of Xi:n, say E
(
Xr

i:n
)
, can be expressed as

E(Xr
i:n) =

∞

∑
x=0

n

∑
k=i

n−k

∑
j=0

Ψ(n,k)
m xr[ fi(x; β)]k+j. (18)

The L-moments (L-M), say ϑτ , are summary statistics for probability models. They are
analogous to ordinary moments but are computed from linear functions of the ordered
data values. The L-M of the RV X can be proposed as

ϑτ =
1
τ

τ−1

∑
i−0

(−1)i
(

τ − 1
i

)
E(Xτ−i:τ). (19)

Using Equation (19), some statistical measures based on the L-M statistics can be computed,
such as E(X) = ϑ1, C(X) = ϑ2

ϑ1
, Sk(X) = ϑ3

ϑ2
, and Ku(X) = ϑ4

ϑ2
.

3. Different Estimation Techniques
3.1. Maximum Likelihood Estimation (MLE)

In this subsection, estimation of the DMEx parameter is discussed using the method of
maximum likelihood based on a complete sample. Let X1, X2, . . . , Xn be a random sample
(RS) from a DMEx distribution. Then, the log-likelihood, say L, a function of the DMEx
may be expressed as

L = ln β
n

∑
i=1

xi +
n

∑
i=1

ln[−xi ln β + β(xi + 1) ln β− β + 1]. (20)

Differentiating Equation (20) with respect to the parameter β and setting the result equal to
0, we obtain

∂L
∂β

=
1
β

n

∑
i=1

xi +
n

∑
i=1

− xi
β + (xi + 1)(ln β + 1)− 1

−xi ln β + β(xi + 1) ln β− β + 1
. (21)

Since Equation (21) cannot be derived in the closed form as a function of only the data
“xi; i = 1, 2, 3, . . . , n”, a numerical iterative procedure is required to solve it numerically
“Newton-Raphson as an example”.
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3.2. Moment Estimation (ME)

Using the moment approach to estimate β, we must first equate the population moment
to the corresponding sample moment and then solve the non-linear equation

1
n

n

∑
i=1

xi =
−β(ln β + β− 1)

(−1 + β)2 , (22)

with respect to β.

3.3. Proportion Estimation (PE)

Let X1, X2, . . . , Xn be an RS from the DMEx distribution. Since we have one unknown
parameter, one indicator function is defined as follows

T(xi) =

{
1; if xi = 0

0; if xi 6= 0.
(23)

Assume Z = ∑n
i=1 T(xi) denotes the number of zeroes in the sample. Using Equations (4) and

(23), we obtain P(X ≤ 0) = Z
n . Hence, we obtain the estimation of the parameter β by

solving the following equation

β̂ ln β̂− β̂ + 1− Z
n

= 0. (24)

Since Z
n is an unbiased and consistent empirical estimator of probability P(X ≤ 0), the β̂ is

also an unbiased and consistent estimator of β.

4. Comparing Different Estimators (CDEs): A Simulation Study

In this segment, we assess the performance of the MLE, ME, and PE with respect to the
sample size n utilizing R software. For CDEs, MCMC simulations are performed according
to different schemes. The assessment is according to a simulation study:

1. Generate N = 10,000 samples of various sizes “ni; i = 1, 2, 3, 4” from the DMEx model
as follows

• Scheme I: β = 0.15 | n1 = 25, n2 = 50, n3 = 100, n4 = 250, n5 = 400, n6 = 600.
• Scheme II: β = 0.35 | n1 = 25, n2 = 50, n3 = 100, n4 = 250, n5 = 400, n6 = 600.
• Scheme III: β = 0.85 | n1 = 25, n2 = 50, n3 = 100, n4 = 250, n5 = 400, n6 = 600.

2. Compute the MLE, ME, and PE for the 10,000 samples, say β̂k for k = 1, 2, . . . , 10,000.
3. Calculate the bias “BS”, mean squared errors (MSE), and mean relative errors (MRE)

for N = 10,000 samples as

|BS(β)| = 1
N

N

∑
k=1

∣∣∣β̂k − βk

∣∣∣, MSE(β) =
1
N

N

∑
k=1

(β̂k− βk)
2, MRE(β) =

1
N

N

∑
k=1

∣∣∣β̂k − βk

∣∣∣
βk

.

4. The empirical results of the simulations are reported in Tables 3–5 and provided via
Figures 5–7.

As can be seen, the BS of the parameter β approaches 0 when the sample size n grows.
Similarly, both the MSE and MRE of the DMEx parameter approach 0 when the sample
size n increases. These results reveal the consistency property of the derived estimators.
Thus, we can conclude that all estimation methods work quite well under various sizes
of samples.
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Table 3. Simulation results for β = 0.15.

n Criteria MLE ME PE

25 |BS| 0.71072536 0.68736626 1.01333569
MSE 0.50610243 0.48899665 0.62541235
MRE 0.47496366 0.46614520 0.67532023

50 |BS| 0.39401774 0.38114550 0.59444182
MSE 0.10203639 0.09469954 0.17296732
MRE 0.26463284 0.25413209 0.39819026

100 |BS| 0.27723665 0.25923302 0.39711141
MSE 0.07412203 0.06774263 0.15838302
MRE 0.18212052 0.17334963 0.26733503

250 |BS| 0.18533699 0.18241249 0.29293434
MSE 0.03441458 0.03211288 0.08771857
MRE 0.12229566 0.12014121 0.1964149

400 |BS| 0.13130521 0.11796928 0.19905126
MSE 0.01796344 0.01441778 0.03983039
MRE 0.08722563 0.07803269 0.1327154

600 |BS| 0.04210295 0.03471560 0.09222016
MSE 0.00429679 0.00413072 0.01223098
MRE 0.00831602 0.00726341 0.02431204

4 The empirical results of simulation are reported in the Tables 3, 4, and 5, and provided via Figures 5,
6 and 7.
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Figure 5. Simulation visualization plots for β = 0.15.
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Table 4. Simulation results for β = 0.35.

n Criteria MLE ME PE

25 |BS| 0.46033471 0.45230219 0.49111028
MSE 0.21236964 0.20903288 0.24800326
MRE 0.93014126 0.91314177 0.99711412

50 |BS| 0.31830325 0.31130925 0.41790345
MSE 0.10344125 0.09841329 0.17471516
MRE 0.63899659 0.62332954 0.82130958

100 |BS| 0.23141239 0.22213412 0.31815142
MSE 0.05210236 0.04930287 0.10274589
MRE 0.46266369 0.44310965 0.63937195
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Table 4. Cont.

n Criteria MLE ME PE

250 |BS| 0.16141257 0.15810236 0.24730864
MSE 0.02695256 0.02596985 0.05886243
MRE 0.32242856 0.31519732 0.48810236

400 |BS| 0.11463142 0.09866367 0.17199896
MSE 0.01386537 0.00980015 0.02914120
MRE 0.22720103 0.19710414 0.33409875

600 |BS| 0.08795636 0.07296985 0.12110286
MSE 0.00877157 0.00627420 0.00923698
MRE 0.11209537 0.09830987 0.21008025
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Figure 6. Simulation visualization plots for β = 0.35.
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Figure 6. Simulation visualization plots for β = 0.35.

Table 5. Simulation results for β = 0.85.

n Criteria MLE ME PE

25 |BS| 0.46296336 0.48641129 0.49813368
MSE 0.21374125 0.23632653 0.24841515
MRE 0.92396326 0.97291764 0.99433695

50 |BS| 0.31103258 0.37031526 0.42356964
MSE 0.09774623 0.13274859 0.17233696
MRE 0.62174120 0.74533626 0.81241852

100 |BS| 0.23163949 0.26933026 0.31233635
MSE 0.05208856 0.07341259 0.09810221
MRE 0.46241203 0.53233636 0.61233982

250 |BS| 0.16196336 0.19810775 0.22185236
MSE 0.02641205 0.03901486 0.04941212
MRE 0.32163955 0.39910213 0.44330352

400 |BS| 0.11300125 0.13433636 0.16241252
MSE 0.01322585 0.01841021 0.02744125
MRE 0.23474694 0.27117655 0.33139625

600 |BS| 0.03332357 0.09811494 0.12141254
MSE 0.00894112 0.00903661 0.01230225
MRE 0.10541453 0.12322396 0.18338552
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Table 5. Simulation results for β = 0.85.
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MRE 0.32163955 0.39910213 0.44330352

400 |BS| 0.11300125 0.13433636 0.16241252
MSE 0.01322585 0.01841021 0.02744125
MRE 0.23474694 0.27117655 0.33139625

600 |BS| 0.03332357 0.09811494 0.12141254
MSE 0.00894112 0.00903661 0.01230225
MRE 0.10541453 0.12322396 0.18338552
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Figure 7. Simulation visualization plots for β = 0.85.

As can be seen, the BS of the parameter β approach to 0 when the sample size n grows. Similarly, both
MSE and MRE of the DMEx parameter approach to 0 when the sample size n increases. These results
reveal the consistency property of the derived estimators. Thus, we can conclude that all estimation
methods work quite well under various sizes of samples.

5 Data modeling: Competitive models and statistical criteria

In this segment, the importance of the DMEx distribution is discussed utilizing datasets from vari-
ous areas. We shall compare the fits of the DMEx model with diverse competitive distributions like:
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5. Data Modeling: Competitive Models and Statistical Criteria

In this segment, the importance of the DMEx distribution is discussed utilizing data
sets from various areas. We shall compare the fits of the DMEx model with diverse com-
petitive distributions, such as the Poisson (Poi), the discrete Pareto (DPa), the discrete
Burr-XII (DBXII), the discrete Rayleigh (DR), the discrete Burr–Hatke (DBH), and the dis-
crete inverse Rayleigh (DIR) models. The tested distributions are compared to some criteria,
such as −L, the Hannan–Quinn information criterion (HQIC), the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), the corrected AIC (CAIC), and the
Kolmogorov–Smirnov (KS) test with its p-value.

5.1. Data Set I: Electronic Components

The first set of data represents the failure times for a sample of 15 electronic compo-
nents (EC) in an accelerated life test (see, Johnston [17]). The observed descriptive statistics
(ODS) include: mean = 27.533, variance = 631.980, skewness = 1.534, and kurtosis = 6.924.
Non-parametric plots for the EC data are sketched in Figure 8.

Poisson (Poi), discrete Pareto (DPa), discrete Burr-XII (DBXII), discrete Rayleigh (DR), discrete Burr-
Hatke (DBH), and discrete inverse Rayleigh (DIR) models. The tested distributions are compared vis
some criteria like −L, Hannan-Quinn-information-criterion (HQIC), Akaike-information-criterion (AIC),
Bayesian-information-criterion (BIC), corrected-AIC (CAIC), and Kolmogorov-Smirnov (KS) test with
its p-value.

5.1 Data set I: Electronic components

The first set of data represents the failure times for a sample of 15 electronic components (EC) in an
accelerated life test (see, Johnston [17]). The observed descriptive statistics (ODS) are: mean = 27.533,
variance = 631.980, skewness = 1.534, and kurtosis = 6.924. Non-parametric plots for EC data are
sketched in Figure 8.
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Figure 8. Non-parametric visualization plots for EC data.

The MLE with their SE, CI for the parameter(s), and goodness of fit (GOF) test for this data are reported
in Tables 6 and 7.

Table 6. The MLE, SE and CI for EC data.

β α
Model MLE SE CI MLE SE CI

DMEx 0.931 0.012 [0.910, 0.956] − − −
DR 0.999 2.6× 10−4 [0.998, 0.999] − − −
DIR 1.8× 10−7 0.055 [0, 0.107] − − −
DBH 0.999 0.008 [0.984, 1.014] − − −
DPa 0.720 0.061 [0.600, 0.839] − − −
Poi 27.533 1.355 [24.878, 30.189] − − −
DINH 0.578 0.193 [0.199, 0.957] 29.072 20.384 [0, 69.024]
DB-XII 0.975 0.051 [0.874, 1] 13.367 27.785 [0, 67.824]
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Figure 8. Non-parametric visualization plots for EC data.

The MLE with their SE, the CI for the parameter(s), and the goodness of fit (GOF) test
for these data are reported in Tables 6 and 7.
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Table 6. The MLE, SE, and CI for EC data.

β α
Model MLE SE CI MLE SE CI

DMEx 0.931 0.012 [0.910, 0.956] − − −
DR 0.999 2.6× 10−4 [0.998, 0.999] − − −
DIR 1.8× 10−7 0.055 [0, 0.107] − − −
DBH 0.999 0.008 [0.984, 1.014] − − −
DPa 0.720 0.061 [0.600, 0.839] − − −
Poi 27.533 1.355 [24.878, 30.189] − − −
DINH 0.578 0.193 [0.199, 0.957] 29.072 20.384 [0, 69.024]
DB-XII 0.975 0.051 [0.874, 1] 13.367 27.785 [0, 67.824]

Table 7. The GOF test for EC data.

Statistic DMEx DR DIR DBH DPa Poi DINH DB-XII

−L 64.7898 66.394 89.096 91.368 77.402 151.206 67.879 75.724
AIC 131.5796 134.788 180.192 184.737 156.805 304.413 139.758 155.448

CAIC 131.8873 135.096 180.499 185.045 157.112 304.721 140.758 156.448
BIC 132.2877 135.496 180.899 185.445 157.513 305.121 141.174 156.864

HQIC 131.5721 134.781 180.184 184.729 156.797 304.405 139.743 155.433
KS 0.1144 0.216 0.698 0.791 0.405 0.381 0.207 0.388

p-value 0.9766 0.433 <0.0001 <0.0001 0.009 0.025 0.481 0.015

As can be noted, based on a significance level of 0.05, both the DMEx and DR models
work quite well for modeling the EC data, but the DMEx distribution is the best. Figures 9
and 10 show the empirical CDFs as well as the probability-probability (P-P) plots, or
“parametric plots”, for the EC data, which prove the empirical results mentioned in Table 7.

Table 7. The GOF test for EC data.

Statistic DMEx DR DIR DBH DPa Poi DINH DB-XII

−L 64.7898 66.394 89.096 91.368 77.402 151.206 67.879 75.724
AIC 131.5796 134.788 180.192 184.737 156.805 304.413 139.758 155.448
CAIC 131.8873 135.096 180.499 185.045 157.112 304.721 140.758 156.448
BIC 132.2877 135.496 180.899 185.445 157.513 305.121 141.174 156.864
HQIC 131.5721 134.781 180.184 184.729 156.797 304.405 139.743 155.433
KS 0.1144 0.216 0.698 0.791 0.405 0.381 0.207 0.388

p-value 0.9766 0.433 < 0.0001 < 0.0001 0.009 0.025 0.481 0.015

As can be noted, based on significance level 0.05, both DMEx and DR models work quite well for modelling
EC data, but the DMEx distribution is the best. Figures 9 and 10 show the empirical CDFs as well as
the probability-probability (P-P) plots "parametric plots" for EC data which prove the empirical results
mentioned in Table 7.
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Figure 9. Empirical CDFs visualization plots for EC data.
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Figure 9. Empirical CDF visualization plots for EC data.

Table 8 lists various estimators for the EC data, and it is noted that the MLE and ME
techniques work quite well for modeling these data.

Table 8. Different estimators for EC data.

Technique β KS p-Value

ME 0.931 0.114 0.989
PE 0.811 0.588 0.627× 10−4
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Figure 10. P-P visualization plots for EC data.

Table 8 lists various estimators for EC data, and it was noted that the MLE and ME techniques work
quite well for modeling this data.

Table 8. Different estimators for EC data.

Technique β KS p-value

ME 0.931 0.114 0.989
PE 0.811 0.588 0.627× 10−4

Table 9 reports some numerical accounts of the empirical descriptive statistics (EDS).

Table 9. The EDS for EC data.

Approach E(X) V ar(X) D(X) Sk(X) Ku(X)

MLE 27.536 393.082 14.275 1.414 5.999
PE 9.0508 45.6912 5.048 1.410 5.989
ME 27.533 393.017 14.274 1.414 5.999

Both theoretical and empirical "MLE and ME" scales are approximately equal. Thus, the ME approach
work quite well besides the MLE method for estimating the unknown parameter. The performance of
the PE approach is inferior with respect to other techniques for some measures. The EC data is suffering
from over-dispersed phenomena. Moreover, the EC data is skewed to the right and leptokurtic.

5.2 Data set II: Leukemia remission

This data involves leukemia remission (LR) times (in weeks) for 20 patients (see, Damien and Walker
[18]) according to discretization concept. For this data, the ODS equal 19.55, 216.05, 0.637 and −0.739.
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Figure 10. P-P visualization plots for EC data.

Table 9 reports some numerical accounts of the empirical descriptive statistics (EDS).

Table 9. The EDS for EC data.

Approach E(X) Var(X) D(X) Sk(X) Ku(X)

MLE 27.536 393.082 14.275 1.414 5.999
PE 9.0508 45.6912 5.048 1.410 5.989
ME 27.533 393.017 14.274 1.414 5.999

Both theoretical and empirical “MLE and ME” scales are approximately equal. Thus,
the ME approach works quite well beside the MLE method for estimating the unknown
parameter. The performance of the PE approach is inferior compared to other techniques
for some measures. The EC data are suffering from over-dispersed phenomena. Moreover,
the EC data are skewed to the right and leptokurtic.

5.2. Data Set II: Leukemia Remission

These data involve leukemia remission (LR) times (in weeks) for 20 patients (see
Damien and Walker [18]) according to the discretization concept. For these data, the ODS
equals 19.55, 216.05, 0.637, and −0.739. Non-parametric plots for the LR data are displayed
in Figure 11.

The MLE with their SE, the CI for the parameter(s), and the GOF test for the LR data
are listed in Tables 10 and 11.

Table 10. The MLE, SE, and CI for LR data.

β α
Model MLE SE CI MLE SE CI

DMEx 0.905 0.014 [0.877, 0.933] − − −
DR 0.998 0.0004 [0.998, 0.999] − − −
DIR 7.82× 10−7 − − − − −
DBH 0.998 0.009 [0.981, 1.017] − − −
DPa 0.696 0.056 [0.585, 0.806] − − −
Poi 19.550 0.989 [17.612, 21.493] − − −
DINH 0.737 0.268 [0.212, 1.262] 14.798 9.997 [0, 34.392]
DB-XII 0.998 0.004 [0.99, 1] 182.367 94.801 [0, 277.7.001]
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Non-parametric plots for LR data are displayed in Figure 11.
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Figure 11. Non-parametric visualization plots for LR data.

The MLE with their SE, CI for the parameter(s), and GOF test for LR data are listed in Tables 10 and
11.

Table 10. The MLE, SE and CI for LR data.

β α
Model MLE SE CI MLE SE CI

DMEx 0.905 0.014 [0.877, 0.933] − − −
DR 0.998 0.0004 [0.998, 0.999] − − −
DIR 7.82× 10−7 − − − − −
DBH 0.998 0.009 [0.981, 1.017] − − −
DPa 0.696 0.056 [0.585, 0.806] − − −
Poi 19.550 0.989 [17.612, 21.493] − − −
DINH 0.737 0.268 [0.212, 1.262] 14.798 9.997 [0, 34.392]
DB-XII 0.998 0.004 [0.99, 1] 182.367 94.801 [0, 277.7.001]

Table 11. The GOF test for LR data.

Statistic DMEx DR DIR DBH DPa Poi DINH DB-XII

−L 79.071 81.175 101.987 110.283 95.448 152.718 82.818 92.602
AIC 160.141 164.351 205.975 222.565 192.896 307.436 169.635 189.203
CAIC 160.364 164.572 206.197 222.787 193.118 307.658 170.341 189.909
BIC 161.137 165.346 206.973 223.561 193.892 308.432 171.627 191.195
HQIC 160.336 164.544 206.169 222.759 193.090 307.630 170.024 189.592
KS 0.109 0.199 − 0.751 0.392 0.352 0.189 0.369

p-value 0.970 0.401 − < 0.001 0.004 0.014 0.467 0.008

Based on significance level 0.05, both DMEx and DR distributions work quite well for analyzing LR data,
but the DMEx model is the best. Figures 12 and 13 show the empirical CDFs as well as the P-P plots
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Table 11. The GOF test for LR data.

Statistic DMEx DR DIR DBH DPa Poi DINH DB-XII

−L 79.071 81.175 101.987 110.283 95.448 152.718 82.818 92.602
AIC 160.141 164.351 205.975 222.565 192.896 307.436 169.635 189.203

CAIC 160.364 164.572 206.197 222.787 193.118 307.658 170.341 189.909
BIC 161.137 165.346 206.973 223.561 193.892 308.432 171.627 191.195

HQIC 160.336 164.544 206.169 222.759 193.090 307.630 170.024 189.592
KS 0.109 0.199 − 0.751 0.392 0.352 0.189 0.369

p-value 0.970 0.401 − <0.001 0.004 0.014 0.467 0.008

Based on a significance level of 0.05, both the DMEx and DR distributions work quite
well for analyzing the LR data, but the DMEx model is the best. Figures 12 and 13 show the
empirical CDFs as well as the P-P plots for the LR data, which prove the empirical results
reported in Table 11.for LR data which prove the empirical results reported in Table 11.
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Figure 12. Empirical CDFs visualization plots for LR data.

0.0 0.4 0.8

0.
0

0.
4

0.
8

DMEx

obs

E
X

P

0.0 0.4 0.8

0.
0

0.
4

0.
8

DR

obs

E
X

P

0.0 0.4 0.8

0.
0

0.
4

0.
8

DIR

obs

E
X

P

0.0 0.4 0.8

0.
0

0.
4

0.
8

DBH

obs

E
X

P

0.0 0.4 0.8

0.
0

0.
4

0.
8

DP a

obs

E
X

P

0.0 0.4 0.8

0.
0

0.
4

0.
8

P oi

obs

E
X

P

0.0 0.4 0.8

0.
0

0.
4

0.
8

DINH

obs

E
X

P

0.0 0.4 0.8

0.
0

0.
4

0.
8

BX­II

obs

E
X

P

Figure 13. P-P visualization plots for LR data.

Table 12 reports different estimators for LR data, and it was noted that the MLE and ME methods work
quite well for modeling this data.

Table 12. Different estimators for LR data.

Technique β KS p-value

ME 0.905 0.100 0.841
PE 0.837 0.350 0.0147

15

Figure 12. Empirical CDF visualization plots for LR data.
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for LR data which prove the empirical results reported in Table 11.
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Figure 12. Empirical CDFs visualization plots for LR data.
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Figure 13. P-P visualization plots for LR data.

Table 12 reports different estimators for LR data, and it was noted that the MLE and ME methods work
quite well for modeling this data.

Table 12. Different estimators for LR data.

Technique β KS p-value

ME 0.905 0.100 0.841
PE 0.837 0.350 0.0147
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Figure 13. P-P visualization plots for LR data.

Table 12 reports different estimators for the LR data, and it is noted that the MLE and
ME methods work quite well for modeling these data.

Table 12. Different estimators for LR data.

Technique β KS p-Value

ME 0.905 0.100 0.841
PE 0.837 0.350 0.0147

Table 13 lists some numerical accounts of the EDS for the LR data.

Table 13. The EDS for LR data.

Approach E(X) Var(X) D(X) Sk(X) Ku(X)

MLE 19.551 201.109 10.286 1.413 5.998
PE 10.756 63.433 5.897 1.411 5.992
ME 19.550 201.084 10.286 1.413 5.998

The ME approach works quite well beside the MLE technique for estimating the
unknown parameter. The LR data are suffering from over-dispersed phenomena. Further,
the LR data are skewed to the right and leptokurtic.

5.3. Data Set III: Coronavirus in Punjab

The third set of data represents the number of deaths due to coronavirus in Punjab
(COV-P) during the period from 24 March 2020 to 30 April 2020. The data are as follows: 1,
2, 3, 5, 5, 6, 9, 9, 11, 11, 11, 12, 15, 15, 16, 17, 18, 19, 21, 23, 24, 28, 34, 36, 37, 41, 42, 45, 51,
58, 65, 73, 81, 83, 91, 100, 103, 106. Non-parametric plots for the COV-P data are listed in
Figure 14.

The MLE with their SE, the CI for the parameter(s), and the GOF test for the COV-P
data are proposed in Tables 14 and 15.

Based on a significance level of 0.05, the DMEx distribution is the best among all tested
models. Figures 15 and 16 show the empirical CDFs as well as the P-P plots for the COV-P
data, which prove the empirical results listed in Table 15.



Axioms 2022, 11, 737 15 of 18

Table 13 lists some numerical accounts of the EDS for LR data.

Table 13. The EDS for LR data.

Approach E(X) V ar(X) D(X) Sk(X) Ku(X)

MLE 19.551 201.109 10.286 1.413 5.998
PE 10.756 63.433 5.897 1.411 5.992
ME 19.550 201.084 10.286 1.413 5.998

The ME approach work quite well besides the MLE technique for estimating the unknown parameter.
The LR data is suffering from over-dispersed phenomena. Further, the LR data is skewed to the right
and leptokurtic.

5.3 Data set III: Coronavirus in Punjab

The third set of data represents the number of deaths due to coronavirus in Punjab (COV-P) during the
period March 24, 2020, to April 30, 2020. The data are as follows: 1, 2, 3, 5, 5, 6, 9, 9, 11, 11, 11, 12,
15, 15, 16, 17, 18, 19, 21, 23, 24, 28, 34, 36, 37, 41, 42, 45, 51, 58, 65, 73, 81, 83, 91, 100, 103, 106.
Non-parametric plots for COV-P data are listed in Figure 14.
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Figure 14. Non-parametric visualization plots for COV-P data.

The MLE with their SE, CI for the parameter(s), and GOF test for COV-P data are proposed in Tables
14 and 15.

Table 14. The MLE, SE and CI for COV-P data.

β α
Model MLE SE CI MLE SE CI

DMEx 0.9451 0.006 [0.93, 0.957] − − −
DR 0.9996 0.00008 [0.9994, 0.999] − − −
DIR 1.634× 10−10 − − − − −
DBH 0.999 0.004 [0.993, 1.006] − − −
DPa 0.729 0.037 [0.658, 0.803] − − −
Poi 34.921 0.959 [33.04, 36.8] − − −
DINH 0.615 0.144 [0.333, 0.896] 29.319 13.995 [1.889, 56.748]
DB-XII 0.996 0.004 [0.989, 1.003] 79.588 82.339 [0, 215.023]
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Figure 14. Non-parametric visualization plots for COV-P data.

Table 14. The MLE, SE, and CI for COV-P data.

β α
Model MLE SE CI MLE SE CI

DMEx 0.9451 0.006 [0.93, 0.957] − − −
DR 0.9996 0.00008 [0.9994, 0.999] − − −

DIR 1.634×
10−10 − − − − −

DBH 0.999 0.004 [0.993, 1.006] − − −
DPa 0.729 0.037 [0.658, 0.803] − − −
Poi 34.921 0.959 [33.04, 36.8] − − −
DINH 0.615 0.144 [0.333, 0.896] 29.319 13.995 [1.889, 56.748]
DB-XII 0.996 0.004 [0.989, 1.003] 79.588 82.339 [0, 215.023]

Table 15. The GOF test for COV-P data.

Statistic DMEx DR DIR DBH DPa Poi DINH DB-XII

−L 176.621 186.7 226.355 241.306 202.578 594.751 177.779 198.727
AIC 355.242 375.4 454.709 486.612 407.155 1191.5 359.558 401.454

CAIC 355.353 375.511 454.82 486.955 407.267 1191.61 359.901 401.797
BIC 356.879 377.038 456.347 489.888 408.793 1193.14 362.833 404.729

HQIC 355.824 375.983 455.292 487.778 407.738 1192.09 360.723 402.619
KS 0.1620 0.309 0.644 0.779 0.379 0.519 0.171 0.367

p-value 0.271 0.001 <0.001 <0.001 <0.001 <0.001 0.245 <0.001

Table 16 reports various estimators for the COV-P data, and it is noted that the MLE
and ME techniques work quite well for discussing these data.

Table 16. Different estimators for COV-P data.

Technique β KS p-Value

ME 0.945 0.162 0.271
PE 0.883 0.353 0.0002
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Table 15. The GOF test for COV-P data.

Statistic DMEx DR DIR DBH DPa Poi DINH DB-XII

−L 176.621 186.7 226.355 241.306 202.578 594.751 177.779 198.727
AIC 355.242 375.4 454.709 486.612 407.155 1191.5 359.558 401.454
CAIC 355.353 375.511 454.82 486.955 407.267 1191.61 359.901 401.797
BIC 356.879 377.038 456.347 489.888 408.793 1193.14 362.833 404.729
HQIC 355.824 375.983 455.292 487.778 407.738 1192.09 360.723 402.619
KS 0.1620 0.309 0.644 0.779 0.379 0.519 0.171 0.367

p-value 0.271 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.245 < 0.001

Based on significance level 0.05, the DMEx distribution is the best among all tested models. Figures
15 and 16 show the empirical CDFs as well as the P-P plots for COV-P data which prove the empirical
results listed in Table 15.
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Table 16 reports various estimators for data set III, and it was noted that the MLE and ME techniques
work quite well for discussing this data.

Table 16. Different estimators for COV-P data.

Technique β KS p-value

ME 0.945 0.162 0.271
PE 0.883 0.353 0.0002

Table 17 introduces some numerical accounts of the EDS for COV-P data.

Table 17. The EDS for COV-P data.

Approach E(X) V ar(X) D(X) Sk(X) Ku(X)

MLE 34.923 627.491 17.968 1.414 5.999
PE 15.561 129.054 8.2937 1.413 5.996
ME 34.921 627.409 17.967 1.414 5.999

The ME approach work quite well besides the MLE technique for estimating the unknown parameter.
The COV-P data is suffering from over-dispersed phenomena. Moreover, the COV-P data is skewed to
the right and leptokurtic. The profiles of L functions for data sets I, II, and III are displayed in Figure
17, and it was noted that the estimator is unique "unimodal function". Figure 18 show the empirical
CDFs for the different estimation approaches.
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Table 17 introduces some numerical accounts of the EDS for the COV-P data.

Table 17. The EDS for COV-P data.

Approach E(X) Var(X) D(X) Sk(X) Ku(X)

MLE 34.923 627.491 17.968 1.414 5.999
PE 15.561 129.054 8.2937 1.413 5.996
ME 34.921 627.409 17.967 1.414 5.999

The ME approach works quite well beside the MLE technique for estimating the
unknown parameter. The COV-P data are suffering from over-dispersed phenomena.
Moreover, the COV-P data are skewed to the right and leptokurtic. The profiles of the
L functions for data sets I, II, and III are displayed in Figure 17, and it is noted that the
estimator is a unique “unimodal function”. Figure 18 shows the empirical CDFs for the
different estimation approaches.
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Table 16 reports various estimators for data set III, and it was noted that the MLE and ME techniques
work quite well for discussing this data.

Table 16. Different estimators for COV-P data.

Technique β KS p-value

ME 0.945 0.162 0.271
PE 0.883 0.353 0.0002

Table 17 introduces some numerical accounts of the EDS for COV-P data.

Table 17. The EDS for COV-P data.

Approach E(X) V ar(X) D(X) Sk(X) Ku(X)

MLE 34.923 627.491 17.968 1.414 5.999
PE 15.561 129.054 8.2937 1.413 5.996
ME 34.921 627.409 17.967 1.414 5.999

The ME approach work quite well besides the MLE technique for estimating the unknown parameter.
The COV-P data is suffering from over-dispersed phenomena. Moreover, the COV-P data is skewed to
the right and leptokurtic. The profiles of L functions for data sets I, II, and III are displayed in Figure
17, and it was noted that the estimator is unique "unimodal function". Figure 18 show the empirical
CDFs for the different estimation approaches.
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Figure 18. Empirical CDFs visualization plots for different estimation methods.

6 Concluding remarks and future work

This article focuses on a one-parameter discrete distribution created based on the survival discretization
approach and called the DMEx distribution. The statistical properties of the DMEx model have been
derived and expressed in closed forms. It was found that the DMEx model is a proper for modeling right
skewed data sets under leptokurtic shape. The presented discrete distribution can be used as a statistical
tool to model different types of HRF including decreasing and unimodal-shaped. The DMEx parameter
has been estimated utilizing various estimation approaches, namely, MLE, ME, and PE. Simulation
studies have been performed based on various sample sizes, and it was found that the MLE and ME
techniques work quit effectively in estimating the DMEx parameter. Finally, three real data sets have
been analyzed and discussed to illustrate the notability of the DMEx distribution, and it was found that
DMEx outperforms all other competitive distributions in all aspects of the current study. In the future,
the bivariate extension of the DMEx models will be proposed and discussed in detail. Furthermore,
regression model and INAR(1) process will discuss with its applications.
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6. Concluding Remarks and Future Work

This article focuses on a one-parameter discrete distribution created based on the
survival discretization approach and called the DMEx distribution. The statistical properties
of the DMEx model have been derived and expressed in closed forms. It was found that
the DMEx model is proper for modeling right-skewed data sets of a leptokurtic shape.
The presented discrete distribution can be used as a statistical tool to model different
types of HRFs, including those that are decreasing and unimodally shaped. The DMEx
parameter has been estimated utilizing various estimation approaches, i.e., MLE, ME, and
PE. Simulation studies have been performed based on various sample sizes, and it was
found that the MLE and ME techniques work quite effectively for estimating the DMEx
parameter. Finally, three real data sets have been analyzed and discussed to illustrate the
notability of the DMEx distribution, and it was found that DMEx outperforms all other
competitive distributions in all aspects of the current study. In the future, the bivariate
extension of the DMEx models will be proposed and discussed in detail. Furthermore, a
regression model and INAR(1) process will be discussed alongside their applications.
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